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In this review paper, we discuss helicity from a geometrical point of view and see how 
it applies to the motion of a perfect fluid. We discuss its relation with the Hamiltonian 
structure, and then its extension to arbitrary space dimensions. We also comment about 
the existence of additional conservation laws for the Euler equation, and its unlikely 
integrability in Liouville’s sense.
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1. Introduction

The concept of helicity was discovered by Jean-Jacques Moreau [1] in 1961, in the context of incompressible perfect fluids, 
as a generalization of Kelvin’s circulation theorem. It has been later extended to various other mechanical and mathematical 
situations. There are therefore several ways to present it. I choose here the geometrical point of view, which emphasizes 
the role of differential forms.

A form γ has a degree m ≤ d, where d is the dimension of its domain. A 0-form is just a function, and a d-form is a 
volume form; a 1-form can be identified with a vector field. A form of degree m (one speaks of an m-form) has an exterior 
derivative dγ , which is an (m + 1)-form. If m = 0, d f is nothing but the differential of the function f . The operators d have 
the property that dd = 0. The form γ is closed if dγ = 0; it is exact if there exists an (m − 1)-form α such that γ = dα. An 
exact form is therefore closed, though the converse is not always true (this depends on the topology of the domain).

Let M be a smooth 3-dimensional oriented manifold without boundary. Let η be an exact 2-form on M , say with compact 
support; it admits a potential α, that is, a 1-form such that dα = η. Every other potential is an α + β , where β is closed. 
The exterior product α ∧ η is a volume form and can be integrated over M . The integral

H[η] =
∫
M

α ∧ η

does not depend upon the choice of α, because if dβ = 0, then∫
M

β ∧ η =
∫
M

β ∧ (dα) =
∫
M

d(β ∧ α) =
∫
M

0 = 0
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The integral H[η] is called either the Hopf invariant (mostly by geometers) or the helicity of η by people working in physics 
and fluid dynamics.

The helicity is invariant under the action of the group Diff0(M) of measure-preserving diffeomorphisms of M , in the 
sense that, if φ ∈ Diff0(M), then

H[φ∗η] =
∫
M

(φ∗α) ∧ (φ∗η) =
∫
M

φ∗(α ∧ η) =
∫
M

α ∧ η = H[η]

where we have used

d(φ∗α) = φ∗η, φ∗(α ∧ η) = α ∧ η

When M = R
3 or M = T

3 and u is a vector field, identified with the differential form u · dx, the above construction 
applies to the 2-form η = du. In coordinates, one has

η = (∂1u2 − ∂2u1)dx1 ∧ dx2 + (∂2u3 − ∂3u2)dx2 ∧ dx3 + (∂3u1 − ∂1u3)dx3 ∧ dx1

=
∑

ε(i, j,k)=1

(curl u)idx j ∧ dxk

and

u ∧ η = (u · curl u)dx1 ∧ dx2 ∧ dx3

Therefore, the helicity writes

H =
∫

R3(T3)

u · curl u dx

When curl u, called the vorticity, is confined in two oriented unknotted flux tubes, and the integral curves of curl u are 
unlinked closed curves circulating only once parallel to the tubes axes, K. Moffat [2] interprets H[η] as the degree of linkage 
of the tubes times the product of the circulations in each tube. Additional contributions come when the integral curves are 
linked, non closed, or when the tubes are knotted, see [3].

V.I. Arnold [28] gave a geometrical interpretation of H[η], which he called Hopf’s asymptotic invariant. He identified the 
closed 2-form with a solenoidal vector field X by η = ıX vol; in R3, this just means η = X1dx2 ∧dx3 + X2dx3 ∧dx1 + X3dx1 ∧
dx2. Let φt denote the flow associated with X , which is volume-preserving. Then the helicity measures the asymptotic 
linking of the trajectories (φt(x))t≥0 as t → +∞, averaged with respect to x over M .

2. Helicity in fluid dynamics

The velocity field of a perfect incompressible fluid is governed by the Euler equation

∂t u + (u · ∇)u + ∇p = 0, div u = 0 (1)

Let us assume that the physical domain is Rd or Td . Although u is naturally a vector field (the velocity field of the fluid), 
the Euclidean structure allows us to identify it with a differential form of degree one; then the incompressibility condition 
is interpreted as d∗u = 0. The 2-form η := du is the vorticity. In three space dimension, we may again identify η with the 
vector field curl u.

It has been known from the mists of time that, when d = 2, the scalar vorticity ηs := ∂1u2 − ∂2u1 is transported by the 
flow:

(∂t + u · ∇)ηs = 0

This amounts to saying that ηs(t) = ηs(0) ◦ φt , where ηs(0) is the vorticity at initial time, and (φt)t≥0 is the flow generated 
by the vector field u. Since u is the velocity field, t �→ φt(y) is the trajectory of the particle that is initially at position y. 
Because u is solenoidal (div u = 0), φt is measure-preserving: (φt)∗dx = dx. It follows that, not only 

∫
R3 ηs dx is conserved 

as time varies, but actually every quantity of the form∫
f (ηs)dx

is a time-invariant of the flow. This remains true even if the physical domain D is bounded with an impermeable boundary, 
that is, with the boundary condition

u · ν = 0 (ν the outward normal) on ∂ D
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These invariants were used by several authors to treat the Cauchy problem. Lichtenstein [4] and Wolibner [5] considered 
smooth initial data and found that a classical solutions exists globally in time. Yudovich [6] proved the existence and 
uniqueness of the flow when ω(0) ∈ L∞ and the kinetic energy is finite; see also Chemin’s book [7] Chapter 5.

In three space dimensions, taking the curl of (1) yields instead

(∂t + u · ∇)ηc = (ηc · ∇)u

where ηc stands for the curl of u. This equation, which can be interpreted in terms of a Lie derivative, does not imply 
the constancy of so many integrals as in 2D. Jean-Jacques Moreau [1] was the first to remark that the helicity H[η] of the 
vorticity field remains constant as time varies. This constancy, together with that of the kinetic energy and linear/angular 
momenta∫

R3

1

2
|u|2dx,

∫
R3

u dx,

∫
R3

u ∧ x dx

rose at least five questions.

1. Are there other invariants of the 3D-Euler equation, in the form of an integral of u and its derivatives?
2. Are these invariants related to the invariance group of the Euler equation, through Noether’s Theorem?
3. Can these invariants be used to develop a theory of the Cauchy problem? For instance, is the Euler equation completely 

integrable in the sense of Liouville?
4. Are there similar invariants for a compressible fluid?
5. Are there similar invariants in other space dimensions? Does the helicity belong to a list parametrized by the dimen-

sion?

Question 1 was answered by the negative for integrals depending upon (u, Du) in [8], using brute force. Question 2 was 
solved by P.J. Olver [9], who derived a Hamiltonian formalism of the Euler equation, and showed that the kinetic energy 
and linear/angular momenta are associated with the invariance group (isometries, Galilean transformations) of the equation 
through Noether’s Theorem. Even if this extends what was already known for simpler mechanical systems, the proof is much 
more involved because the Hamiltonian structure is intrinsically non-linear. Olver showed that, on the contrary, the helicity 
is associated with a degeneracy of the Hamiltonian structure, a fact that we explain in more details below. As for Question 3, 
we still know only finitely many invariants, and there is little hope that the Euler equation could be completely integrable. 
Even in two space dimensions, where we are aware of an infinite list of conservation laws, the complete integrability is 
doubtful, because the invariants, apart from energy and momenta, are still associated with the degeneracy of the symplectic 
structure [10]. Eventually, V.I. Arnol’d & B. Khesin [11] gave an affirmative answer to Question 4, in the barotropic case 
where the pressure p is given as a function of the density ρ (see also Khesin & Yu. Chekanov [12]). The system is then

∂tρ + div(ρu) = 0, ∂t u + (u · ∇)u + 1

ρ
∇p(ρ) = 0

from which one derives

∂t(u · η) + div

(
(u · η)u + (h(ρ) − 1

2
|u|2)η

)
= 0

where h′(s) = 1
s p′(s). Integrating over R3 or T3, we obtain the constancy of the helicity, provided that u and η are smooth 

and they decay fast enough at infinity. We warn the reader that once shock waves are present in the flow (the velocity field 
then admits discontinuities across shock surfaces), the helicity is not constant any more, even though it still makes sense.

When the pressure depends also upon a temperature and the Euler system includes the energy conservation law, the 
situation is more complex, and there does not seem to be something like a conserved helicity.

2.1. Helicity in other space dimensions

Question 5 was answered by L. Tartar (unpublished) in even space dimension, and by the author [10] in odd dimension.

Even dimensional case. Suppose d = 2m. Tartar proved that the density τ of the d-form

η∧m := η ∧ · · · ∧ η︸ ︷︷ ︸
m times

= τ dx

obeys the transport equation

(∂t + u · ∇)τ = 0



178 D. Serre / C. R. Mecanique 346 (2018) 175–183
This is of course reminiscent of the property Luη = 0, where Lu is the Lie derivative in the direction of u. There follows, as 
in the 2D-case, that the integrals∫

R2m

f ◦ τ dx

are invariants of the motion, for every smooth function f . This property follows as well from the fact that η(t) = (φt)∗η(0), 
and therefore η(t)∧m = (φt)∗η(0)∧m , whence τ (t) = τ (0) ◦ φt .

The odd-dimensional case. When d = 2m + 1 instead, u ∧ (η∧m) is a volume form. We proved in [10] that the generalized 
helicity ∫

R2m+1

u ∧ (η∧m)

is an invariant of the motion.
An interpretation using transport is less clear than in the even-dimensional case, because u(t) is not convected by the 

flow φt .

3. The Hamiltonian point of view

In order to explain the occurrence of all these conservation laws, we make a digression and discuss the Hamiltonian 
structure of the incompressible Euler equation.

In a Brave New World, the phase space of a Hamiltonian system is a symplectic manifold M . The symplectic structure is 
defined by a closed, non-degenerate differential form  of degree 2 over M . The argument of  is a pair of vector fields 
X, Y ∈ T M . The Hamiltonian of the system is a given function1 H ∈ C∞(M). The evolution of the state is governed by the 
differential equation



(
dx

dt
, ·

)
= dH (2)

where dH , a 1-form, denotes the differential of H . This equation stands in the cotangent bundle T ∗ M . Notice that

dH

dt
= dH · dx

dt
= 

(
dx

dt
,

dx

dt

)
= 0

so that t �→ H(x(t)) is a constant of the motion.
Because of the non-degeneracy, the map X �→ λX := (X, ·) is an isomorphism between T M and T ∗M , and one may 

define a skew-symmetric operation over T ∗M by

[λX , λY ] = (X, Y )

The space C∞(M) inherits another skew-symmetric operation

{ f , g} = [d f ,dg]
which turns out to be a Poisson structure. Namely, the bracket satisfies

{ f , g} = −{g, f }, { f , {g,h}} + {g, {h, f }} + {h, { f , g}} = 0 (3)

together with

{ f g,h} = f {g,h} + g{ f ,h} (4)

The conditions (3) mean that C∞(M), endowed with the bracket, is a Lie algebra, whereas (4) means that {·, g} is a vector 
field. This field Xg turns out to be λ−1(dg); in other words, we have λXg = dg .

The Hamiltonian system rewrites therefore

dx

dt
= XH (x) (5)

1 We consider only the autonomous case, where H does not depend explicitly on the time variable.
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One verifies easily the relation

{ f , g} = d f · Xg (6)

and in particular

d

dt
f (x(t)) = { f , H}

When f = H , this gives again the constancy of t �→ H(x(t)). Those functions f for which { f , H} ≡ 0 are said to be in 
involution with H ; they are invariants of the motion.

3.1. Hamiltonian systems without symplectic structure

The above formalism has been generalized in the following way. Only the Poisson structure is retained, but the symplectic 
one is dropped. This suggests that the bracket may be degenerate. One then speaks of a Poisson manifold M . Given a 
function g ∈ C∞(M), and because of (4), a vector field Xg can be defined through (6), and the ODE (5) still makes sense. 
The fields Xg form a Lie algebra for the bracket [X f , Xg] = { f , g}. The manifold M is partitioned into regularly immersed 
symplectic manifolds, which are called symplectic leaves, whose dimension may vary from a leaf to another one. Each leaf 
N is tangent to the vector fields Xg and is minimal for this property. The leaf N can be given a symplectic form N , which 
is the restriction to T N of [·, ·],

N(X f , Xg) = { f , g}, ∀ f , g ∈ C∞(M)

If M is foliated by the symplectic leaves of constant codimension p, one may view the Poisson structure as a smooth family 
of symplectic manifolds, which depends upon p parameters. This is seen as a degeneracy of the symplectic structure.

3.2. Invariants and symplectic leaves

A trajectory x(t) of a Hamiltonian system stays on the symplectic leaf passing through x(0). Therefore, if f : M �→ R is a 
smooth function, constant on each symplectic leaf, t �→ f (x(t)) is a constant. This is reminiscent of the fact that { f , g} = 0
for every other function g (that is, X f = 0), and in particular { f , H} = 0; such functions are called Casimir invariants. Their 
constancy has nothing to do with the choice of the Hamiltonian H ; it holds true for every Hamiltonian flow constructed 
over the same Poisson structure.

On the other hand, a Hamiltonian system of practical interest is often invariant under the action of a Lie group G H , which 
acts upon the time variable as well as the unknown. In the best situation where we deal with a symplectic structure, there 
does not exist non-trivial Casimirs, and Noether’s Theorem establishes a linear correspondence between the Lie algebra gH

and the vector space IH of functionals that are invariant along the flow. For instance, the time translation is associated with 
the conservation of the Hamiltonian itself. In particular, the dimensions of IH and gH coincide.

If instead only a Poisson structure is available, Noether’s Theorem applies only to the subgroup Gs
H ⊂ G H of those trans-

formations that preserve the symplectic leaves. This can be understood by saying that the Hamiltonian system decouples 
into independent Hamiltonian systems on each leaf, and Noether’s Theorem applies only to the latter. Besides, every leaf-
wise constant function is an invariant of the flow, of the Casimir form; it does not result from the application of Noether’s 
Theorem. We may only say that the dimension of gs

H is less than that of IH .

3.3. The situation for the Euler equation

The 3D Euler equation is written in terms of the curl of the velocity, which we denote ω from now on2:

∂ω

∂t
= (ω · ∇)u − (u · ∇)ω (7)

The velocity field is determined by ω through the elliptic system

curl u = ω, div u = 0

It can be recovered by the Biot–Savart formula

u(x) = 1

4π

∫
R3

ω(y) × x − y

|x − y|3 dy

2 After all, we have only a Poisson manifold and do not need any more the Greek letter omega for a symplectic structure.
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When  = R
3, Olver [13] found a way to rewrite it as a Hamiltonian system within the Poisson formalism. The Hamiltonian 

is

H[ω] = 1

2

∫


|u|2dx (the kinetic energy)

Using the scalar product in L2(R3), the differential dH can be identified with the variational derivative

δH

δω
= ψ

where the stream vector ψ is the solution to the elliptic system

divψ = 0, curlψ = u, in other words �ψ = −ω

Then (7) can be recast as

∂ω

∂t
= D(ω)

δH

δω
, D(ω)z := (ω · ∇)curl z − (curl z · ∇)ω

As suggested by the notation, the coefficients of the bracket

{ f , g} :=
∫

δ f

δω
D(ω)

δg

δω
dx

do depend upon ω, a situation sometimes referred to as a nonlinear Poisson structure. The fact that the bracket satisfies the 
closure requirements follows from a theoretical analysis initiated by Manin [14] and completed by Gel’fand & Dorfman [15]
and Olver [9].

The symplectic leaves. The degeneracy of the symplectic structure is clear once we observe that the vector fields X f =
D(ω)

δ f
δω preserve the orbits of the group Diff0 of measure preserving diffeomorphisms with compact support over R3, acting 

on the space of 2-differential forms. Indeed, if φ is the flow of the vector field v := curl δ f
δω , and if ω satisfies dω

dt = X f (t) , 
then ω(t) = (φt)

∗ω(0).
Noether’s Theorem applies therefore to those transformations that preserve these orbits, namely the translation invari-

ance with respect to either time or space variables, and the rotations. They yield the usual conservation laws for energy, 
linear momentum, and angular momentum.

Besides, every level function of the orbits is a conserved quantity, but would be so for any other choice of the Hamilto-
nian H . This is the case for the total helicity, as shown in [9]. Recently, Kudryavtseva [16] considered those level functions 
F that are continuously differentiable in the C1-topology, and whose differential can be written as

dF (ω) · α =
∫
R3

Z ∧ α dx

She proved that the only such function is, up to constant factors, the total helicity. Her result was made a little more general 
in [17]. This shows that the result in [8], established only in the context of the Euler equation, actually holds true for every 
Hamiltonian system over the same Poisson structure.

3.4. Other space dimensions

Olver’s formalism was written down in every space dimension, in terms of the vorticity η = du and a Poisson structure. 
The Hamiltonian is always the kinetic energy,

H[η] = 1

2

∫
R2

|u|2dx

In two space dimensions, the operator D(ηs) is

μ �−→ ∂(ηs,μ) := ∂1ηs∂2μ − ∂2ηs∂1μ

As mentioned above, the invariants∫
R2

f ◦ ηs dx

are Casimirs. Notice that D(ηs) f ◦ ηs ≡ 0.
Likewise, the invariants discovered by Tartar (even-dimensional case) or the author (odd-dimensional case), mentioned 

in Section 2.1, are Casimirs associated with the Poisson structure. In particular, they cannot help us to find a complete 
integrability in the sense of Liouville.
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3.5. Integrability?

A Hamiltonian system, defined over a symplectic manifold, is integrable in the sense of Liouville, if it can be recast as a 
system of the form

d�I
dt

= 0,
d�θ
dt

= F (�I)

where the variable �θ takes values in a torus Rm/Zm . The bounded trajectories are quasi-periodic. The components of �I are 
invariants (the action variables) and �θ is the set of angle variables. The actions turn out to be in involution; typically, there 
must be N independent invariants in involution if the system has 2N degrees of freedom. One among the action variables 
is the Hamiltonian H itself.

To understand whether the Euler equation is integrable, we must consider its restriction to a symplectic leaf. Then the 
Casimirs become trivial invariants and do not count as action variables. Because a typical leaf is infinite dimensional, we 
should need infinitely many independent conservation laws in involution. However, we know only finitely many of them 
(see [8]), namely the energy and the momenta. Integrability is thus doubtful.

3.5.1. The case of vortex dynamics
The situation is not even better for the vortex dynamics in 2D, where the vorticity is a singular measure,

ω(·, t) =
N∑

j=1

ω jδx j(t), x j(t) ∈R
2

The strengths ω j are non-zero constants (they define the 2N-dimensional leaf), and the evolution is governed by (see [18])

dx j

dt
= 1

2π

∑
k �= j

ωk
(xk − x j)

⊥

|xk − x j|2 , ∀ j = 1, . . . , N

This system can be recast in the Hamiltonian form

dx

dt
= D∇K , D =

(
0 1

−1 0

)
⊗ diag(ω−1

j ; j = 1, . . . , N) (8)

where the Hamiltonian is

K [x1, . . . , xN ] =
∑

1≤ j≤k≤N

ω jωk log |xk − x j|

The non-trivial invariants of (8) are K itself, together with∑
j

ω j x j (a vector),
∑

j

ω j|x j|2

When N ≥ 5, there seems to be too few invariants for integrability in the sense of Liouville. For N = 4, there are enough 
many invariants, but they are not in involution. Actually, Ziglin [19] proved that, if the ω j (1 ≤ j ≤ 3) are close to each 
other, and ω4 is much smaller than the other three, then the four-vortex dynamics does not admit an extra analytic first 
integral. Therefore, it is widely believed that vortex dynamics with N ≥ 4 is not integrable. Only when N = 2 or 3, vortex 
dynamics is Liouville integrable.

Remarks. The system (8), which governs the evolution of finitely many discrete vortices is written in Lagrangian variables 
(the unknowns x j follow particle trajectories) instead of the Eulerian formulation (1). This has two advantages:

(1) the Poisson structure of 2D-vortex dynamics is linear: the coefficients of D do not depend upon the state x ∈ R
2N ;

(2) one gets rid of the degeneracy; since D is invertible, we have a genuine symplectic structure.

3.5.2. Time asymptotics
If the Euler equation (1) were completely integrable, and if the solutions were globally defined and bounded, we should 

expect them to behave as almost-periodic functions of time. This seems to be incompatible with the following observations.
Suppose, on the one hand, that the domain D ⊂ R

3, rotationally invariant about an axis, is bounded laterally by two 
cylinders of radii r± , that is D = A × S1 where A is a bounded subset of (0, +∞)r × Rz . Then most rotationally invariant 
flows with swirl display the following behaviour: the quantities
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∫
A

β f (ruθ )dr dz, uθ := u · �eθ , β := curl u · �eθ

grow linearly in time; see [20,21].
On the other hand, J. Bedrossian and N. Masmoudi [22] showed that the two-dimensional Euler equation in T × R

satisfies a viscous damping, a phenomenon analogous to the well-known Landau damping of the Vlasov equation. As a 
consequence, the global solution converges towards a planar Couette flow as t → ±∞. The convergence of the vorticity is 
weak, while that of the velocity is strong. This phenomenon was predicted by L. Kelvin [23] and W. Orr [24]. Once again, 
such a convergence is opposite to an almost-periodic behaviour.

3.6. The Euler equation in bounded domains

The situation is more complicated when the domain D is bounded. Up to our knowledge, the Hamiltonian structure has 
not been yet clarified in full generality. The only case where the formulation can be adapted from that in the whole space, 
mutatis mutandis, is when d = 2 and D is simply connected.

Because the vorticity is still transported by the flow of the fluid, ω(t) remains within the orbit of ω(0) under the action of 
Diff0(D). Therefore the functionals I f remain conserved if d = 2p is even. In the odd-dimensional case, the total/generalized 
helicity is not a constant of the motion, because the velocity field u is not transported by the flow and, therefore, u ∧ (∧pω)

at time t differs from (φt)∗(u0 ∧ (∧pω0)).
When D is not simply connected, for instance if it is a solid torus, then the velocity field is not uniquely determined by 

the vorticity. In the simplest example of a planar domain with N holes, the boundary consists of N + 1 closed loops � j . 
Kelvin’s Theorem tells us that the circulations

c j =
∫
� j

u · τ ds

(τ the unit tangent vector, oriented clockwise) are constants of the motion. However, these quantities are not determined 
by the vorticity; we only have the constraint

N∑
j=0

c j =
∫
D

ω dx (9)

If the 2D-Euler equation can be recast as a Hamiltonian system, we anticipate that the c j ’s will be constant on symplectic 
leaves; in other words, we do not expect that they be associated with a symmetry group of the equation. We actually expect 
that the symplectic leaves are exactly given by an orbit under Diff0(D) and constants c1, . . . , cN (the constraint (9) giving 
the remaining constant c0).

3.7. The compressible Euler system

Arnold and Khesin [11] explain (see Chapter VI.2) that the Poisson structure used to write the incompressible Euler 
equation (1) as a Hamiltonian system is that of the Lie algebra of the group Diff0(R

3) of measure-preserving diffeomor-
phisms, say with compact support. The formalism therefore extends to many physically relevant equations where a finite-
or infinite-dimensional Lie group plays a central role. For instance, the Euler system governing a compressible barotropic 
fluid

∂tρ + div(ρu) = 0

∂t(ρu) + div(ρu ⊗ u) + ∇p(ρ) = 0

is a Hamiltonian system, associated with the semidirect product of Diff(Rd) and C∞(Rd). The Hamiltonian is still the 
mechanical energy, which decomposes as the sum of the kinetic and internal parts:

H(ρ,ρu) =
∫
R3

(
1

2
ρ|u|2 + �(ρ)

)
dx

Here the function � is related to the pressure law by ρ�′(ρ) − �(ρ) = p(ρ).
Again, the Poisson structure admits Casimirs, which are of the form∫

R2m+1

u ∧ (du)m or
∫

R2m

f

(
(du)m

ρdx

)
ρ dx

according to the parity of the space dimension.
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We proved in [25] that when3 p(ρ) = Aρ1+2/d , the compressible Euler system admits an additional conservation law

d

dt

∫
Rd

(
1

2
ρ|tu − x|2 + t2�(ρ)

)
dx = 0

That one is associated with an extra dimension of the symmetry group of the system, according to Noether’s Theorem. 
The additional symmetry resembles the so-called conformal symmetry of the nonlinear Schrödinger equation with critical 
exponent; in particular, it acts on the time variable as a homography. This symmetry was used in order to construct global 
smooth solutions to the Cauchy problem, for some initial data with finite mass and energy.

Such a global existence is the result of a competition between dispersion and nonlinearity, where a smallness assumption 
lets the dispersion win. This phenomenon actually occurs for a more general polytropic equation of state p(ρ) = Aργ with 
γ > 1, as shown by M. Grassin in her thesis [26]. When the space dimension is even, these solutions can even be eternal, 
meaning that they are defined for all t ∈ R. On the contrary, when d is odd, we showed recently [27] that eternal smooth 
solutions whose gas is compactly supported may not exist: a singularity must develop at the boundary with vacuum.
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