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This short review is a contribution to an issue of Comptes Rendus Mécanique commemorating 
the scientific work of Jean-Jacques Moreau (1923–2014). His main contribution to fluid 
mechanics appeared in a brief paper in the Comptes Rendus à l’Académie des Sciences in 
1961, but was not recognised till much later. It may now be seen as a significant milestone 
in advancing the theory of ideal fluid flow as described by Euler’s equations.
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1. Introduction

The singular discovery by Jean-Jacques Moreau of the helicity invariant of the Euler equations [20]1 has its roots in the 
celebrated laws of vortex motion [9], which imply that in the flow of an ideal fluid with velocity field v(x, t), any vortex 
line can be permanently identified with the set of Lagrangian fluid particles that lie on it, which by definition move with 
the flow. Moreau’s conditions under which the helicity is invariant are precisely the same as those assumed by Helmholtz, 
namely (i) the fluid is inviscid and governed by the classical Euler equations of fluid mechanics; (ii) the flow is barotropic, 
i.e. the pressure p is a function of density ρ alone; and (iii) any volume force distribution F(x, t) acting on the fluid is 
conservative, i.e. derivable from a potential: F = −∇�. Under these conditions, which also cover the important case of 
incompressible flow, the vorticity ω = ∇ ∧ v satisfies the equation

∂ω

∂t
= ∇ ∧ (v ∧ ω) (1)

The helicity within any Lagrangian volume V L (Moreau’s ‘îlot’) is defined by

H{ω} =
∫
V L

v · ω dV (2)

and this is conserved, provided the normal component of vorticity ω · n on the surface of V L is zero (a condition that 
persists for t > 0 if it holds at t = 0). It is important to note that, in the proof of this invariance, no use is made of the 
relationship ω = ∇ ∧ v between ω and v, but merely the fact that ω satisfies (1).

It is amazing that more than 100 years elapsed following Helmholtz’s paper before Moreau’s discovery. All the more 
amazing, given the great publicity give to Helmholtz’s paper by Tait’s translation of it into English [24], Kelvin’s enthusiastic 
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development of his ‘vortex atom’ theory [26], and Tait’s subsequent extensive investigations of knot structure, and his 
famous classification of knots of crossing number up to 10 [25].

Kelvin hoped to find stable knotted vortex structures, which might in some way represent the atomic structure of the 
various elements of the periodic table [11]. These hopes were dashed as it emerged that all non-trivial vortex structures 
investigated by Kelvin and others were subject to instabilities. It has been shown much more recently [22] that no three-
dimensional vortex structure can satisfy Arnold’s sufficient condition for stability [1], and this is presumably because all such 
flows are subject to some type of Kelvin–Helmholtz instability. For this reason, Kelvin’s vortex atom theory did not survive, 
at least in the form in which he presented it. We may note the fine achievement of [10], who have generated knotted and 
linked vortices in water (visualised by air bubbles), these vortices exhibiting dramatic instabilities and reconnections.

2. The magnetohydrodynamic analogy

Moreau’s result is closely related to an earlier result in magnetohydrodynamics [28], although this was not recognised 
till some time later [12]. The magnetic field B = ∇ ∧ A in a perfectly conducting fluid satisfies the induction equation

∂B

∂t
= ∇ ∧ (v ∧ B) (3)

and this implies that

H{B} =
∫
V L

A · B dV = cst. (4)

Woltjer’s proof was lacking in certain details, but his conclusion was correct: magnetic helicity is indeed invariant in a 
perfectly conducting fluid. It was through struggling to understand the meaning of Woltjer’s result that I realised that any 
vector field that is transported according to an equation of type (1) or (3) must have an associated helicity invariant.

There is an obvious generalisation [14] which is perhaps worth restating here: for any two solenoidal vector fields 
M(x, t) = ∇ ∧ P and N(x, t) = ∇ ∧ Q satisfying boundary conditions n · M = n · N = 0 on the surface of a Lagrangian volume 
V L , we may define the ‘mutual helicity’ of the fields {M, N} by

H{M,N} =
∫
V L

Q · ∇ ∧ P dV =
∫
V L

P · ∇ ∧ Q dV (5)

If these fields both satisfy the ‘transport equations’

∂M

∂t
= ∇ ∧ (v ∧ M),

∂N

∂t
= ∇ ∧ (v ∧ N) (6)

then it is straightforward to prove that H{M, N} = cst., and the interpretation is that this represents the net mutual linkage 
within V L of the fields M and N.

3. Relaxation under the constraint of conserved helicity

The conserved magnetic helicity places a lower bound on the magnetic energy M{B2} = 1
2

∫
B2 dV of a localised mag-

netic field, as recognised by [2]. Suppose that the magnetic field is located in a fixed domain D of length-scale �, with 
n · B = n · v = 0 on the boundary ∂D. Then first, by the Schwarz inequality,

|H{B}| ≤
[∫

A2 dV

∫
B2 dV

] 1
2

(7)

the integrals being over D. Second, we have a Poincaré inequality∫
B2 dV ≥ q2

∫
A2 dV (8)

where q = O(�−1) is a positive constant determined by the geometry of D. Hence, combining these inequalities, we have 
the ‘Arnold inequality’∫

B2 dV ≥ q|H{B}| (9)

This simply means that, if |H{B}| �= 0, then under any distortion of the field B by a fluid flow in D, the magnetic energy 
M{B} has a positive lower bound. This result was generalised by [7] to cover fields whose helicity is zero, but which 
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nevertheless have nontrivial topology, in the sense that there exist closed field lines which cannot be shrunk to a point in 
D without cutting other field lines. We assume such nontrivial topology in what follows.

Reduction of field energy occurs through contraction of lines of force in response to Maxwell tension in the lines of force 
(‘B-lines’) (a manifestation of the Lorentz force F = j ∧ B, with j = ∇ ∧ B). Indeed, from (3), we have

dM

dt
= −

∫
D

v · (j ∧ B)dV (10)

Here, for simplicity, we assume incompressible flow, and we adopt a simple Darcy-type model for the dynamics:

kv = j ∧ B − ∇p (11)

where k is a positive constant, and the pressure p is chosen to maintain the incompressibility condition ∇ · v = 0. In this 
way, v is, on average, parallel to j ∧ B, thus responding in a natural way to the Lorentz force. We then have

dM

dt
= −k

∫
D

v2 dV +
∫

∂D

(v · n)p dS = −k

∫
D

v2 dV (12)

Thus, on this model, the energy decreases monotonically, and, being bounded below, must tend to a constant as t → ∞. 
In the limit, excluding abnormal singularities of v, we must have v ≡ 0, and so, from (11), a magnetostatic situation is 
established:

j ∧ B − ∇p = 0 (13)

The remarkable thing here is that we can start with an arbitrary field topology at time t = 0, e.g. a topology containing 
magnetic flux tubes in arbitrarily knotted and linked configurations. Such knots and links are conserved in the relaxation 
process governed by (3) and (11), and we may conclude that a field exists that contains these knots and links and also 
satisfies the magnetostatic equation (13). As regards knots, a relationship between helicity and the twist and writhe of a 
knotted ribbon bounded by two adjacent B-lines was established by [18] (see also [3]); this provides an essential bridge 
between fluid dynamics and knot theory, of a kind that Kelvin was seeking.

Even more remarkable is the conclusion when we translate to the context of Euler flow, via the exact analogy B ←→ u, 
j ←→ ω = ∇ ∧ u, p ←→ −h, whereby (13) translates to the equation for steady Euler flow:

ω ∧ u + ∇h = 0 (14)

where h represents the Bernoulli function. On this basis, we may conclude, as argued by [15], that a steady Euler flow exists 
having arbitrarily knotted stream-tube- (rather than vortex-tube-) topology.

This argument is admittedly heuristic, but the conclusion is supported by [5], who have recently proved the existence of 
Beltrami flows (for which ω = K u) containing arbitrarily knotted and linked stream-vortex tubes. Their fields u fall off to 
zero at ∞, but the energy integral is divergent. Nevertheless, the proof of this theorem is an outstanding achievement.

4. Helicity in the dynamo context

Considering again the energy equation (10), it is evident that if a velocity field v can be contrived in such a way as to 
be on average opposed to the Lorentz force, then magnetic energy will increase. This brings us into the domain of dynamo 
theory, a huge subject in which again helicity plays a key role [13]. It is in fact the chirality (i.e. lack of reflexional symmetry) 
of a turbulent velocity field that is relevant in dynamo theory, helicity being the simplest measure of such chirality.

An important conclusion that can be drawn from numerous studies over the past half-century is that helicity is strongly 
conducive to dynamo action. In fact, if the mean helicity H{v} =<v · ω> is nonzero in turbulent flow of fluid of finite 
conductivity, and if the fluid domain is large enough, then the medium is, in nearly all circumstances, unstable to the 
growth of a large-scale magnetic field. This growth is exponential until the Lorentz force is strong enough to react back 
upon the flow, at which stage saturation is achieved. Even if the helicity level is weak and the conductivity low, this 
result still holds under the crucial condition that the fluid domain is large enough, a condition that is clearly satisfied 
in planetary, stellar and galactic contexts, though difficult to achieve in the laboratory [19]. This is a prime example of 
the emergence of large-scale order (i.e. the mean magnetic field) emerging from small scale chaos (the chirally turbulent 
velocity field).

The condition that the conductivity be finite is important. The case of infinite conductivity is quite singular. In this 
situation, stretching of B-lines certainly leads to rapid growth of mean magnetic energy. However, this is not dynamo action 
as normally understood, because ohmic field dissipation is entirely absent. Moreover, the field structure tends to become 
more and more complex as the stretching proceeds.

In dynamo theory, when the velocity field v is steady, it is normal to consider growing magnetic modes of the form 
B(x, t) = Re[B̂(x) exp p t], and much interest attaches to the behaviour of the growth rate p as a function of magnetic 
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Reynolds number Rm = V �/η, where V and � are velocity and length scales of the flow, and η is the magnetic resistivity 
of the fluid. On dimensional grounds, p = (V /�)F(Rm), for some function F(Rm) determined in principle by the flow. We 
have a dynamo if Re(p) > 0, and this is described as ‘slow’ or ‘fast’ [27] according as Re[F(Rm)] → 0 or cst. (> 0) as 
Rm → ∞. Computations suggest that nearly all dynamos are, in this sense, slow.

In the infinite conductivity situation (η = 0, Rm = ∞), the invariant magnetic helicity again exerts a powerful constraint: 
for a ‘normal mode’ of the above form, this helicity is proportional to exp [2Re(p)], but this is incompatible with invariant 
helicity unless this helicity is zero. We may conclude that fast dynamo action, at least for analytic magnetic fields, is 
impossible if the magnetic helicity of the mode B̂(x) is non-zero. This result remains true even if the magnetic helicity is 
zero, as shown by [17] who inferred that a fast dynamo magnetic field, if it exists at all, must have a very singular structure, 
apparently non-differentiable wherever it is non-zero. This conclusion is supported by many subsequent investigations (see, 
for example, [4]), which show that the transverse scale of any magnetic field growing exponentially by dynamo action is of 

order R
− 1

2
m as Rm → ∞. A good example is given by the helical dynamo of [21], for which the normal modes are increasingly 

concentrated near the cylindrical surface of discontinuity of the assumed velocity field as Rm → ∞ [8].

5. Conclusion

Jean-Jacques Moreau showed extraordinary insight in his 1961 paper proving the conservation of helicity. He was not 
aware of the parallel result of [28], but in some ways Moreau’s result has greater significance, in that it provided a hitherto 
undiscovered invariant of the nonlinear Euler equations of ideal fluid motion.

In the above discussion, I have focussed on the crucial role played by helicity, whether kinetic or magnetic, in two 
complementary areas. The first concerns relaxation of a magnetic field to minimum energy magnetostatic equilibrium states, 
and the existence of such states containing arbitrarily knotted and linked structures. Here, topology is conserved during the 
relaxation process, as reflected in the conservation of helicity. The problem has important applications in regard to magnetic 
structures in the solar corona; also in the physics of thermonuclear devices such as the tokamak. It also has strong links 
with the theory of ‘tight knots’ which has attracted much attention in recent years [23], largely stimulated by problems in 
molecular biology [6].

The second major area in which helicity plays a central role is dynamo theory, the theory of spontaneous generation of 
magnetic fields by the (generally turbulent) flow of a conducting fluid. Although turbulence still presents many challenges 
for theoreticians, one of the great triumphs of the past half-century has been the discovery that chirality provides the 
key to understanding how this spontaneous growth can occur; and mean helicity provides the simplest indicator of this 
chirality. In large rotating self-gravitating bodies, helicity is generated by turbulent convection strongly influenced by rotation 
(‘magnetostrophic turbulence’ as described by [16]), and, in conjunction with finite conductivity, is responsible for magnetic 
field generation in many planetary, stellar and galactic systems.

In all, Moreau’s “constantes d’un îlot tourbillonnaire” has had wider application at a fundamental level than he could 
have possibly anticipated!
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