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This paper deals with the non-linear vibration of sandwich viscoelastic shell structures. 
Coupling a harmonic balance method with the Galerkin’s procedure, one obtains an 
amplitude equation depending on two complex coefficients. The latter are determined by 
solving a classical eigenvalue problem and two linear ones. This permits to get the non-
linear frequency and the non-linear loss factor as functions of the displacement amplitude. 
To validate our approach, these relationships are illustrated in the case of a circular 
sandwich ring.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In the mechanical structures field, the viscoelastic material is widely used to reduce vibration and noise in many domains 
(e.g., aerospace industry). Indeed, it can induce an effective damping especially when it is sandwiched between two elastic 
hard layers. Generally, the damping properties are characterized by two modal parameters that are the frequency and the 
loss factor. Many investigations have been carried out on the linear dynamic analysis of viscoelastic structures. A major 
difficulty in their study is that the stiffness matrix is complex and depends non-linearly on the vibration frequency. The 
solution yield complex modes and complex eigenvalues whose real and imaginary parts are associated respectively with 
the frequencies and with the loss factors. Several procedures have been developed to determine these quantities. Analytical 
methods were devoted to simple structures [1–10], and numerical ones using finite element simulations were introduced to 
design structures with complex geometries and generic boundary conditions [11–22]. The simplest technique is the modal 
strain energy method used by Ma and He [12], which defines a rather good estimate of the loss factor from a sort of 
one-mode Galerkin approximation. One notes that from an engineering viewpoint, the most relevant quantity is the loss 
factor, which is associated with any mode.

In the case of non-linear viscoelastic structures, only a few investigations have been devoted to take into account the 
non-linear geometrical effects. For instance, these studies concern sandwich viscoelastic structures with simple geometry 
as beams or plates [23–26]. As it is well known, the non-linear geometrical effects induce some dependence between the 
frequencies and the loss factors with respect to the amplitude [25,27]. Recently, Boumediene et al. [28] developed a reduc-
tion method based on a high-order Newton algorithm and reductions techniques to determine the modal characteristics of 
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Fig. 1. Geometry of a 3D sandwich structure with two elastic layers and a central viscoelastic one.

viscoelastic sandwich structures. The forced harmonic response of viscoelastic sandwich structures with a reasonable com-
putational cost was also studied, employing a reduction technique and the asymptotic numerical method [29]. Based on 
von Kármán’s theory and taking into account geometric imperfections, the nonlinear vibrations of viscoelastic thin rectan-
gular plates subjected to normal harmonic excitation are investigated by Amabili [30]. Lougou [31] proposed a double-scale 
asymptotic method for the vibration modeling of large repetitive sandwich structures with a viscoelastic core. In his work 
[32], Lampoh computes the sensitivity of eigensolutions using a homotopy-based asymptotic numerical method, then a 
first-order automatic differentiation to study the modeling of the linear free vibration of a sandwich structure including vis-
coelastic layers yields a complex nonlinear eigenvalue problem. The work of El Khaldi [33] presents a gradient method for 
viscoelastic behavior identification of damped sandwich structures devoted to the passive control of mechanical vibration.

The aim of this paper is to establish a much simple methodology for the non-linear vibration analysis of viscoelastic shell 
structures. The approach is based on a coupling of an approximated harmonic balance method with a Galerkin’s procedure 
with one mode. The non-linear modal relationship giving the frequency (free and forced) and the loss factor, with respect 
to the displacement, are obtained by solving a classical eigenvalue problem and two linear ones [24,27]. To validate our 
approach, one gives an application to a sandwich viscoelastic ring.

2. Formulation

2.1. Kinematics and constitutive law of the model

Let us consider a thin symmetric sandwich shell having three layers, as shown in Fig. 1; the central layer is viscoelastic 
and the external ones are elastic. The shear deformation is neglected in the elastic layers, but, it is taken into account in 
the viscoelastic one; it is induced by the difference between the tangential displacements at the interfaces. For each layer, 
one denotes by ui (i = 1, 2, 3) the components of the displacement vector in the z direction and given by:

ui(x, y, z, t) = vi(x, y, t) + (z − zi)βi(x, y, t) i = 1,3

u2(x, y, z, t) = v(x, y, t) + zψ(x, y, t)
(1)

where t is the time parameter, (x, y, z) is a coordinate system (z denotes the variation through the thickness). Because of 
the symmetry, one puts z1 = hc+hf

2 = −z3, hc and hf being the thicknesses of the central and external layers, respectively. 
The subscript i indicates the layer variation, starting from the internal layer; 1 and 3 represent the elastic layers, while 2 is 
associated with the viscoelastic one. βi and ψ denote the rotations of the cross-section, vi (i = 1, 3) and v denote tangential 
components of the displacement vector of the middle planes corresponding to the external and central layers, respectively.

The displacement continuity conditions at the interfaces between the central layer and the external ones permit to get:

v1 = v + hc

2
ψ + hf

2R1
β1

v3 = v − hc

2
ψ − hf

2R3
β3

(2)

The Green–Lagrange strain in each layer can be decomposed into a linear part and a quadratic one:

γi = γi(ui) + γnl(ui, ui) (3)

For the elastic layers, the behavior is described by the classical Hook law, and it is given, for the viscoelastic one, by the 
classical convolution product ⊗ of the relaxation function D(t) by the time derivative of the deformation:

Si = D(0)γ̇i i = 1,3

S2 = D ⊗ γ̇2 (4)

where Si is the second Piola–Kirchhoff stress tensor corresponding to the layer i and D(0) is the delayed elasticity modulus.
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2.2. Governing equations

Using the principal of virtual work, the equations describing the non-linear forced vibrations of a 3D sandwich viscoelas-
tic structure can be written in the following general form:

L(U ) + Q (U , U ) + M(Ü ) = f (t) (5)

where U = (u1, S1, u2, S2, u3, S3) is a mixed vector, its components are the generalized displacements and the stress cor-
responding to the three layers. L(·) is a linear operator, Q (·, ·) is a bilinear and symmetric one and M(·) is the inertial 
operator and f (t) is the external applied load.

〈
L(U ), δU

〉 = ∫
v1

S1 : γ1(δu1)dv1 +
∫
v2

S2 : γ1(δu2)dv2 +
∫
v1

S3 : γ1(δu3)dv3 (6)

〈
Q (U , U ), δU

〉 =
∫
v1

{
δS1 : γnl(u1, u1) + S12γnl(δu1, u1)

}
dv1 +

∫
v2

{
δS2 : γnl(u2, u2) + S22γnl(δu2, u2)

}
dv2

+
∫
v3

{
δS3 : γnl(u3, u3) + S32γnl(δu3, u3)

}
dv3

(7)

〈
M(Ü ), δU

〉 = ∫
v1

ρ1ü1δu1 dv1 +
∫
v2

ρ2ü2δu2 dv2 +
∫
v3

ρ3ü3δu3 dv3 (8)

where ρi and vi are respectively the mass densities and the reference configuration of the layer i.

3. Non-linear free vibration by an approximated harmonic balance method

The aim of this section is to get approximate solutions to the non-linear problem (5) and (4), assuming that f (t) = 0. As 
a first approximation, the solution is assumed to be harmonic in time and almost parallel to a single mode in space with 
arbitrary complex amplitude. This approximation assumes that the frequency is near the frequency of an associated linear 
elastic structure. As in non-linear elastodynamics, the harmonic response has to be corrected to balance the quadratic terms 
in (5) and (4). Thus, a non-linear complex frequency–amplitude relationship is obtained by using the one-mode Galerkin 
procedure.

3.1. First-order modal approximation

Let us consider a first approximated solution Uh to the problem (5) and (4), which is supposed harmonic and propor-
tional to the linear mode:

Uh = 1

2
Un

(
aeiωt + CC

)
(9)

where CC denotes the conjugate complex of the preceding term, a is an unknown complex amplitude, ω the frequency, Un

is the n-th linear vibration mode of the associated elastic system, defined by a classical real eigenvalue problem:{
L(Un) − ω2

n M(Un) = 0

Sn = D(0)ε(un)
(10)

One notes that this first approximation of the non-linear and complex problem is more valid when the damping is small, 
and it is used in the modal strain energy to determine the loss factor.

3.2. Computation of the correction term

Let us consider a second-order approximated solution to (5)–(4) by adding a corrective term Uc to the linear re-
sponse (9):

U = Uh + Uc (11)

The correction term is assumed to be small with respect to the main term. That is why the equations defining the 
correction are linearized with respect to Uc. This Uc balances the quadratic terms in (5)–(4):

L(Uc) + MÜc = −Q (Uh, Uh) (12)
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The correction term Uc combines a time-independent term and a harmonic term with a double frequency:

Uc = |a|2U0 + 1

2

(
a2U2e2iωt + CC

)
(13)

When restricted to the elastic case, the approximations (9)–(12) correspond to the two first terms of a Poincaré–Lindstedt 
expansion [34], which yields a parabolic approximation of the backbone curve. It holds for moderately large amplitude: the 
first harmonic term (9) is small (O(a)) and the correction term is smaller than the first one (O(a2)). This way, the coupling 
term Q (Uh, Uc) can be neglected in (12) (O(a3)), as well as the quadratic term Q (Uc, Uc) (O(a4)).

The substitution of (13) into (12) leads to two linear time-independent problems satisfied by the amplitudes U0 and U2.

L(U0) = −1

2
Q (Un, Un)

Si0 + D(0)

[
γ1(ui0) + 1

2
γnl(uin, uin)

]
, i = 1,2,3

(14)

L(U2) − 4ω2
n M(U2) = −1

2
Q (Un, Un)

Si2 = D(0)

[
γ1(ui2) + 1

2
γnl(uin, uin)

]
, i = 1,3

S22 = D(2iωn)

[
γ1(u22) + 1

2
γnl(u2n, u2n)

] (15)

where D(0) is the tensor of the delayed elasticity of the viscoelastic material and D(2ω) is the viscoelastic tensor at 
frequency 2ω. Thus, the general solution to (5) and (4) induces a principal harmonic and two secondary ones.

U = 1

2
Un

(
aeiωt + cc

) + |a|2U0 + 1

2

(
a2U2e2iωt + cc

)
(16)

As previously said, the approximation (9) assumes that the structure oscillates with a frequency ω near the linear one ωn . 
So, the tensor D(2ω) in (15) will be replaced by D(2ωn).

3.3. Amplitude equation

To get the non-linear frequency–amplitude relationship, one applies the one-mode Galerkin procedure, which consists in 
projecting the equation (5) on Une−iωt , the displacement being given by (16).

2π/ω∫
0

〈
L(U ) + Q (U , U ) + M(Ü ), Une−iωt 〉dt = 0 (17)

The equation (17) leads to an equation for the complex amplitude in the following form:

a
(
kl − ω2m

) + a|a|2knl = 0 (18)

where kl and knl are complex constants, which correspond, respectively, to the linear and non-linear modal stiffness; m is 
the modal mass.

kl = 〈
L(Un), Un

〉
, knl = 〈

2Q (Un, U0) + Q (Un, U2), Un
〉
, m = 〈

M(Un), Un
〉

(19)

The amplitude equation can be considered as a generic bifurcation equation, which holds for any form of the non-
linearity. It has been first derived in [24], but with a procedure that can only be applied in specific cases, as straight beams 
or flat plates. When it is restricted to an elastic material, the amplitude equation (15) coincides with the parabolic approx-
imation of the backbone curve, which can be deduced, for instance, through the Poincaré–Lindstedt asymptotic procedure. 
The linearized form of (15) permits to recover the results of the modal strain energy method [3], which is a classical ap-
proach in the analysis of viscoelastic linear structures. The ratio kl

m permits to define the damped linear frequency Ωl and 
the linear loss factor ηl .

kl

m
= Ω2

n (1 + iηn), Ω2
n = kR

l /m, ηn = kI
l/kR

l (20)

where (kR
l , kI

l) are, respectively, the real and imaginary parts of kl . Equation (18) establishes that the non-linear complex 
frequency is a function of the amplitude |a|.

ω2 = kl + |a|2 knl (21)

m m
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Fig. 2. Circular sandwich ring with two elastic external layers and a viscoelastic central one.

As in the modal strain energy, the non-linear modal frequency Ω2
nl and the non-linear modal loss factor ηnl are deduced 

from the complex frequency in the same way as in the linear case.

Ω2
nl = Ω2

n

(
1 + CR|a|2), ηnl = ηn

1 + C I|a|2
1 + CR|a|2 (22)

where CR = kR
nl/kR

l and C I = kI
nl/kI

l .

4. Forced non-linear vibrations

The analysis is limited here to harmonic excitation f (t) = f0eiωt , ω being a real number corresponding to the frequency 
of the excitation and f0 its amplitude. Applying to Equation (5), the harmonic balance method and Galerkin method with 
one mode, one gets:

−ω2Ma + K la + a|a|2 Knl = F (23)

F represents the projection of f0 on the mode (F = ∫
υ f0(θ)Un(θ) dθ ).

The amplitude a is searched in the following form:

a = reiΘ (24)

where r is the real amplitude and Θ is the phase.
The solution to (23) permits to get the frequency and the phase versus the amplitude:

ω2 = α ± √
α2 − β

M
, tg(Θ) = ηn

1 + r2C I

−(ω/Ωn)2 + 1 + r2CR
(25)

where α = |K l| cos(ϕ) + r2|Knl| cos(ψ), β = |K l|2 + r4|Knl|2 + 2r2|K l Knl| cos(ϕ − ψ) − F
r2 , ϕ and ψ are the arguments of K l

and Knl, respectively.

5. Application

In this section, the presented approach is applied to study the in-plane free non-linear vibrations of a sandwich vis-
coelastic circular ring shown in Fig. 2. In this analysis, the rotations are assumed to be moderate, the rotary inertia terms 
of the kinetic energy are neglected, and the shear deformation is taken into account for the viscoelastic layer and neglected 
for the elastic ones. The displacement field is given by:

ui1 = vi + (z − zi)βi, ui2 = w, i = 1,3 (26)

u21 = v + zψ, u22 = w (27)

The continuity condition of the displacements at the interfaces between the central layer and the external ones gets:

v1 = α1

(
v + hc

ψ − hf w ′
)

, v3 = α3

(
v − hc

ψ + hf w ′
)

, α1 = 2R1
, α3 = 2R3 (28)
2 2R1 2 2R3 2R1 − hf 2R3 + hf
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The Green–Lagrange deformations in each layer i are given by:

γi = εi + (z − zi)ki, εi = v ′
i + w

R2
+ 1

2
β2

i , βi = vi − w ′

Ri
, ki = β ′

i

Ri
, i = 1,3 (29)

γ2 = ε2 + zk2, ε2 = v ′ + w

R2
+ 1

2
β2

2 , β2 = v − w ′

R2
, k2 = ψ ′

R2
, 2τ = w ′ − v

r2
+ ψ (30)

where v and w denote respectively the radial and tangential displacements of the central layer, βi the rotation of the 
cross-section relative to the layer i and ()′ = d()

dθ
.

The behavior law is given by:

Ni = Ei Aiεi, Mi = Ei Iiki, i = 1,3 (31)

N2 = A2 E∗
2 ⊗ ε̇2, M2 = I2 E∗

2 ⊗ k̇2, T2 = A2G∗
2 ⊗ τ̇ (32)

where Ni , Mi , Ii , Ai are respectively the normal force, the bending moment, the inertia moment, and the cross-sectional 
area corresponding to the layer i (i = 1, 2, 3), T2 is the shear transverse force relative to the layer 2. To simplify the analysis, 
one assumes that the complex Young and shear modulus are constants that do not depend on the frequency:

E2(αω) = E20(1 + iηE), G2(αω) = G20(1 + iηG), α = 0,2 (33)

where ηE and ηG are the material loss factor in extension and shear, in this analysis, one assumes that ηE = ηG = ηv , E20
and G20 are the delayed Young and shear delayed elasticity moduli, respectively.

The motion equations describing the non-linear free vibrations are given by:

−α1

(
N ′

1 + M ′
1

R1

)
− α3

(
N ′

3 + M ′
3

R3

)
− N ′

2 − T2 + α1N1β1 + α3N3β3 + N2β2

+ m11 v̈ + m12 ẅ ′ + m13ψ̈ = f1(t) (34)

N1 − M ′′
1

R2
1

− α1hf

2R1

(
N ′′

1 + M ′′
1

R1

)
+ N3 − M ′′

3

R3
+ α3hf

2R3

(
N ′′

3 + M ′′
3

R3

)
+ N2 − T ′

2

+
(

1 + α1hf

2R1

)
(N1β1)

′ +
(

1 − α3hf

2R3

)
(N3β3)

′ + (N2β2)
′ + m21 v̈ ′ + m22 ẅ ′′ + m23 ẅ + m24ψ̈

′ = f2(t) (35)

−hc

2

[
α1

(
N ′

1 + M ′
1

R1

)
− α3

(
N ′

3 + M ′
3

R3

)]
+ R2T2 − M ′

2 + hc

2
(α1N1β1 − α3N3β3)

+ (
m31 v̈ + m32 ẅ ′ + m33ψ̈

) = f3(t) (36)

Neglecting the non-linear parts, assuming that f (t) = 0, and using the behavior law (22) with a real Young and shear 
moduli in (33), one gets a linear real eigenvalue problem, its solution gives the linear mode un and the corresponding 
eigenfrequency ωn . The details are given in Appendix A.

un(θ) =

⎧⎪⎨
⎪⎩

vn = V cos(nθ)

wn = W sin(nθ)

ψn = Ψ cos(nθ)

⎫⎪⎬
⎪⎭ (37)

where n is the circumferential wave number, V , W and Ψ are arbitrary constants determined by a normalization condition; 
here one assumes:

V 2 + W 2 + Ψ 2 = 1 (38)

The obtained linear eigenvalues are in good agreement with those obtained by Patel et al. [25].
The correction term is obtained in the same way as in the general case. For the ring, the linear problems (14) and (15)

give linear differential equations (see Appendix B), whose resolution gets u0 = (v0, w0, ψ0) and u2 = (v2, w2, ψ2) in the 
following form:⎧⎪⎨

⎪⎩
v0

w0

ψ0

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

v00

w00

ψ00

⎫⎪⎬
⎪⎭ +

⎧⎪⎨
⎪⎩

v01 sin(2nθ)

w01 cos(2nθ)

ψ01 sin(2nθ)

⎫⎪⎬
⎪⎭ ,

⎧⎪⎨
⎪⎩

v2

w2

ψ2

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

v20

w20

ψ20

⎫⎪⎬
⎪⎭ +

⎧⎪⎨
⎪⎩

v21 sin(2nθ)

w21 cos(2nθ)

ψ21 sin(2nθ)

⎫⎪⎬
⎪⎭ (39)

where u0 = (v0 j, w0 j, ψ0 j) are real constants and u2 = (v2 j, w2 j, ψ2 j) are complex ones.
Inserting (39) in the constitutive laws (14)–(15) and using (19), one gets the constants of the amplitude equation (18), 

for details, see Appendix C.
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Table 1
Linear eigenfrequencies for circular ring with R/h = 100.

n Present Maple Patel [25] Belvins [29] [30]

2 7.1622 7.1617 7.2000 7.2000 7.2001
3 57.2977 57.2967 57.6000 57.6000 57.6001
4 210.5630 210.6513 211.7651 211.7647 211.7656

Table 2
Vibration modal coefficients versus the circumferential wave number n.

n Ω2
n ηn CR C I

2 1720.6795 1.2493 10−2 −2.9408 −0.1507
4 49637.2070 3.3344 10−3 −152.3605 −1.9052 10−2

8 911401.0331 8.4770 10−4 −3802.8828 0.3211

Fig. 3. Variation of the non-linear modal frequencies ratio (Backbone curves) versus the radial displacement near the linear frequencies Ωn (n = 2, 4, 8). 
ηv = 0.5.

kl =
2π∫

0

{lv vn + lw wn + lψψn}dθ, knl =
2π∫

0

{qv vn + qw wn + qψψn}dθ

m =
2π∫

0

{mv vn + mw wn + mψψn}dθ (40)

In this application, the geometrical data are: radii R1 = 0.9997, R2 = 1 and R3 = 1.003, thicknesses hc = hf/2 = 0.002
and a width b = 0.012. The structure is described by one degree of freedom and by the angle θ (0 ≤ θ ≤ 2π). In Table 1, one 
gives the first linear frequencies. In Table 2, one presents the constants CR and C I for various vibration modes, the same 
results are given by Maple and a Fortran program. One notes that CR is a negative number and that |CR| is greater than |C I |. 
In Figs. 3 and 4, one presents the backbone curves corresponding to non-linear modal frequencies and the modal loss factors 
with respect to the adimensionalized radial displacement when the ring vibrates near the linear frequencies associated with 
n = 2, 4 and 8. It is clearly seen that the frequencies decrease (non-linearity of soft type) while the loss factor increases 
with the displacement. The increase and decrease in frequencies and loss factor, respectively, are more important for higher 
vibration modes. In Fig. 5 and Fig. 6, one gives the forced non-linear response for various excitation amplitudes and material 
loss factors. The forced response parts, tangent to the non-linear free response (F = 0) and situated below it, are instable, 
so the structure can jump between several equilibrium positions. In Fig. 7, the variation of the non-linear phase versus the 
excitation frequency is presented for various material losses factor.

6. Conclusion

In this study, an amplitude equation has been presented for the nonlinear vibrations analysis of viscoelastic shells struc-
tures. This amplitude equation is obtained by coupling an approximated harmonic balance method with the one-mode 
Galerkin procedure. It involves two modal parameters CR and C I , which account for the non-linear effects. These constants 
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Fig. 4. Variation of the non-linear modal loss factor ratio versus the radial displacement near the linear frequencies Ωn (n = 2, 4, 8) for various wave 
circumferential numbers n. ηv = 0.5.

Fig. 5. Variation of the non-linear response with the load amplitude (n = 2, ηv = 0.5).

Fig. 6. Variation of the non-linear response with the loss factor (n = 2, F = 5).
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Fig. 7. Variation of the phase versus the excitation frequency for various loss factors ηv (F = 5).

are determined by solving three classical problems. The first one is a real eigenvalue problem that allows one to define the 
linear frequency and the linear loss factor. The two others are linear problems. In the case of free vibrations, the backbone 
corresponding to the non-linear modal frequency and the modal non-linear loss factor, with respect to the displacement, 
are obtained. The non-linear forced response and the corresponding non-linear phase are also determined. This approach 
will be extended to harmonic forcing vibration problems and to others viscoelastic sandwich or composite shell structures 
such as the cylinder.

Appendix A. Computation of linear vibration modes

The linear part of (37) gets:

Li
11 vn + Li

12 wn + Li
13ψn = M11 v̈n + M12 ẅn + M13ψ̈n

Li
21 vn + Li

22 wn + Li
23ψn = M21 v̈n + M22 ẅn + M24ψ̈n

Li
31 vn + Li

32 wn + Li
33ψn = M31 v̈n + M32 ẅn + M33ψ̈n

(41)

with the following operators:

Li
11 = Ai

11
d2

dθ2
+ Ai

12, Li
12 = Ai

13
d3

dθ3
+ Ai

14
d

dθ
, Li

13 = Ai
15

d2

dθ2
+ Ai

16, Li
21 = Ai

21
d3

dθ3
+ Ai

22
d

dθ

Li
22 = Ai

23
d4

dθ4
+ Ai

24
d2

dθ2
+ Ai

25, Li
23 = Ai

26
d3

dθ3
+ Ai

27
d

dθ
, Li

31 = Ai
31

d2

dθ2
+ Ai

32

Li
32 = Ai

33
d3

dθ3
+ Ai

34
d

dθ
, Li

33 = Ai
35

d2

dθ2
+ Ai

36, M11 = m11, M12 = m12
d

dθ
, M13 = m13

M21 = m21
d

dθ
, M22 = m22

d2

dθ2
+ m23, M23 = m24

d

dθ
, M31 = m31, M32 = m32

d

dθ
, M33 = m33

The constants Ai
jk (i = 0, 2, j = 1, 2, 3, and k = 1, . . . , 7) are given by:

Ai
11 = α2

1 E1

R1

(
A1 + I1

R2
1

)
+ α2

3 E3

R3

(
A3 + I1

R2
3

)
+ E2(i jω)A2

R1
, Ai

12 = −k′G(i jω)A2

R2

Ai
13 = −α1 E1

R2
1

[
α1 A1hf

2
+ I1

R1

(
1 + α1hf

2R1

)]
+ α3 E3

R2
3

[
α3 A3hf

2
− I3

R3

(
1 − α3hf

2R3

)]

Ai
14 = α1 E1 A1

R1
+ α3 E3 A3

R3
+ E(i jω)A2

R2
+ k′G2(i jω)A2

R2
, Ai

15 = hc

2

[
α2

1 E1

R1

(
A1 + I1

R2
1

)
− α2

3 E3

R3

(
A3 + I1

R2
3

)]

Ai
16 = k′ A2G2(i jω), Ai

21 = α1 E1

R2
1

[
α1 A1hf

2
+ I1

R1

(
1 + α1hf

2R1

)]
− α3 E3

R2
3

[
α3 A3hf

2
− I3

R3

(
1 − α3hf

2R3

)]

Ai
22 = −Ai

14, Ai
23 = − E1

R3

[
α2

1 A1h2
f

4
+ I1

R

(
1 + α1hf

2R

)2]
− E3

R3

[
α2

3 A3h2
f

4
+ I3

R

(
1 − α3hf

2R

)2]

1 1 1 3 3 3
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Ai
24 = hf

(
α1 E1 A1

R2
1

− α3 E3 A3

R2
3

)
+ k′ A2G2(i jω)

R2
, Ai

25 = −
(

E1 A1

R1
+ E2(i jω)A2

R2
+ E3 A3

R3

)

Ai
26 = hc

2

{
α1 E1

R2
1

[
α1 A1hf

2
+ I1

R1

(
1 + α1hf

2R1

)]
+ α3 E3

R2
3

[
α3 A3hf

2
− I3

R3

(
1 − α3hf

2R3

)]}

Ai
27 = −hc

2

(
α1 E1 A1

R1
− α3 E3 A3

R3

)
+ k′G2(i jω)A2

R2
, Ai

31 = Ai
15, Ai

32 = Ai
16, Ai

33 = −Ai
26

Ai
34 = −Ai

27, Ai
35 = h2

c

4

[
α2

1 E1

R1

(
A1 + I1

R2
1

)
+ α2

3 E3

R3

(
A3 + I1

R2
3

)]
+ E2(i jω)I2

R2
, Ai

36 = −R2 Ai
32

m11 = ρ1 A1 R1α
2
1 + ρ2 A2 R2 + ρ3 A3 R3α

2
3, m12 = −hf

2

(
ρ1 A1α

2
1 − ρ3 A3α

2
3

) = −m21

m13 = hc

2

(
ρ1 A1 R1α

2
1 − ρ3 A3 R3α

2
3

) = m31, m22 = −h2
f

4

(
ρ1 A1α

2
1

R1
+ ρ3 A3α

2
3

R3

)

m23 = ρ1 A1 R1 + ρ2 A2 R2 + ρ3 A3 R3, m24 = hchf

4

(
ρ1 A1α

2
1 + ρ3 A3α

2
3

) = −m32

m11 = h2
c

4

(
ρ1 A1 R1α

2
1 + ρ3 A3 R3α

2
3

)
The general solution is given by:

un(θ) =

⎧⎪⎨
⎪⎩

vn = V cos(nθ)

wn = W sin(nθ)

ψn = Ψ cos(nθ)

⎫⎪⎬
⎪⎭eiωnt (42)

where ωn is a real number corresponding to the real frequency.
Injecting (42) in (41), one gets a real linear eigenvalue problem allowing one to have the real linear mode and the 

associated linear frequencies.⎡
⎢⎣

n2 A0
11 − A0

12 n3 A0
13 − nA0

14 n2 A0
15 − A0

16

−n3 A0
21 + nA0

22 −n4 A0
23 + n2 A0

24 − A0
25 −n3 A0

26 + nA0
27

n2 A0
31 − A0

32 n3 A0
33 − nA0

34 n2 A0
35 − A0

36

⎤
⎥⎦

⎧⎪⎨
⎪⎩

V

W

Ψ

⎫⎪⎬
⎪⎭

= ω2
n

⎡
⎢⎣

m11 nm12 m13

−nm21 −n2m22 + m23 −nm24

m31 nm32 m33

⎤
⎥⎦

⎧⎪⎨
⎪⎩

V

W

Ψ

⎫⎪⎬
⎪⎭ (43)

Appendix B. Computation of U2 and U0

In the case of the ring, equation (15) gives:

α1

(
N ′

12 + M ′
12

R1

)
+ α3

(
N ′

32 + M ′
32

R3

)
+ N ′

22 + T22 + 4ω2
0(m11 v2 + m12 w2 + m13ψ2)

= 1

2

[
α1(N1mβ1m) + α3(N3mβ3m) + N2mβ2m

]
− N12 + M ′′

12

R2
1

+ α1hf

2R1

(
N ′′

12 + M ′′
12

R1

)
− N32 + M ′′

32

R3
− α3hf

2R3

(
N ′′

32 + M ′′
32

R3

)
− N22 + T ′

22

+ 4ω2
0

(
m21 v ′

2 + m22 w ′
2 + m23 w2 + m24ψ

′
2

)
= 1

2

[(
1 + α1hf

2R1

)
(N1mβ1m)′ +

(
1 − α3hf

2R3

)
(N3mβ3m)′ + (N2mβ2m)′

]
hc

2

[
α1

(
N ′

12 + M ′
12

R1

)
− α3

(
N ′

32 + M ′
32

R3

)]
− R2T22 + M ′

22 + 4ω2
0

(
m31 v2 + m32 w ′

2 + m33ψ2
)

= hc

4
(α1N1mβ1m − α3N3mβ3m) (44)

The corresponding behavior law are given by:
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N12 = E1 S1

{
1

R1

[
α1

(
v ′

2 + hc

2
ψ ′

2 − hf

2R1
w ′′

2

)
+ w2

]
+ β2

1m

4

}

M12 = E1 I1

R2
1

[
α1

(
v ′

2 + hc

2
ψ ′

2

)
−

(
1 + α1hf

2R1

)
w ′′

2

]
, β32 = 1

R3

[
α3

(
v2 − hc

2
ψ2

)
−

(
1 − α3hf

2R3

)
w ′

2

]

N32 = E3 A3

{
1

R3

[
α3

(
v ′

2 − hc

2
ψ ′

2 + hf

2R3
w ′′

2

)
+ w2

]
+ β2

3m

4

}

M32 = E3 I3

R2
3

[
α3

(
v ′

2 − hc

2
ψ ′

2

)
−

(
1 − α3hf

2R3

)
w ′′

2

]
, β22 = v2 − w ′

2

R2

N22 = E2(2iω)A2

(
v ′

2 + w2

R2
+ β2

2m

4

)

M22 = E2(2iω)I2

R2
ψ ′

2, T22 = k′G2(2iω)A2

(
w ′

2 − v2

R2
+ ψ2

)

(45)

Injecting the last behavior law in the equation, one gets the following linear complex system:

⎡
⎢⎢⎢⎢⎣

−4n2 A2
11 + A2

12 + 4ω2
nm11 8n3 A2

13 − 2nA2
14 − 8nω2

nm12 −4n2 A2
15 + A2

16 + 4ω2
nm13

−8n3 A2
21 + 2nA2

22 + 8nω2
nm21

{
16n4 A2

23 − 4n2 A2
24 + A2

25+
4ω2

n(−4n2m22 + m23)

}
−8n3 A2

26 + 2nA2
27 + 8nω2

nm24

−4n2 A2
31 + A2

32 + 4ω2
nm31 8n3 A2

33 − 2nA2
34 − 8nω2

nm32 −4n2 A2
35 + A2

36 + 4ω2
nm33

⎤
⎥⎥⎥⎥⎦

×

⎧⎪⎨
⎪⎩

v21

w21

ψ21

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

c2
11

c2
22

c2
31

⎫⎪⎬
⎪⎭ (46)

U0 is obtained as a particular case from U2 by putting ωn = 0 and using real Young and shear moduli in the behavior 
corresponding to layer 2.

Appendix C

lv = −α1

(
N ′

1n + M ′
1n

R1

)
− α3

(
N ′

3n + M ′
3n

R3

)
− N ′

2n + T2n

lw = N1n − M ′′
1n

R2
1

− α1hf

2R1

(
N ′′

1n + M ′′
1n

R1

)
+ N3n − M ′′

3n

R3
+ α3hf

2R3

(
N ′′

3n + M ′′
3n

R3

)
− N2n − T ′

2n

lψ = −hc

2

[
α1

(
N ′

1n + M ′
1n

R1

)
− α3

(
N ′

3n + M ′
3n

R3

)]
+ R2T2n − M ′

2n

mv = m11 vn + m12 w ′
n + m13ψn

mw = m21v ′
n + m22 w ′′

n + m23 wn + m24ψ
′
n

mψ = m31 vn + m32 w ′
n + m33ψn

qv = α1

[
N1n

(
β10 + 1

2
β12

)
+ β1n

(
N10 + 1

2
N12

)]
+ α3

[
N3n

(
β30 + 1

2
β32

)
+ β3n

(
N30 + 1

2
N32

)]

+ N2n

(
β20 + 1

2
β22

)
+ β2n

(
N20 + 1

2
N22

)

qw =
(

1 + α1hf

2R1

)[
N ′

1n

(
β ′

10 + 1

2
β ′

12

)
+ β ′

1n

(
N ′

10 + 1

2
N ′

12

)]

+
(

1 − α3hf

2R3

)[
N ′

3n

(
β ′

30 + 1

2
β ′

32

)
+ β ′

3n

(
N ′

30 + 1

2
N ′

32

)]

+ N ′
2n

(
β ′

20 + 1

2
β ′

22

)
+ β ′

2n

(
N ′

20 + 1

2
N ′

22

)

qψ = hc

2

{
α1

[
N1n

(
β10 + 1

2
β12

)
+ β1n

(
N10 + 1

2
N12

)]
−

[
N3n

(
β30 + 1

2
β32

)
+ β3n

(
N30 + 1

2
N32

)]}

(47)
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