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While macroscopic longitudinal and transverse dispersion in three-dimensional porous 
media has been simulated previously mostly under purely advective conditions, the impact 
of diffusion on macroscopic dispersion in 3D remains an open question. Furthermore, both 
in 2D and 3D, recurring difficulties have been encountered due to computer limitation 
or analytical approximation. In this work, we use the Lagrangian velocity covariance 
function and the temporal derivative of second-order moments to study the influence 
of diffusion on dispersion in highly heterogeneous 2D and 3D porous media. The first 
approach characterizes the correlation between the values of Eulerian velocity components 
sampled by particles undergoing diffusion at two times. The second approach allows the 
estimation of dispersion coefficients and the analysis of their behaviours as functions of 
diffusion. These two approaches allowed us to reach new results. The influence of diffusion 
on dispersion seems to be globally similar between highly heterogeneous 2D and 3D 
porous media. Diffusion induces a decrease in the dispersion in the direction parallel to the 
flow direction and an increase in the dispersion in the direction perpendicular to the flow 
direction. However, the amplification of these two effects with the permeability variance 
is clearly different between 2D and 3D. For the direction parallel to the flow direction, 
the amplification is more important in 3D than in 2D. It is reversed in the direction 
perpendicular to the flow direction.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Macroscopic dispersion is a key component of solute transport in geological media and is highly influenced by the 
heterogeneity of geological media ([1], [2]). It is essentially due to its relation to the statistics of flow velocity fields, which 
has been demonstrated with the first analytical expressions linking velocity and dispersion, given in stratified formations by 
Matheron et al. [3] and in porous formations by Dagan [4,5], Gelhar et al. [6] and Winter et al. [7].

In his work [8–10], Dagan showed by using the Taylor’s work [11] and a Lagrangian framework that the dispersion tensor 
Dt,i j at time t is linked to the auto-covariance tensor Cij of the total displacement Xt :

Dt,i j = 1

2

dCij(Xt)

dt
with Cij(Xt) = E[X′

t,iX
′
t, j] (1)
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where X′
t = Xt − E [Xt ] is the total displacement fluctuation. Starting its motion at the position X0 and time t0, the total 

displacement of a particle is given by:

Xt(t;X0, t0) = X(t;X0, t0) + Xd(t; t0) (2)

The advection displacement X is related to the flow velocity u:

X(t;X0, t0) = X0 + (t − t0)i +
t∫

t0

u(Xt)dt′ (3)

where i is an unit vector in the x direction. Being a Brownian motion defined by a zero mean and a normal pdf, the local 
dispersion displacement Xd is uncorrelated with u. Then, Cij(Xt) can be given by:

Cij(Xt) = Cij(X) + 2(t − t0)Dd,i j (4)

where Dd,i j is the local dispersion tensor. If diffusion is only considered, Dt,i j can be written as:

Dt,i j = 1

2

dCij(X)

dt
+ Dmδi j with Cij(X) =

t∫

t0

t∫

t0

Cij(V)dt′ dt′′ (5)

with Dm the diffusion coefficient, δi j the Kronecker symbol and Cij(V) the Lagrangian auto-covariance tensor computed 
from the velocity sampled by the particles undergoing diffusion. The previous equation can be re-written as:

Dt,i j = 1

2

t∫

t0

Cij(V)dt′ + Dmδi j (6)

This equation clearly shows the role played by diffusion. In addition to participating in the spreading of particles, dif-
fusion modifies the sampling of the Eulerian velocity by the particles. Then, the analysis of the influence of diffusion on 
dispersion depends on the estimation of the Lagrangian auto-covariance tensor. Following the analytical approach and under 
simplification assumptions, this auto-covariance tensor can be expressed with different methods such as the Corsin’s con-
jecture ([9], [12], [13]) and the perturbation theory ([10], [14], [15]). However, the analytical solution only gives valid results 
for weakly heterogeneous permeability fields ([16]). While the numerical approach does not require an approximation of 
the velocity auto-covariance tensor except in some cases ([17]), it is still confronted with convergence issue at higher values 
of heterogeneity, especially in 3D, and the macroscopic dispersion coefficients do not always reach an asymptotic value as 
described in a Fickian regime ([18], [19], [20]). While in these works, the macroscopic dispersion coefficients are computed 
through the particle positions and the second-order moments, equation (6) enables the macroscopic dispersion coefficients 
to be calculated from the Lagrangian velocity covariance. This method has been used in Salandin et al. [21] and later Goto-
vac et al. [22] with Monte Carlo simulations where particles are tracked but are limited to pure advection cases in isotropic 
2D heterogeneous porous media.

In this work, we compute the Lagrangian velocity covariance functions for pure advection and diffusion cases in 
isotropic highly heterogeneous 2D and 3D porous media. To obtain a well-defined covariance function, we use high per-
formance computing with the numerical model PARADIS, PARAllel DISpersion, available in the software platform H2OLAB 
(http :/ /h2olab .inria .fr/) to compute the particles trajectories. PARADIS performs large-scale and finely resolved Monte Carlo 
simulations for estimating the trajectory of inert particles in heterogeneous porous media characterized by an exponentially 
correlated log-normal isotropic permeability fields ([23,24], [25,20]). These previous works focus on advective and diffusive 
conditions in 2D and purely advective in 3D. Furthermore, the macroscopic coefficients are computed through the temporal 
derivation of particle cloud second-order moments. This work introduces the effect of diffusive condition and a numeri-
cal analysis of Lagrangian velocity covariance functions, which allows the identification of the impact of local diffusion on 
dispersion in 2D and 3D.

2. Covariance function computing

The covariance function Cii of the component V i of the Lagrangian velocity V can be estimated as follows:

Cii(V) = σ 2
V i

− γV i (h) (7)

where σ 2
V i

and γV i are the variance and variogram of V i respectively; h represents the time step between two times. To 
compute γV i , the stochastic variable V i has to respect two properties:

http://h2olab.inria.fr/
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Table 1
Characteristics of the numerical simulations performed for estimating the Lagrangian velocity covariance functions 
in 2D and 3D heterogeneous porous media.

Source NP NS L X × LY × L Z

Salandin et al. [21] 40 500 64λ × 64λ × 0λ

Gotovac et al. [22] 4,000 500 64λ × 128λ × 0λ

Present work in 2D 10,000 100 204.8λ × 102.4λ × 0λ

Present work in 3D 10,000 100 51.2λ × 25.6λ × 25.6λ

• the expected value of the component V i is not time dependent,

∀t ∈R, E[V i(t)] = M with M a constant (8)

• the covariance function Cii(V) is stationary up to the second order,

∀(t,h) ∈ R
2, Cii(V) = C(V i(t), V i(t + h)) = Cii(h) (9)

From a practical point of view, the variogram γV i represents the half-variance Var between two values of the component 
V i of the Lagrangian velocity V, taken at two times t and t + h:

γV i (h) = 1

2
Var[V i(t) − V i(t + h)] = 1

2
E[(V i(t) − V i(t + h))2] (10)

The discrete form of the previous equation reads:

γV i (h) = 1

2N(h)

N(h)∑
j=1

(V i(t) − V i(t + h))2 (11)

with N(h) the number of pairs V i whose time is separated by h. Considering the number of particles NP and the number 
of Monte Carlo simulations NS, the discrete form of Cii(V) is given by:

Cii(V) =
NS∑

q=1

⎡
⎣ NP∑

k=1

⎛
⎝σ 2

V i
− 1

2N(h)

N(h)∑
j=1

[V i(t) − V i(t + h)]2

⎞
⎠

⎤
⎦ (12)

This equation is composed of two means that have to be calculated for the estimation of the covariance function Cii (V). 
The first mean is performed on a number of particles NP = 10,000, and the second mean on a number of Monte Carlo 
simulations NS = 100. Thus, the resulting covariance function Cii(V) is estimated by means of 106 particle variograms. The 
particles were tracked in computational domains of dimensions 204.8 λ × 102.4 λ in 2D and 51.2 λ × 25.6 λ × 25.6 λ in 3D 
with a correlation length of heterogeneous permeability fields, λ = 10 m. For the sake of comparison, Table 1 gives the 
numerical parameters used by Salandin et al. [21] and Gotovac et al. [22] in their 2D works. It should also be noted that 
the Lagrangian velocity covariance functions are equal in the directions perpendicular to the flow direction because the 
heterogeneous permeability fields are assumed to be isotropic. In the following sections, the Lagrangian velocity covariance 
functions will be noted C11(V) = CL(h) (L, longitudinal for the direction parallel to the flow direction) and C22(V) = C33(V) =
CT(h) (T, transverse for the directions perpendicular to the flow direction).

3. Covariance function validation

Englert et al. [26] gave a synthesis of previous works using a Monte Carlo analysis and covariance computation for 
studying flow velocity fields in 3D porous media characterized by isotropic and anisotropic heterogeneous permeability 
fields. These previous works have shown that the analytical approximations of Eulerian velocity covariance functions under 
pure advection conditions are validated until the permeability variance σ 2 exceeds 1 for the first order and 2 for the second 
order, with 3D isotropic heterogeneous permeability fields ([27], [28], [29], [30], [31]) and 3D anisotropic fields ([32], [33]). 
Englert et al. [26] indicated that the validity of second-order approximations estimating the Eulerian velocity covariance 
functions is still an unresolved issue.

Fig. 1 shows the longitudinal (CL, top) and transverse (CT, bottom) covariance functions obtained with the first-order 
approximation given by Russo [34], the Monte Carlo analysis used by Englert et al. [26] and the present method for a 
permeability variance σ 2 = 1 with a purely advection condition in 3D. The covariance functions are adimensionalized with 
the variances of flow velocity components, σ 2

L and σ 2
T , respectively in the longitudinal and transverse directions. For an 

isotropic heterogeneous permeability field, the equations of Eulerian velocity covariance functions obtained with the first-
order approximation ([35]) are:
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Fig. 1. Longitudinal (CL, top) and transverse (CT, bottom) covariance functions obtained with the first order approximation given by Russo [34] (red line), 
the Monte Carlo analysis used by Englert et al. [26] (blue line) and the present method (black line) for a permeability variance σ 2 = 1 with a purely 
advection condition in 3D.

• in the longitudinal direction,

CL,1st(h)

σ 2
L,1st

= σ 2u2
m exp(−σ 2

L hum/λ) (13)

• in the transverse direction,

CT,1st(h)

σ 2
T,1st

= σ 2u2
m(1 − hum/(2λ))exp(−hum/(2λ)) (14)

um denotes the mean flow velocity.
Both numerical approaches give results similar to the first-order approximation in the two directions. The global be-

haviour of two covariance functions, CL and CT, is correctly simulated with the Monte Carlo analysis used by Englert et 
al. [26] and the present method. As it was noted in the work by Salandin et al. [21], the Lagrangian and Eulerian velocity 
covariance functions are very close.

The influence of the particle number NP on the accuracy of the present method has been investigated. In Fig. 2, the 
covariance functions obtained with the present method have been plotted for a particle number NP ranging from 2,500 
to 15,000 in 3D with a permeability variance σ 2 = 2.25 and a purely advection condition. The convergence is quickly 
established in both transverse and longitudinal directions, and is reached for NP > 5,000.

Fig. 3 shows the longitudinal (σ 2
L , top) and transverse (σ 2

T , bottom) variances of flow velocity fields as functions of the 
permeability variance σ 2 in 3D with a purely advection condition. The analytical results are obtained with the first and 
second order approximations ([10], [36]):

• in the longitudinal direction,

σ 2
L,1st = 0.53σ 2u2

m and σ 2
L,2nd = σ 2

L,1st + 0.23σ 4u2
m (15)
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Fig. 2. Longitudinal (CL , top) and transverse (CT, bottom) covariance functions obtained with the present method for various values of particle number NP

for a permeability variance σ 2 = 2.25 with a purely advection condition in 3D.

• in the transverse direction,

σ 2
T,1st = 0.07σ 2u2

m and σ 2
T,2nd = σ 2

T ,1st + 0.13σ 4u2
m (16)

Fitting curves are used for estimating the relation between the numerical results of Lagrangian velocity variances and the 
permeability variance σ 2:

• in the longitudinal direction,

σ 2
L,fitting = 0.52σ 4 (17)

• in the transverse direction:

σ 2
T,fitting = 0.075σ 2 + 0.083σ 4 (18)

For σ 2 < 1, the present method gives numerical results close to the analytical results obtained with the two approx-
imations. For 1 < σ 2 < 2, the first-order approximation differs, while the second order approximation holds. For σ 2 > 2, 
important differences are observed between the present method and the two approximations. Similar comments have al-
ready been made by Bellin et al. [37], Salandin et al. [21], and Hassan et al. [38].

4. Covariance function analysis

Fig. 4 shows the longitudinal (CL, top) and transverse (CT, bottom) covariance functions in 2D (left) and 3D (right) as 
functions of time step h for three values of the permeability variance (σ 2 = 0.25, 1, and 2.25) and three values of the Péclet 
number (Pe = 50, 100, and ∞), obtained with the present method. The Péclet number is defined as Pe = umλ/Dm. The 
lowest value of Pe taken in this work is limited to 50 when using the covariance function for convergence considerations. 
For lower values of Pe, the particles leave the computational domain too quickly to correctly sample the Lagrangian velocity. 
In such cases, the covariance function asymptote does not reach zero.

In the longitudinal direction, a low value of the Péclet number Pe leads to decrease the Lagrangian velocity covariance 
functions CL. Russo et al. [34] and Jankovic et al. [39] explain that diffusion allows the particles to sample the areas with 
high and low permeabilities that would have been unreachable with a purely advection condition. This decrease is further 
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Fig. 3. Longitudinal (σ 2
L , top) and transverse (σ 2

T , bottom) variances of flow velocity fields, as functions of the permeability variance σ 2 with a purely 
advection condition in 3D (red line: first order approximation given by Dagan [10], green line: second order approximation given by Deng et al. [36], black 
squares: present method and black line: fitting curves).

reinforced by a high value of the permeability variance σ 2. The same behaviour is found in 2D and 3D. However, the 
amplification caused by the permeability variance σ 2 is more significant in 3D than in 2D. In the transverse direction, 
the effect of diffusion on the Lagrangian velocity covariance function CT is reversed. Hence, a low value of Pe induces a 
reduction of the negative part of transverse covariance functions CT. Russo et al. [34] and Jankovic et al. [39] interpret it as 
an attenuation of perturbations caused by the shift between the convergence and divergence of flow velocity fields in the 
areas with high and low permeabilities. The amplification with the permeability σ 2 is still observed. But its intensity seems 
to be identical in 2D and 3D.

Fig. 5 shows the longitudinal (Dt,L, top) and transverse (Dt,T, bottom) dispersion coefficients in 2D (left) and 3D (right) 
as functions of time t for the same values of σ 2 and Pe, used in Fig. 4. The dispersion coefficients, adimensionalized by 
umλ, are obtained with equation (7), involving the Lagrangian velocity covariance functions, CL and CT.

The dispersion coefficients present usual behaviours previously described by Salandin et al. [21], Meyer et al. [40] and 
Beaudoin et al. [20] under a purely advection condition. After a transient state, Dt,L reaches an asymptotic value D∞,L, 
which depends on the permeability variance σ 2 and on the Péclet number Pe. A low value of Pe leads to a smaller 
asymptotic value if σ 2 is high enough. For σ 2 = 0.25, the limit of a homogeneous media, where dispersion is entirely 
dependent on diffusion, starts to appear. The decrease provoked by diffusion is still amplified by σ 2. As observed in Fig. 4, 
this amplification is more important in 3D than in 2D. Dt,T reaches an early spire followed by a rapid drop toward an 
asymptotic value D∞,T. This behaviour can be related to the form of transverse covariance functions CT as it falls below 
zero before converging toward it. Furthermore, a low value of Pe induces a higher asymptotic value, while the amplification 
caused by σ 2 seems to be identical in 2D and 3D.

To further corroborate these assertions, the macroscopic coefficients were also computed by using the moment method 
([20]) under a diffusive condition. Moreover, to isolate the contribution of diffusion on dispersion, induced by the effect of 
diffusion on the sampling of the Eulerian velocity by the particles, the difference �Di (i = L longitudinal and T transverse) 
is estimated with:

�Di = D∞,i − Dm − D∗ (19)
∞,i
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Fig. 4. Longitudinal (CL, top) and transverse (CT, bottom) covariance functions in 2D (left) and 3D (right) for various values of the Péclet number (green: 
Pe = 50, red: Pe = 100 and black: Pe = ∞) and the permeability variance (dotted line: σ 2 = 0.25, dashed line: σ 2 = 1 and solid line σ 2 = 2.25).

Fig. 5. Longitudinal (Dt,L , top) and transverse (Dt,T, bottom) dispersion coefficients, estimated with the equation (7), as functions of time t in 2D (left) 
and 3D (right) for various values of the Péclet number (green: Pe = 50, red: Pe = 100 and black: Pe = ∞) and the permeability variance (dotted line: 
σ 2 = 0.25, dashed line: σ 2 = 1 and solid line: σ 2 = 2.25).
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Fig. 6. Difference �Di (i = L, longitudinal (top), and T, transverse (bottom)) as a function of the Péclet number Pe for three values of the permeability 
variance (green: σ 2 = 2.25, red: σ 2 = 1 and black: σ 2 = 0.25) in 2D (dashed line) and 3D (solid line).

where D∗
∞,i is the asymptotic value D∞,i with a purely advection condition. The numerical results of �Di have been plotted 

as functions of the Péclet number Pe in 2D and 3D for the three values of the permeability variance σ 2 used in this work. 
They are adimensionalized by umλ.

Fig. 6 shows the differences �Di as a function of the Péclet number Pe based on the results of the moments method. The 
two spatial configurations have the same behaviour with respect to the influence of diffusion on dispersion, a decrease in 
the longitudinal direction and an increase in the transverse direction. However, the intensity of these two effects depends on 
the permeability variance σ 2, and is clearly different between the two spatial configurations. In the longitudinal direction, 
the effect is more pronounced in 3D with a �DL 2.5 times stronger in 3D than in 2D for Pe = 10 and σ 2 = 2.25. In 
the transverse direction, the highest values of �DT are still reached for the strongest values of σ 2 and the lowest of Pe. 
However, in 2D, �DT is two times higher than in 3D for Pe = 10 and σ 2 = 2.25. Which can be explained by the fact that 
molecular diffusion is not the only source of transverse dispersion in 3D. Hence, the effect of diffusion and its amplification 
by the permeability variance is reduced when compared to the transverse dispersion.

5. Conclusions

The influence of diffusion on dispersion has been highlighted by the Lagrangian velocity covariance function. Moreover, 
its computation also points out that the effect of diffusion on dispersion varies between 2D and 3D. In the longitudinal 
direction, the decrease of dispersion induced by diffusion is more strengthened by the permeability variance in 3D than 
in 2D. In the transverse direction, the increase of dispersion caused by diffusion, is further amplified by the permeability 
variance in 2D, compared to 3D.

These disparities between 2D and 3D indicate a profound modification of the flow topology generated by the addition of 
another dimension. The repercussion observed on the covariance function springs from the confinement of streamlines in 2D 
which prevents inter-crossing ([11], [41]) to the disruption of this same confinement in 3D allowing more complex geome-
tries ([42]). It is indicative of a difference of the flow topology between the 2D and 3D cases. In 2D, the plan flows prevent 
the streamlines from inter-crossing. Dispersion remains zero in the transverse direction with a purely advection condition. 
Diffusion breaks this constraint by allowing particles to sample different streamlines. This effect is more pronounced in 2D 
than in 3D because the 3D flows already generate a transverse dispersion.
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