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In the end of the seventies, Schatzman and Moreau undertook to revisit the venerable 
dynamics of rigid bodies with contact and dry friction in the light of more recent 
mathematics. One claimed objective was to reach, for the first time, a mathematically 
consistent formulation of an initial value problem associated with the dynamics. The 
purpose of this article is to make a review of the today state-of-art concerning not only 
the formulation, but also the issues of existence and uniqueness of solution.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

À la fin des années 70, Schatzman et Moreau entreprirent de reformuler l’antique 
dynamique des solides rigides en présence de contact et frottement sec à la lumière 
de mathématiques plus récentes. Un des objectifs revendiqués était de parvenir, pour la 
première fois, à la formulation d’un problème d’évolution à partir d’une condition initiale, 
qui soit mathématiquement cohérent. Le but de cet article est de brosser un état de l’art 
actuel, concernant non seulement les questions de formulation, mais également d’existence 
et d’unicité de solution.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The dynamics of rigid solids with contact and dry friction conditions is a venerable subject, which was developed mainly 
in the second half of the nineteenth century and the beginning of the twentieth century to answer some questions raised 
by engineering. Then, the attention of engineers began to be driven towards elasticity and continuum mechanics, and less 
attention was paid to frictional contact multibody dynamics. In the seventies, a renewal of interest occurred, mainly driven 
by the development of numerical modelling in granular dynamics and the control issues associated with robotics. For 
both concerns, it turned out that the foundations of the venerable theory were not firm enough and that they should be 
reconsidered in the light of more recent mathematics.

A fundamental impulse was given simultaneously by Michelle Schatzman [1] and Jean-Jacques Moreau [2], who first con-
sidered an evolution problem for the configuration q : [0, T ] → R

d in the framework of functions whose second derivative 
(in the distributional sense) is a Radon measure. At that time, the antique point of view of different systems of equations 
applying to the different phases of motion (without or with active contact) was still prevailing. Their new point of view 
permitted to formulate, for the first time, a mathematical evolution problem associated with multibody contact dynamics. 
It also paved the road for the design of efficient strategies for numerical computing and enabled the first investigations on 
the stability and control issues that are crucial in the analysis of the problems facing frictional contact events in robotics.

The seminal work of Michelle Schatzman and Jean-Jacques Moreau also initiated a series of contributions on the general 
formulation and the mathematical analysis of the initial value problem associated with multibody contact dynamics. A brief 
sketch of the history follows.

– The first studies about the formulation were restricted to the model problem of the dynamics of a particle evolving 
in an admissible region of Rd bounded by an obstacle. In [1], Michelle Schatzman formulated a consistent evolution 
problem in the frictionless case, under the additional restriction that the admissible region is convex. She was able to 
successfully implement a penalty method to prove the existence of a solution for the initial value problem. Her original 
work was restricted to impacts preserving the kinetic energy (the so-called elastic impact law) and an external force 
depending only on time. This result was generalized later by Paoli in her PhD thesis [3] to the case of an arbitrary 
impact law and an external force possibly also depending on current position and velocity. In parallel, an alternative 
strategy for proving the existence of a solution was designed by Monteiro Marques [4]. He introduced a time-stepping 
approximation and proved the convergence (of a subsequence) towards a solution. It was restricted to the completely 
inelastic impact law (zero restitution coefficient), but he was able to relax the convexity assumption of Schatzman on 
the admissible region. More importantly, he was able to generalize to the case where the contact with the obstacle 
obeys the Coulomb law of dry friction with a given friction coefficient μ (the frictionless case is recovered by taking 
μ = 0). One benefit of this new strategy is that it directly suggested an algorithm for numerical computations. The 
time-stepping approach was further developed by Paoli [5] and [6], who, in particular, extended it to the case of an 
arbitrary restitution coefficient. Her work, however, is up to now concerned only with the frictionless case.

– It was recognized very early by Michelle Schatzman that issues should be expected with the uniqueness of the solution 
for the initial value evolution problem. In particular, she exhibited in [1] a striking example of multiple solutions for 
the unilateral dynamics of the one-degree-of-freedom particle submitted to an external force that is a C∞ function of 
time. This issue was further considered by Percivale [7,8], who noticed that the uniqueness of the solution could be 
recovered in the one-degree-of-freedom problem considered by Schatzman, provided that the given external force was 
assumed to be not only a C∞ , but also an analytic function of time. His work was suggesting that uniqueness could 
be expected in general, provided a regularity assumption of analyticity on the data. This was proved in full generality 
for the frictionless problem by Ballard in [9] and [10]. Local uniqueness in the analytic framework was also exploited 
in this work to design a third alternative strategy (in addition to penalty and time-stepping methods) to prove the 
existence of the solution. This new strategy turned out to yield more general (except for the additional assumption of 
analyticity) existence results than those which were available at that time from the penalty and time-stepping methods, 
encompassing the multi-constraint case with an arbitrary impact law. This strategy of proof was also adapted in [11] and 
[12] to the dynamics of a point particle with contact conditions and Coulomb friction. It yields a slightly more general 
(except for the analyticity assumption) existence result than that of Monteiro Marques, and provides, in addition, the 
uniqueness of the solution from a given initial value.

– In the eighties and the nineties, most of the articles that appeared on the subject of the mathematical formulation of 
the initial value problem and the issues of existence and uniqueness of solutions were restricted to the model prob-
lem of a point particle evolving in Rd , or rather in an admissible region of Rd . There is one noteworthy exception: 
the seminal article [2] by Jean-Jacques Moreau. In this article, Jean-Jacques Moreau addressed the formulation of the 
dynamics of a collection of rigid bodies submitted to frictionless unilateral constraints such as the ones arising from the 
non-interpenetration conditions. The framework is from the beginning that of Lagrange in which the motion is repre-
sented as a curve q(t) in the configuration space, identified with a subset of Rd . In that framework and in accordance 
with the ideas of Lagrange, the reaction force that appears in the formulation is a generalized reaction force. In particular, 
the detailed distribution of reaction forces in the real world (meaning forces in R3 from one body onto another) is 
generally undefined. The existence and uniqueness result of Ballard in [9] and [10] applies to this general framework 
for frictionless unilateral multibody dynamics, under the assumption of analyticity of the data. It yields existence and 
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uniqueness for the motion q(t) and for the generalized reaction force, but the detailed distribution of reaction forces 
in the real world remains undetermined in general, and there may be several such distributions that are compatible 
with the generalized reaction force that is associated with the solution. The use of generalized forces, originating in 
Lagrange’s idea, has now been made systematic all over continuum mechanics under the name ‘Principle of Virtual 
Power’. It conveys the idea that the representation of forces within a mechanical theory must be made consistent with 
the kinematics: forces must be taken in the dual space of the velocity space, the duality product between forces and 
velocities being nothing but the power. Surprisingly, coming to frictional unilateral multibody dynamics, the use (orig-
inating from the nineteenth century) was to invoke the Coulomb law of dry friction applying to reaction forces in the 
real world, contradicting Lagrange’s point of view and the Principle of Virtual Power that stipulates that the dynam-
ics should be formulated in terms of appropriate generalized forces. However, in some simple cases involving a small 
number of contacting rigid bodies, a mathematical evolution problem can still be formulated based on this historical 
point of view [13], although no modern formulation of the general evolution problem has ever been obtained in that 
setting. Unsurprisingly, adopting the historical point of view of real world forces (when it is possible) raises some in-
consistencies, known as Painlevé and Kane paradoxes [19] and [22,23]. Because of this lack of consistency within the 
usual view about the formulation of frictional unilateral multibody dynamics, no precise formulation of the evolution 
problem was obtained, and the only mathematical investigations about the existence and uniqueness of solutions for 
frictional unilateral dynamics have been so far restricted to the case of a finite collection of point particles. That was 
only recently that such a consistent general formulation in the line of Lagrange’s ideas about the use of generalized 
forces was derived by Charles [14] in his PhD thesis.

2. The one-degree-of-freedom problem

Consider a point particle, of unit mass, that is constrained to move along a line, the location of which is represented by 
the abscissa q ∈ R. We assume that an obstacle is located at the origin so that the particle is constrained to remain in the 
half-line defined by q ≥ 0. To enforce this constraint during an arbitrary motion q(t) of the particle, an unknown reaction r
force must be added in the equation of motion:

q̈ = f + r (1)

where the external force f (t) is supposed to be a given (integrable) function of time only (for the sake of simplicity). The 
usual physical assumption is that the existence of an obstacle has no influence on the motion of the particle when contact 
is not active, and the reaction force must therefore be supported in those instants where the contact is active:

Supp r ⊂
{

t
∣∣ q(t) = 0

}
Elementary examples then show that velocity jumps cannot be avoided in this framework and the acceleration that appears 
in the equation of motion (1) should be understood in the sense of (Schwartz’s) distributions. Hence, the reaction force 
r should not be expected to be a function, but rather a distribution. As it is usually assumed that the obstacle is only 
able to repel the particle, a nonnegativity assumption also has to be required on the unknown reaction force: r ≥ 0. In 
the extended framework where r is a distribution, this can only mean that the distribution r returns nonnegative real 
values when tested by means of a nonnegative C∞ trial function with compact support. But, it is a classical (and easy) 
result that such a nonnegative distribution must actually be a nonnegative measure. Hence, given a bounded time interval 
[0, T ], the largest possible functional space in which the motion q(t) can be sought is the space MMA([0, T ]) (the acronym 
standing for ‘Motions with Measure Acceleration’) of those distributions on [0, T ] whose second derivative is a Radon 
measure (q̈ ∈ M([0, T ]). Distributions in that space MMA([0, T ]) are actually continuous functions, admitting left and right 
derivatives q̇−(t), q̇+(t) (in the classical sense) at every instant t ∈ ]0, T [. The side derivatives q̇−(t) and q̇+(t) are actually 
equal, except possibly at some instants belonging to a countable subset of [0, T ]: the impact instants. The two functions 
q̇−(t) and q̇+(t) are functions with bounded variation.

Finally, given an initial condition (q0, v0) ∈ R
+ ×R compatible with the obstacle (q0 = 0 ⇒ v0 ≥ 0), the evolution prob-

lem associated with the unilateral dynamics of the particle reads as follows.

Problem P1. Find q ∈ MMA([0, T ]) and r ∈M([0, T ]) such that:

– q(0) = q0, q̇+(0) = v0,
– q̈ = f + r,
– ∀t ∈ [0, T ], q(t) ≥ 0,
– Supp r ⊂ {

t ∈ [0, T ] ∣∣ q(t) = 0
}

,
– r ≥ 0,
– q(t) = 0 ⇒ q̇+(t) = −eq̇−(t).

Here, the last line is an additional requirement with respect to the introductory discussion. If it were not stated, a particle 
free of external force impacting the obstacle could either subsequently remain stuck on the obstacle, or bouncing according 
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to a sign-reversed velocity (infinitely many intermediate choices are possible), and all of these events would be compatible 
with both the equation of motion and the contact conditions. Such an indeterminacy was already noted by Newton, who 
introduced the concept of a restitution coefficient to recover determinism. The indeterminacy originates in the fact that 
real bodies are always deformable and their bouncing is actually governed by the deformation waves that travel within the 
body during an impact. As the model of a point particle is too coarse to describe these deformation waves, the outcome of 
the impact remains undetermined and should be artificially added to the equations by means of an impact law, which has 
the same status as constitutive laws in continuum mechanics. The restitution coefficient e is supposed to be given in the 
interval [0, 1] (the choice of e = 1 is usually baptized the elastic impact law and that of e = 0, the completely inelastic impact 
law).

Actually, it was only recently that it was discovered that the original proposition of Newton to add the impact law fails to 
yield the uniqueness of the solution, even in the case where f is supposed to be a C∞ function of time. The first discovery 
of this striking fact seems to be that of Bressan [15], although he did not have such a precise statement of the evolution 
problem. The construction of such a C∞ function f enabling multiple solutions q can be found in [1] in the case of the 
elastic impact law e = 1 and in [9] in the case of the completely inelastic impact law e = 0. In both cases, the C∞ functions 
f that are exhibited are highly oscillating (having in particular infinitely many zeroes in the bounded interval [0, T ]).

The following results about problem P1 have been proved in various articles.

(i) Suppose that f ∈ L1(0, T ) and e ∈ ]0,1]. For all ε > 0, the penalized initial value problem:

∣∣∣∣∣∣∣
qε(0) = q0, q̇ε(0) = v0,

q̈ε(t) = f (t) − 2| log e|√
ε[π2 + (log e)2] q̇ε(t) sgn−(

qε(t)
) − qε(t)

ε
sgn−(

qε(t)
)
, for a.a. t ∈ [0, T ]

(where sgn− is the function taking the value 1 on ]−∞,0[ and 0 on [0,∞[), has a unique solution qε ∈ W 2,1(0, T ). As ε
goes to zero, one can extract a subsequence in qε that converges strongly in W 1,1(0, T ) towards some q ∈ MMA([0, T ])
that solves problem P1. This result was proved in [3], whereas the simpler case e = 1 (where the damping term in the 
penalty differential equation reduces to 0) had been previously treated in [1]. Hence, although the penalty approach 
fits naturally with the particular case of the elastic impact law e = 1, it can be extended to dissipative impact laws.

(ii) Suppose that f ∈ L1(0, T ) and e ∈ [0,1]. Picking n ∈N \ {0} and setting h = T /n, we define a sequence of approximants 
qn ∈ C0([0, T ]) by the following induction.
– Q 0

n = q0, V 0
n = v0,

– ∀i ∈ {1, 2, . . . , n},

F i
n = 1

h

ih∫
(i−1)h

f ,

V i
n =

∣∣∣∣∣∣
V i−1

n + hF i
n, if Q i−1

n > 0

−eV i−1
n +

〈
(1 + e)V i−1

n + hF i
n

〉+
, if Q i−1

n ≤ 0,

Q i
n = Q i−1

n + hV i−1
n

– qn(t) = Q i−1
n + (

t − (i − 1)h
)

V i−1
n , ∀t ∈ [

(i − 1)h, ih
]
,

where 〈x〉+ = max{x, 0} stands for the positive part function. Then, it was proved in [6] that a subsequence of qn(t)
converges strongly in W 1,1(0, T ) towards some q ∈ MMA([0, T ]) that solves problem P1. The simpler case e = 0 had 
been previously treated in [4]. Hence, although the time-stepping approach fits naturally with the particular case of 
the completely inelastic impact law e = 0, it can be extended to the general case of an arbitrary restitution coefficient 
e ∈ [0, 1].

(iii) Uniqueness for problem P1 can be recovered in MMA([0, T ]), if the function f (t) is more regular than C∞ . In the 
analytic case, uniqueness was first proved for the particular case e = 1 in [7], and for an arbitrary restitution coefficient 
e ∈ [0, 1] in [9]. Needless to say, these results apply in the case of piecewise analyticity.

(iv) If the function f (t) is analytic, or piecewise analytic, then the solution mapping:

{
R

2 → C0([0, T ])
(q0, v0) 
→ q(t)

is continuous. In other words, the unique solution to problem P1 depends continuously on the initial data. A proof is 
to be found in [9].
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3. Frictional unilateral dynamics of a point particle

We now consider the motion of a point particle, of unit mass, in a region of Rd defined by the unilateral constraint 
ϕ(q) ≥ 0, where ϕ is a smooth (of class C1 at least) function such that:

ϕ(q) = 0 =⇒ dϕq �= 0

where dϕq denotes the differential of the real-valued function ϕ at point q. The equation ϕ(q) = 0 defines the geometry 
of the obstacle, and dϕq defines the direction of the outward normal to the obstacle. When the particle is in contact with 
the obstacle, the reaction force exerted by the obstacle will be denoted by r ∈ R

d . It can be classically split into normal and 
tangential parts:

r = rt + rn
dϕq

|dϕq| , with rn =
〈
r,

dϕq

|dϕq|
〉

where q denotes the location of the particle at contact and 〈·, ·〉, | · | are the canonical scalar product and norm in Rd . The 
case where dry friction between the particle and the obstacle can occur will be considered. The simplest law describing dry 
friction is the empirical law of Coulomb, which reads as:

∣∣rt
∣∣ ≤ μ rn and

∣∣∣∣∣
if

∣∣rt
∣∣ < μ rn, then q̇+

t = 0,

if
∣∣rt

∣∣ = μ rn, then ∃λ ∈R
+, rt = −λq̇+

t

(2)

where q̇+
t denotes the tangential (with respect to the obstacle) component of the right-velocity, and μ ≥ 0 is a given friction 

coefficient. The Coulomb law above can be compactly and equivalently rewritten under the weak form:

∀v ∈R
d,

〈
rt,vt − q̇t

〉
+ μ rn

(
|vt| − |q̇t|

)
≥ 0

where 〈·, ·〉 stands for the canonical scalar (duality) product in Rd , as seems to have been first pointed out independently 
in the 1960s by Jean-Jacques Moreau and Georges Duvaut. This weak form turns out to be the appropriate form to extend 
the classical Coulomb law to the case where the reaction force r is a Radon measure (with respect to time):

∀v ∈ C0([0, T ];Rd),

∫
[0,T ]

〈
rt,vt(t) − q̇t(t)

〉
+ μ rn

(
|vt(t)| − |q̇t(t)|

)
≥ 0

Note that if q ∈ MMA([0, T ]; Rd), then q̇+ : [0, T [ → R
d is a function with bounded variation that is therefore universally 

integrable (integrable with respect to any measure). Hence, the integral in the above weak form of the Coulomb law is 
well-defined for q ∈ MMA([0, T ]; Rd) and r ∈ M([0, T ]; Rd). This weak form can be assumed globally in [0, T ], so that the 
Coulomb law will be enforced both during the impacts and the possible smooth phases of motion along the obstacle.

Given an initial condition (q0, v0) ∈R
d ×R

d compatible with the obstacle:

ϕ(q0) ≥ 0 and ϕ(q0) = 0 ⇒ 〈
dϕq0 ,v0

〉 ≥ 0

we can now formulate the initial value problem that governs the dynamics of the particle in frictional contact with the 
obstacle. The external force f(t; q, ̇q−) is now allowed to depend on the current location and velocity (here, we can equiva-
lently use either q̇− or q̇+ , with no influence on the solution).

Problem P2. Find q ∈ MMA([0, T ]; Rd) and r ∈M([0, T ]; Rd) such that:

– q(0) = q0, q̇+(0) = v0,
– q̈ = f(t; q, ̇q−) + r,
– ∀t ∈ [0, T ], ϕ

(
q(t)

) ≥ 0,

– Supp r ⊂
{

t ∈ [0, T ] ∣∣ ϕ(
q(t)

) = 0
}

,

– rn ≥ 0,

– ∀v ∈ C0([0, T ]; Rd), 
∫

[0,T ]

〈
rt, vt(t) − q̇t(t)

〉
+ μ rn

(
|vt(t)| − |q̇t(t)|

)
≥ 0,

– ϕ
(
q(t)

) = 0 ⇒ q̇+
n (t) = −eq̇−

n (t).

The following results about problem P2 have been proved in various articles.
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(i) In the frictionless case μ = 0, with given restitution coefficient e ∈ ]0,1], in the case where f is a continuous function 
that is globally Lipschitz with respect to (q, ̇q), then it is possible [3] to extend the penalty method described in 
section 2 (i), at least when the admissible subset of Rd defined by ϕ(q) ≥ 0 is convex. In the same way, there exists 
a subsequence of the penalty approximates qε that converges strongly in W 1,1(0, T ), as ε → 0+, towards some q ∈
MMA([0, T ]) that solves problem P2 (a proof is to be found in [3] in the case of a convex admissible subset of Rd).

(ii) In the frictionless case μ = 0, with given restitution coefficient e ∈ [0,1], in the case where f is a continuous function 
that is globally Lipschitz with respect to (q, ̇q), then it is possible [6] to extend the time-stepping method described in 
section 2 (ii). In the same way, there exists a subsequence of the time-stepping approximates qn that converges strongly 
in W 1,1(0, T ), as n → +∞, towards some q ∈ MMA([0, T ]) that solves problem P2 (a proof is to be found in [6]).

(iii) In the frictional case μ ≥ 0, and the completely inelastic impact law e = 0, in the case where f is a continuous bounded 
function of t and q only, Monteiro Marques [4] defines a sequence of approximants qn ∈ C0([0, T ]) (n ∈ N \ {0}) by the 
following induction.
– Q0

n = q0, V0
n = v0,

– ∀i ∈ {1, 2, . . . , n},

Qi
n = Qi−1

n + hVi−1
n ,

Vi
n
′ = Vi−1

n + hf(ih,Qi
n),

Vi
n =

∣∣∣∣∣∣
Vi

n
′
, if Vi

n
′ ∈ V(Qi

n)

Proj
(

0; [Vi
n
′ + C(Qi

n)
] ∩ T (Qi

n)
)
, if Vi

n
′
/∈ V(Qi

n)

– qn(t) = Qi−1
n + (

t − (i − 1)h
)
Vi−1

n , ∀t ∈ [
(i − 1)h, ih

]
,

where h = T /n, V(q) is the set of admissible right-velocities at location q:

V(q) =
∣∣∣∣∣∣
{

v ∈R
d

∣∣ 〈
dϕq,v

〉 ≥ 0
}
, if ϕ(q) ≤ 0,

R
d if ϕ(q) > 0

(dϕq is assumed to be nowhere 0), T (q) is the tangent hyperplane:

T (q) =
{

v ∈ R
d

∣∣ 〈
dϕq,v

〉 = 0
}

and C(q) is the friction cone:

C(q) =
{

r ∈R
d

∣∣ 〈
r,dϕq

〉 ≥ |r| ∣∣dϕq
∣∣/√1 + μ2

}
Then, there exists a subsequence in the sequence (qn) that converges strongly in W 1,1(0, T ), as n → +∞, towards 
some q ∈ MMA([0, T ]) that solves problem P2 (a proof is to be found in [4]).

(iv) In the frictional case μ ≥ 0, with given restitution coefficient e ∈ [0, 1], in the case where ϕ is an analytic function and f
is an analytic function that is globally Lipschitz with respect to (q, ̇q), then there exists a unique solution to problem P2
(a proof is to be found in [12]).

4. Frictionless unilateral multibody dynamics

In the preceding sections, only the dynamical evolution of a point particle has been considered. However, the applicability 
of the theory to situations of practical interest requires to extend it to the case of one or several rigid bodies. The framework 
must therefore be extended to that of Lagrange about discrete mechanical systems (that encompasses in particular any finite 
collection of rigid bodies, some of them being possibly connected by so-called perfect joints).

4.1. Virtual power and Lagrange equations

A discrete mechanical system is a mechanical system whose arbitrary configuration in the space can be described by a 
finite number d of independent real numbers: the generalized coordinates denoted by q1, q2, . . . , qd . Here, “independent” 
means that it is always possible to conceive a motion for which all generalized coordinates but an arbitrary one remain 
fixed. The number d is called the number of degrees of freedom of the discrete mechanical system. The notation q =
(q1, q2, . . . , qd) will be used and q will be called the abstract configuration (or sometimes simply, the configuration) of the 
system. A motion of the system is simply a mapping q(t) defined on some time interval and taking abstract configuration 
values. Its derivative with respect to time is denoted by q̇(t) and the vector q̇(t) is called the generalized velocity at time t . 
The generalized velocity is a convenient mathematical representation of the whole velocity field over the body (or bodies). 
The kinetic energy K (q, ̇q) is quadratic with respect to the generalized velocity and defines the so-called kinetic matrix M(q):
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K (q, q̇) = 1

2
q̇ · M(q) · q̇

The kinetic matrix is always symmetric and positive. It is actually positive definite, if the system does not involve any 
massless components, which will always be assumed in the sequel.

More precisely, the set Q of all abstract configurations is endowed with the structure of a differentiable manifold. This 
point of view makes it possible to consider an abstract configuration q with no need for a prior definition of generalized 
coordinates (that is, a parameterization of the system) and is particularly useful when it is important to distinguish intrinsic
quantities, that is, quantities not relying on a specific choice of generalized coordinates on the configuration manifold. In this 
context, the generalized velocities belong to tangent spaces to the configuration manifold. The kinetic matrix endows each 
tangent space with a scalar product, so that the configuration manifold is actually a Riemannian manifold. When emphasis 
is to be put on intrinsic quantities, the following alternative notations will be possibly encountered in the sequel:

(
q̇1 , q̇2

)
q = q̇1 · M(q) · q̇2,

∣∣q̇∣∣
q = √

q̇ · M(q) · q̇

In any case, the point of view of Riemannian manifold on the configuration space, although enlightening, is not strictly 
needed, and there will be no harm in identifying in the sequel the configuration manifold with (an open subset of) Rd and 
the tangent space Tq Q at configuration q, with Rd endowed with the scalar product M(q). This identification is nothing 
but considering a particular choice of generalized coordinates.

The generalized force f of Lagrange is defined by means of the virtual power that the internal and external forces develop 
in any virtual generalized velocity v̂. This virtual power reads as:

〈
f, v̂

〉 = f i v̂ i

(with the usual convention of summation on repeated indices) and shows that the generalized force belongs to the dual 
space T ∗

q Q of the vector space Tq Q of all generalized velocities at configuration q. In particular, the generalized force for 
a mechanical system with d degrees of freedom has d components. The virtual power point of view is usually used to 
compute the generalized force from a given distribution of forces f̃(x) in the real world (here x denotes the space variable 
in the three-dimensional space). First, the real world velocity ṽ(x) is computed in terms of the generalized velocity v̂:

ṽ(x) = l(q,x) · v̂

where l(q, x) : Tq Q 
→ R
3 is a linear mapping depending in general on the current configuration q and x. Then, the virtual 

power paradigm:

∀v̂,
〈
f, v̂

〉 = ∫
f̃(x) · ṽ(x)dx =

〈∫
tl(q,x) · f̃(x)dx , v̂

〉
=⇒ f =

∫
tl(q,x) · f̃(x) (3)

provides the expression of the generalized force f in terms of the real world force distribution f̃(x) (here, in the case where 
f̃(x) consists in finitely many point forces, the above integral reduces to a finite sum). Let us point out once more than 
it is always possible to compute the generalized force from a real world force distribution but that the real world force 
distribution cannot be recovered in general from the generalized force.

The generalized acceleration γγγ of Lagrange is defined by means of the virtual power it develops in any virtual generalized 
velocity v̂.

〈
γγγ , v̂

〉 = (
Dq̇

Dt
, v̂

)
q

=
(

d

dt

∂ K

∂q̇i
− ∂ K

∂qi

)
v̂ i

where D/Dt stands for the covariant derivative along the motion. It satisfies:

dK

dt
=

(
Dq̇

Dt
, q̇

)
q

The fundamental principle of classical dynamics asserts the Lagrange equation of motion γγγ = f, which is equivalent to 
the principle of virtual power:

∀v̂ ∈ Tq Q ,

(
Dq̇

Dt
, v̂

)
q

= 〈
f, v̂

〉
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4.2. Frictionless unilateral constraints in Lagrange’s setting

In the case of several rigid bodies, it must be expected, in general, that there will be several unilateral constraints: 
ϕα(q) ≥ 0 (α = 1, 2, . . . , n), as the non-interpenetration conditions give rise to at least one such unilateral constraint for 
each pair of rigid bodies. The set of all the indices for which the corresponding constraint is active in the configuration q
will be denoted by J (q):

J (q) = {
α | ϕα(q) = 0

}
The unilateral constraints ϕα are supposed to be such that, for any admissible configuration q, the dϕα,q (α ∈ J (q)) are 
linearly independent. The realization of the unilateral constraints requires to complement the equation of motion with a 
(generalized) reaction force r. In the particular case of frictionless unilateral constraints, it takes the form:

r =
n∑

α=1

λα dϕα,q

with λα ≥ 0 and Suppλα ⊂ {t ∈ [0, T ] | ϕα(q(t)) = 0}.
Although the sole restitution coefficient e is enough to convey the more general frictionless impact law in the case of a 

single unilateral constraint, a great deal of additional complexity of the impact law is permitted in the case of several active 
unilateral constraints at an impact. The impact law will be postulated under its more general possible form:

q̇+ = F
(
q, q̇−)

where q is the configuration of the system at the impact time, q̇− the left (impacting) velocity and q̇+ the right (outgoing) 
velocity. The function F is a datum of the problem. In a practical situation, it has to be identified by using either exper-
iments or a refined theory such as the mechanics of deformable bodies. Naturally, the function F cannot be arbitrary, it 
has to fulfil some compatibility conditions in order to be compatible with the equation of motion. More precisely, it must 
satisfy the three following conditions.

(i) ∀q, ̇q−, ∀α ∈ J (q), 
〈
dϕα,q, F

(
q, ̇q−)〉 ≥ 0,

(the post-impact velocity must not violate the unilateral constraints),

(ii) ∀q, ̇q−, M(q) ·
(
F

(
q, ̇q−) − q̇−)

∈
∑

α∈ J (q)

R
+ dϕα,q ,

(no friction: the generalized reaction force impulse is directed along the normal),

(iii) ∀q, ̇q−, 
∣∣∣F(

q, ̇q−)∣∣∣
q

≤ ∣∣q̇−∣∣
q ,

(the kinetic energy cannot be increased by an impact).

There exist many functions F satisfying these requirements. One canonical example is the Moreau impact law [2]. It is 
based on the decomposition of an arbitrary vector v of the Euclidean vector space Tq Q � R

d , endowed with the scalar 
product M(q):

v = ProjM(q)

(
v;V(q)

)
+ ProjM(q)

(
v;N (q)

)
on the two mutually polar cones:

V(q) =
{

v ∈ Tq Q
∣∣ ∀α ∈ J (q),

〈
dϕα,q,v

〉 ≥ 0
}
,

N (q) =
∑

α∈ J (q)

R
− ∇ϕα,q =

∑
α∈ J (q)

R
− M−1(q) · dϕα,q

where ProjM(q) is the orthogonal projection operator with respect to the scalar product M(q) of Tq Q � R
d . Then, the Moreau 

impact law [2] reads as:

F
(
q, q̇−) = ProjM(q)

(
q̇−;V(q)

)
− e ProjM(q)

(
q̇−;N (q)

)
(4)

in which the restitution coefficient e can be chosen arbitrarily in [0, 1]. It is an easy matter to prove that it fulfils require-
ments (i), (ii), and (iii) above. Reciprocally, at a location q where only one unilateral constraint is active (card J (q) = 1), 
requirements (i), (ii) and (iii) above, entail that the most general impact law must take the form (4) of that of Moreau, for 
some e ∈ [0, 1].
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Fig. 1. Non-continuous dependence of the solution on the initial datum.

4.3. The evolution problem associated with frictionless unilateral multibody dynamics

We are given an initial condition (q0, v0) ∈ T Q �R
d ×R

d assumed to be compatible with the unilateral constraints:

∀α, ϕα(q0) ≥ 0, and ∀α ∈ J (q0),
〈
dϕα,q0 ,v0

〉
≥ 0

and an impact law function F fulfilling the three requirements (i), (ii), (iii) above. The initial value problem that governs 
frictionless unilateral multibody now reads as follows.

Problem P3. Find q ∈ MMA([0, T ]; Q ) and λα ∈M([0, T ]; R) (α ∈ {1, 2, . . . , n}) such that:

– q(0) = q0, q̇+(0) = v0, (initial condition)

– M(q) · Dq̇

Dt
= f(t; q, ̇q−) +

n∑
α=1

λα dϕα,q , (equation of motion)

– ∀α, ϕα(q) ≥ 0, λα ≥ 0, Suppλα ⊂ {
t ∈ [0, T ] ∣∣ ϕα(q(t)) = 0

}
, (contact conditions)

– ∀t, q̇+ =F
(
q, ̇q−)

, (impact constitutive law).

The following results about problem P3 have been proved in various articles.

(i) If the functions ϕα , M and f are analytic functions of their arguments, then problem P3 has a unique maximal solution 
[9,10]. Here, ‘maximal solution’ means that the solution is not necessarily defined all over [0, T ], but rather on a 
subinterval that cannot be extended, since a possible blow up at finite time can occur. This blow up at finite time is 
classically known to be possible in the case where there is no unilateral constraint, but is dismissed whenever f satisfies 
a global Lipschitz condition with respect to (q, ̇q). The same is true for problem P3: if f is, in addition, Lipschitz with 
respect to (q, ̇q), then the maximal solution is defined all over [0, T ], and problem P3 has truly one and only one 
solution [9,10].

(ii) The above general existence and uniqueness result of solution for problem P3 should not put a mask on a major 
ill-posedness issue that is generally encountered by the solution: it does not depend continuously on the data, in 
general. This unpleasant feature can be observed in a simple example in R2, with f ≡ 0, two affine functions ϕα

(representing two intersecting straight obstacles), and an elastic impact law. In Fig. 1, two arbitrarily closed initial 
locations of a point particle are considered, associated with the same initial velocity, and they are seen to produce 
post-impact velocities that are orthogonal, so that the subsequent motions diverge.
This pathology is very unpleasant because it precludes any rational attempt to compute an approximation of the unique 
solution to problem P3, in general. However, this issue is specific to the situation where the unique solution to prob-
lem P3 experiments at least one multiple impact (that is, passing through a location q at which several unilateral 
constraints are simultaneously active: card J (q) ≥ 2). Hence, the difficulty is connected with multiple impacts. However, 
all the multiple impacts do not give rise to this pathology. In particular, the counter-example of Fig. 1 would be impos-
sible to build in the case where the two straight obstacles would intersect with a right angle. This was generalized as 
follows by Ballard.

Proposition 1. [9] Consider problem P3 in which the data ϕα , M, and f are analytic functions of their arguments and where 
the impact law is chosen to be that of Moreau (4) for an arbitrary e ∈ [0, 1]. Suppose, in addition, that f is Lipschitz with respect 
to (q, ̇q), which ensures that problem P3 admits a unique solution for any admissible initial condition. Consider such an initial 
(q0, v0) and the corresponding solution q ∈ C0([0, T ]; Rd). Suppose that this solution q(t) experiments only multiple impacts 
that are right with respect to the scalar product M−1(q):

∀t ∈ [0, T ], ∀α,β ∈ J (q(t)), dϕα,q(t) · M−1(q(t)) · dϕβ,q(t) = 0 (5)
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then the mapping:{
T Q → C0([0, T ]; Q )

(q0,v0) 
→ q(t)

is continuous at (q0, v0).

Physically, condition (5) (the angle between two arbitrary constraints at a multiple impact is a right angle) is satisfied 
for a multiple impact consisting of simultaneous collisions at different locations by two pairs of solids in a dynamical 
evolution of a collection of rigid bodies, whereas it is generally not satisfied in the case of three bodies colliding 
simultaneously.
This issue of continuous dependence of the solution to problem P3 with respect to the data was further investigated 
by Paoli [16] who proved that, in the particular case where e = 0 (completely inelastic impact law), the orthogonality 
condition in Proposition 1 can be weakened into:

∀t ∈ [0, T ], ∀α,β ∈ J (q(t)), dϕα,q(t) · M−1(q(t)
) · dϕβ,q(t) ≤ 0

that is, in the case of the completely inelastic impact law, the angles between the constraints at a multiple impact does 
not need to be right, but only acute, to ensure continuous dependence of the solution on the initial condition. She also 
proved that this condition of orthogonality of the constraints (or acute angles, in the case of the completely inelastic 
impact law) ensures not only continuous dependence of the solution on the initial condition, but also on the other data 
of the problem, such as M , f and ϕα , in the sense of appropriate topologies.

(iii) Assuming that the impact law in problem P3 is that of Moreau (4) for an arbitrary e ∈ [0, 1]. Then, Paoli [6] defines a 
sequence of approximants qn ∈ C0([0, T ]) (n ∈N \ {0}) by the following induction.
– Q0

n = q0, V0
n = v0,

– ∀i ∈ {1, 2, . . . , n},

Qi
n = Qi−1

n + hVi−1
n ,

Vi
n
′ = Vi−1

n + h M−1(Qi
n) · f(ih,Qi

n,Vi−1
n ),

Vi
n = −e Vi−1

n + ProjM(Qi
n)

(
Vi

n
′ + e Vi−1

n ;V(Qi
n)

)
– qn(t) = Qi−1

n + (
t − (i − 1)h

)
Vi−1

n , ∀t ∈ [
(i − 1)h, ih

]
,

Now, suppose that the data ϕα , M and f in problem P3 are analytic functions of their arguments and that the impact 
law is chosen to be that of Moreau (4) for an arbitrary e ∈ [0, 1]. Suppose, in addition, that f is Lipschitz with respect 
to (q, ̇q) and:

∀q, ∀α ∈ J (q) dϕα,q · M−1(q) · dϕβ,q = 0, if e ∈ ]0,1] ,

∀q, ∀α ∈ J (q) dϕα,q · M−1(q) · dϕβ,q ≤ 0, if e = 0
(6)

then, Paoli proves in [6] that the sequence qn converges strongly in W 1,1(0, T ) towards the unique solution q to 
problem P3. Actually, her proof seems to cover also the situation where the conditions (6) are not necessarily fulfilled 
for all q, but only for all the locations q(t) (t ∈ [0, T ]) associated with the unique solution q of problem P3.
An alternate time-stepping scheme is proposed in [5] with proof of the same results of convergence.

5. Frictional unilateral multibody dynamics

In most use of unilateral multibody dynamics in engineering problems, it is desirable to account for (dry) friction. Un-
fortunately, frictional unilateral multibody dynamics has not reached yet the same stage of completion as in the frictionless 
case.

5.1. The need for a general formulation

It is very surprising that the first attempt to obtain a general formulation of an evolution problem associated with 
frictional unilateral multibody dynamics was only that of Charles in his PhD thesis [14].

Formerly, the general and rather imprecise idea that was prevailing is that one should use the Lagrange equation for 
dynamics, complemented with the Coulomb friction law applying to real-world reaction forces and to the velocities of the 
material contact points. This paradigm has not led so far to any general formulation of frictional multibody dynamics. It has 
only resulted in two outcomes:
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– in very specific cases, there is a one-to-one correspondence between generalized reaction forces and real-world reaction 
forces, and this paradigm can then be turned into a sound mathematical evolution problem. One such example is the 
Painlevé example of a rigid bar above a rigid obstacle, so that there can only be, at most, one material point at which 
the contact takes place. Such a precise formulation of the evolution problem can be found in Stewart [13] in the case 
of the Painlevé example. The motivation of Stewart was to prove the existence of a dynamical solution for the Painlevé 
example (which he did), since suspicion of non-existence of solution had fed a one-century-old controversy which could 
be entitled: ‘is the (local) Coulomb law consistent with rigid body dynamics?’;

– Numerical methods to compute discrete-time solutions in more complex cases. Examples of such methods are those of 
Jean [17], which was inspired by the time-stepping technique of Monteiro Marques, and of Stewart in [13]. A common 
feature of all these methods is that they are derived on the basis of the paradigm of the Coulomb law applying to 
reaction forces in the real world. But, they are not derived on the basis of a general continuous-time evolution problem. 
This was recognized by Stewart in [18]: ‘In many ways it is easier to write down a numerical method for rigid-body 
dynamics than it is to say exactly what the method is trying to compute.’

As was already pointed out when formulating the evolution problem associated with frictionless multibody dynamics, the 
equation of motion involves the generalized reaction force which is therefore completely determined, when the motion is 
calculated, whereas the precise distribution of the real-world reaction forces remains undetermined, in general. Besides, 
the modern point of view in mechanics stipulates, through the systematic use of the Principle of Virtual Power, that the 
appropriate representation of forces within any mechanical theory is the one that comes from duality with velocities. Within 
the dynamics of rigid bodies, the appropriate representation of forces is therefore that of Lagrange’s generalized forces. Hence, 
it is not surprising that sticking to a formulation of the friction law in terms of the real-world reaction forces has not 
yet come to a successful end, with respect to the issue of obtaining a general consistent formulation of the dynamics. 
In the specific cases where it is possible though, such a paradigm is known to raise the following paradoxes, once again 
unsurprisingly.

– Painlevé paradox. In the case of the planar dynamics of a rigid bar in a half-plane with possible frictional contact at one 
extremity of the bar, there is a one-to-one correspondence between generalized reaction force and real-world reaction 
force. It is therefore possible to obtain a precise formulation of an evolution problem in that situation (it is to be found 
in [13]). However, it was recognized as early as the nineteenth century that multiple solutions can be encountered 
[19]. The example of the rigid bar would therefore be different in nature to that of a point particle for which the 
uniqueness of the solution can be proved rigorously (see the discussion in section 3). At the time of Painlevé, there was 
also a suspicion of possible non-existence of a solution. Later, Lecornu [20] pointed out that the existence of a solution 
could be recovered by allowing an impact (velocity jump and associated Dirac mass of the reaction measure), although 
the incoming normal velocity vanishes. This was further discussed by Moreau [21], in the framework of the motions 
with measure acceleration, under the name ‘tangential impact’ or ‘frictional catastrophe’. Finally, Stewart proved in 
[13] an existence result for the Painlevé example with completely inelastic impact law, showing that the allowance 
for ‘tangential impacts’ was ruling out the suspicion of non-existence in the Painlevé example. Hence, the analysis of 
Stewart, which was restricted to the system with one material contact point only, solved the non-existence issue in the 
Painlevé paradox, but let open the non-uniqueness issue.

– Kane paradox. The non-uniqueness part of the Painlevé paradox was sometimes claimed to be acceptable. However, 
another paradox connected to the use of a friction law applying to real-world reaction forces arose more recently in 
[22,23], which was more serious. The example is that of a double pendulum whose extremity can experiment frictional 
contact with a straight obstacle. The Coulomb law and an impact law with a restitution coefficient of 0.5 are adopted. 
In that example also, there is an exceptional one-to-one correspondence between generalized and real-world reaction 
forces, making it possible to formulate an evolution problem associated with the Coulomb law applying to real-world 
reaction forces. A motion solving that the evolution problem is exhibited, in which the kinetic energy of the system is 
increased during an impact, due to friction. This is an energetic inconsistency raised by the use of the Coulomb law 
applying to real-world reaction forces within rigid body dynamics. In the case of the Painlevé example with completely 
inelastic impact law, Stewart proves in [13] that the solution he constructs is dissipative, and therefore does not ex-
hibit this energetic inconsistency. However, since no uniqueness is to be expected, there is no guarantee of energetic 
consistency of all the solutions.

5.2. The case of one unilateral constraint

In this section, we shall obtain the evolution problem governing the frictional dynamics of a discrete system obeying 
only one unilateral constraint of the form:

ϕ(q) ≥ 0

According to the discussion in the preceding section, we are going to resist invoking any real-world reaction force and 
therefore stick to generalized reaction forces and velocities.
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5.2.1. Splitting into normal and tangential parts
At a configuration where the constraint is active, it is easy to see how to define what a tangential velocity is: it is simply 

a velocity that arises in a motion maintaining the contact active:〈
dϕq, q̇

〉
= 0

However, the issue of defining what a normal velocity is turns out to be trickier, as it requires the choice of a scalar 
product. Even if the configuration manifold can locally be identified with Rd by making the choice of a parameterization, 
the use of the canonical scalar product of Rd is not an option, for, in that case, the definition of what a normal velocity 
is would depend on the choice of the parameterization. Actually, there is only one natural scalar product that is intrinsic, 
that is, it does not depend on the choice of a parameterization: the one induced by the kinetic energy whose matrix in a 
given parameterization is the (positive definite) mass matrix M(q). We shall see later that this inevitable choice of a scalar 
product has the fallout of enforcing energetic consistency and therefore protecting from Kane’s paradox. A normal velocity 
vn is therefore one that is orthogonal to a tangential velocity according to the scalar product M(q):

λ ∈R, vn = λ M−1(q) · dϕq = λ ∇qϕ

where the scalar product M(q) enables, as usual, to make the link between the gradient and the differential of the func-
tion ϕ . Likewise, a normal generalized reaction force rn is one that develops zero virtual power in any tangential velocity:

λ ∈R, rn = λ dϕq

and a tangential reaction force rt is one that develops zero virtual power in any normal velocity:

rt · M−1(q) · dϕq = 0

Some insight is gained from a(n elementary) geometric point of view: velocities live in the tangent space Tq Q , which 
is endowed with an Euclidean structure by the scalar product (mass matrix) M(q). Generalized forces are linear forms 
applying on velocities through the Virtual Power paradigm, and therefore live in the dual space T ∗

q Q , which is endowed 
with a natural Euclidean structure by the dual scalar product M−1(q). Hence, the natural split into tangential and normal 
parts reads as:

∀v ∈ Tq Q , v = vt + vn
∇qϕ

|∇qϕ|q , with
(
vt,∇qϕ

)
q = 0, and |∇qϕ|q =

√
dϕq · M−1(q) · dϕq,

∀r ∈ T ∗
q Q , r = rt + rn

dϕq

|dϕq|∗q , with
(
rt,dϕq

)∗
q = 0, and |dϕq|∗q =

√
dϕq · M−1(q) · dϕq

5.2.2. The generalized friction law
We are now going to rely on the splitting of generalized reaction forces and velocities into normal and tangential parts 

to infer the general form of a friction law expressed in terms of these quantities.
Let us first recall some classical definitions of convex analysis. Let C be a nonempty closed convex subset of Rd . Its 

indicatrix function IC is defined by:

IC(x) =
∣∣∣∣ 0 if x ∈ C
+∞ if x /∈ C

It is proper, lower semi-continuous and convex. Its conjugate function (by the Legendre–Fenchel transform) is the support
function SC of C:

SC(y) = sup
x∈C

〈
x,y

〉
Introducing the closed unit disk B of R2 (with respect to the canonical Euclidean norm | · |), it is readily checked that:

SB(y) = |y|
The pointwise formulation (2) of the Coulomb law is therefore equivalent to anyone of the following equivalent statements:

(i) − vt ∈ ∂ IμrnB
[
rt

]
(ii) rt ∈ ∂ SμrnB

[−vt
]

(iii) ∀v̂ ∈R
2,

〈
r , v̂ − v

〉 + μr
(|v̂| − |v |) ≥ 0
t t n t
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where ∂ f denotes the subdifferential of the proper, lower semi-continuous function f . Since ∂ IC is the closed convex cone 
of all the outward normal vectors to C , statement (i) is also called the normality rule, when μrn is assumed to be given 
as in Coulomb’s experiments (where rn was merely the opposite of the gravity force). The equivalent statement (ii) is often 
referred to as the maximum dissipation principle.

To generalize the Coulomb friction law (2) for the point particle to the case of an arbitrary discrete mechanical system, 
we are naturally led to postulate the existence of a set C∗

q in the space T ∗
q ⊂ T ∗

q Q of all tangential reaction force, such that 
all the admissible tangential components of the generalized reaction force are characterized by the condition:

rt ∈ rnC∗
q

where the normal reaction force rn is required to be nonnegative and vanishes when the constraint is not active (that is, 
when ϕ(q) > 0). As for the Coulomb friction law (2), this condition entails that whenever the normal reaction force vanishes 
(for example in motion episodes where the constraint is not active), then the tangential reaction also vanishes.

In general, the set C∗
q will not be required to be a disk (case of isotropic friction (2) for a point particle), but only to 

be nonempty. It is also required to be closed and convex so that the normality rule can be adopted as a flow rule: this 
is nothing but assuming that for a given value of the reaction normal component, the flow rule should obey the maxi-
mum dissipation principle. With this assumption, the flow rule is formally expressed by anyone of the following equivalent 
statements:

(i) − q̇+
t ∈ ∂ IrnC∗

q

[
rt

]
(ii) rt ∈ ∂ SrnC∗

q

[−q̇+
t

]
(iii) ∀v̂ ∈ Tq,

〈
rt, v̂ − q̇+

t

〉 + rn
[

SC∗
q
(−v̂) − SC∗

q
(−q̇+

t )
] ≥ 0

where the identity SrnC∗
q

= rn SC∗
q

has been used. Here, the subdifferentials should be understood in the sense of the duality 
between the space Tq of tangential generalized velocities and the space T ∗

q of tangential generalized forces.
Actually, the set C∗

q can be viewed either as a subset of the space T ∗
q of tangential generalized forces or as a subset of 

the space T ∗
q Q of all generalized forces. In the latter case, one has:

∀v̂ ∈ Tq Q , SC∗
q
(v̂) = SC∗

q
(v̂t)

since C∗
q is contained in the space T ∗

q of tangential generalized forces. Therefore, statement (iii) is equivalent to:

(iii′) ∀v̂ ∈ Tq Q ,
〈
rt, v̂ − q̇+〉 + rn

[
SC∗

q
(−v̂) − SC∗

q
(−q̇+)

] ≥ 0

where we recall that Tq Q stands for the space of all generalized velocities at the generalized configuration q (tangent 
space at q to the configuration manifold). This latter form of the (generalized) friction law is the more appropriate one in 
view of deriving an expression of the friction law encompassing the episodes of smooth motion and the impacts, that is, 
in situations where the reaction force is not pointwise defined but is only a measure (with respect to time). Having these 
situations in mind, the friction law has to be postulated under the form:

∀v̂ ∈ C0([0, T ]; T Q
)
, with v̂(t) ∈ Tq(t) Q

∫
[0,T ]

〈
rt, v̂ − q̇+〉 + rn

[
SC∗

q
(−v̂) − SC∗

q
(−q̇+)

] ≥ 0 (7)

As in the case of the ordinary Coulomb law where C∗
q is a closed disk, the generalized friction law (7) makes sense 

whenever the generalized reaction force r is a measure and the generalized right-velocity q̇+ is a function of time with 
bounded variation.

Equation (7) provides the general form of what should be a friction law formulated in terms of generalized reaction force, 
applying to both smooth episodes of motion and impacts, which is, in addition, energetically consistent. This framework 
cannot be avoided. Of course, the question remains to know what choice should be made in practice for the friction set C∗

q . 
It turns out that a systematic proposal of C∗

q can always be made on the basis of the paradigm of a pointwise Coulomb cone 
containing hypothetical real-world reaction forces and, then, of the use of formulae (3) to build the cone containing the 
generalized reaction force r, and therefore to deduce a proposal for C∗

q (a detailed account of this systematic construction is 
to be found in [14]).

In the above-mentioned systematic construction for the sets C∗
q , it turns out that unbounded sets C∗

q can appear. In that 
case, the function SC∗

q
takes the value +∞, that is, its domain D(SC∗

q
) is smaller than the entire space Tq Q � R

d . Since 
the generalized friction law (7) entails that the tangential right-velocity q̇+

t must be in the closure D(SC∗
q
), it turns out that 

unbounded friction sets induce forbidden values for the right-velocity q̇+
t at those instants belonging to Supp r. Another 

significant difference of unbounded friction sets with bounded friction sets is that they allow atoms of tangential reaction 
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force without any atom1 in the normal force, which is impossible in the case of a bounded friction set. Typically, this is 
going to happen when the system q is arriving on the obstacle with zero normal velocity and along a forbidden value of 
the tangential velocity. In that case, a tangential impact (discontinuity of tangential velocities at an instant where the normal 
velocity is continuous) will be possible.

5.2.3. The evolution problem
Gathering all the preceding considerations, we are in measure to obtain the general formulation of the frictional dy-

namics of an arbitrary discrete mechanical system with only one unilateral constraint. As previously, we are given an initial 
condition (q0, v0) ∈ T Q � R

d ×R
d compatible with the obstacle:

ϕ(q0) ≥ 0 and ϕ(q0) = 0 ⇒ 〈
v0,dϕq0

〉 ≥ 0, and v0 ∈ D(SC∗
q0

)

(the last requirement is a restriction only in the case where C∗
q0

is unbounded and aims at protecting from tangential impact 
at the initial instant).

Problem P4. Find q ∈ MMA([0, T ]; Rd) and r ∈M([0, T ]; Rd) such that:

– q(0) = q0, q̇+(0) = v0,

– M(q) · Dq̇

Dt
= f(t; q, ̇q−) + r,

– ∀t ∈ [0, T ], ϕ
(
q(t)

) ≥ 0,

– Supp r ⊂
{

t ∈ [0, T ] ∣∣ ϕ(
q(t)

) = 0
}

,

– rn ≥ 0,

– ∀v̂ ∈ C0([0, T ]; T Q
)
, with v̂(t) ∈ Tq(t) Q

∫
[0,T ]

〈
rt, ̂v − q̇+〉 + rn

[
SC∗

q
(−v̂) − SC∗

q
(−q̇+)

] ≥ 0,

– ϕ
(
q(t)

) = 0 ⇒ q̇+
n (t) = −eq̇−

n (t).

The following results about problem P4 have been proved in [14].

– If e ∈ [0, 1], then any solution to problem P4 is dissipative, that is, for all t1, t2 ∈ [0, T ], such that t1 ≤ t2, one has:

1

2
q̇+(t2) · M

(
q(t2)

) · q̇+(t2) ≤ 1

2
q̇−(t1) · M

(
q(t1)

) · q̇−(t1) +
t2∫

t1

〈
f
(
t;q(t), q̇−(t)

)
, q̇−(t)

〉
dt (8)

Problem P4 is the general evolution problem raised by the frictional dynamics of an arbitrary discrete system submit-
ted to one unilateral constraint. The impact law governs the normal component of the velocity, as in the frictionless 
situation. The generalized friction law rules both the impacts and the smooth episodes of motion. The above result 
shows that any solution is energetically consistent. Let us just recall that the example of Kane in [22,23] was that of 
a discrete system (double pendulum), with one unilateral constraint. However, he did not know such a formulation as 
our problem P4, and used the usual Coulomb friction law applying to real-world reaction forces. As a result, some solu-
tions were possible, in which an increase in kinetic energy during an impact was possible. The above result is therefore 
a demonstration of superiority of formulating the dynamics along problem P4, in which energetic consistency is built 
in.

– The existence and the uniqueness of a solution to problem P4 are still to be proved (under the assumption that the 
data are analytic). Note, however, that this existence and uniqueness result has already been proved in the case of 
problem P2, which is nothing but a particular case of problem P4, for which the friction set C∗

q reduces to a disk. In 
addition, a discussion around the Painlevé example is developed in [14]. When the dynamics of the Painlevé system is 
formulated on the basis of the usual Coulomb friction law applying to real-world reaction forces (as in [13]), multiple 
solutions can be exhibited for large enough friction coefficients. However, when the dynamics of the same system is 
formulated along problem P4, among these explicit multiple possible dynamical evolutions, only one of them remains 
a solution to the corresponding problem P4. This is a clue that the formulation of the dynamics along problem P4
escapes not only from energetic inconsistencies as in the Kane paradox, but also from indeterminacies and multiple 
solutions as in the Painlevé paradox.

1 An instant t is said to be an atom of the Radon measure r, if r({t}) = ∫
{t} r �= 0.
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5.3. The general case

There remains to derive a systematic formulation of frictional dynamics of discrete systems, in the case where several 
unilateral constraints apply: ϕα(q) ≥ 0 (α = 1, 2, . . . , n). This is nothing but an extension of frictionless multibody dynamics 
along problem P3, in the spirit of problem P4. Such an extension is presented with details in [14].

The analysis introduces a collection C∗
α,q (α = 1, 2, . . . , n) of friction sets, each of them being associated with one of the 

unilateral constraints. The corresponding generalized friction law involves the sum of each associated dissipation:

SC∗
α,q

(−q̇+)

A corresponding evolution problem is precisely stated and it is rigorously proved that any solution is dissipative, that is, 
fulfils inequality (8).

Hence, the point of view of a generalized friction law applying to generalized reaction forces (instead of the usual point of 
view of a friction law expressed in terms of the real-world reaction forces) yields the following pleasant fallout. It enables to 
formulate for the first time, a consistent abstract evolution problem associated with frictional unilateral multibody dynamics, 
in the most general situation. And, in addition, the energetic consistency of such a formulation is built in, meaning that any 
solution is necessarily dissipative.
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