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The static and dynamic behaviour of a nonlocal bar of finite length is studied in this 
paper. The nonlocal integral models considered in this paper are strain-based and relative 
displacement-based nonlocal models; the latter one is also labelled as a peridynamic 
model. For infinite media, and for sufficiently smooth displacement fields, both integral 
nonlocal models can be equivalent, assuming some kernel correspondence rules. For 
infinite media (or finite media with extended reflection rules), it is also shown that 
Eringen’s differential model can be reformulated into a consistent strain-based integral 
nonlocal model with exponential kernel, or into a relative displacement-based integral 
nonlocal model with a modified exponential kernel. A finite bar in uniform tension is 
considered as a paradigmatic static case. The strain-based nonlocal behaviour of this bar 
in tension is analyzed for different kernels available in the literature. It is shown that 
the kernel has to fulfil some normalization and end compatibility conditions in order to 
preserve the uniform strain field associated with this homogeneous stress state. Such a 
kernel can be built by combining a local and a nonlocal strain measure with compatible 
boundary conditions, or by extending the domain outside its finite size while preserving 
some kinematic compatibility conditions. The same results are shown for the nonlocal 
peridynamic bar where a homogeneous strain field is also analytically obtained in the 
elastic bar for consistent compatible kinematic boundary conditions at the vicinity of 
the end conditions. The results are extended to the vibration of a fixed–fixed finite bar 
where the natural frequencies are calculated for both the strain-based and the peridynamic 
models.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Nonlocal models are continuum models that are able to account for the change of scale in the analysis of a structure that 
contains some microstructure patterns. Among integral-based nonlocal models, strain-based and relative displacement-based 
models have been both developed in the literature. Strain-based nonlocal models relate the stress to the strain through an 
integral operator valid in the whole range of the solid, whereas relative-based displacement models expressed the balance 
equation through an integral operator of the displacement difference, which avoids the calculation of the strain through a 
gradient operator. Strain-based nonlocal models have emerged in the 1960’s for bridging lattice mechanics with engineering 
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continuum models, especially (but not only) to capture the wave dispersive properties of crystal materials (see for instance 
[1,2] or [3]). These models have been further cast in a consistent thermodynamics framework (see for instance [4] or more 
recently [5]). Altan [6] studied the uniqueness of the boundary value problem of strain-based nonlocal elasticity static 
problems. Strain-based integral nonlocal elasticity theories are widely reviewed in the seminal book of Eringen [7] – see 
the historical analysis of Maugin [8] on the topic. Relative displacement-based models have been introduced by Silling [9]
through the terminology of peridynamic models, and then widely developed by the same author and his co-authors for 
several engineering applications ([10,11] for instance). These models can also be understood as the continualization of lattice 
models that account to short and long-range interactions, thus being also associated with the concept of physically-based 
nonlocal models [12]. A fractional peridynamic model has been recently reported by Lazopoulos [13].

Some mathematical properties have to be fulfilled by the kernel for both integral approaches, including the strain-based 
or relative displacement-based approaches. The kernel has to fulfil some normalization and end compatibility conditions 
in order to preserve the uniform strain field associated with this homogeneous stress state. For infinite media, analytical 
and numerical solutions have been found for various kernels, and the discussion of compatible boundary conditions is 
avoided. For finite-body problems, the kernel associated with the integral model has to be compatible with the boundary 
conditions of the problem. This incompatibility between the natural boundary conditions and the induced kernel-dependent 
boundary conditions prevent the use of some kernels including some elementary exponential-based kernels (as detailed 
by Fernández-Sáez et al. [14] or by Romano et al. [15] for nonlocal integral beam models). Many nonlocal strain measures 
developed in the literature violate the nonlocal invariance of the uniform strain field, which can be physically questionable. 
Consequently, there is a need to select appropriate kernels for engineering applications and to find relevant solutions in 
some benchmark cases for simple nonlocal structural mechanics applications.

The same remarks hold for relative displacement-based nonlocal models, whose available solutions have been mostly 
derived in statics and in dynamics for infinite one-dimensional media by Silling et al. [10], Mikata [16] or Bažant et al. [17]. 
An exception is the recent paper of Nishawala and Ostoja-Starzewski [18], who obtained an analytical solution for a finite bar 
in tension under various distributed loadings. Nishawala and Ostoja-Starzewski [18] also discussed some correction effects 
at the vicinity of the finite bar, by introducing some distributed load that affects the homogeneous stress state configuration 
of the problem. In a certain sense, the difficulties pointed out in the strain-based integral model are not avoided in the 
relative displacement-based models, and some clarifications are needed for both models.

In this paper, we explore some possible link between nonlocal elasticity, peridynamics theory also labelled as a nonlocal 
relative displacement-based theory and lattice mechanics. The statics and the vibration of a finite bar is investigated, and 
some exact analytical solutions are derived for possible benchmark testing.

2. General equations of integral-based nonlocal models for one-dimensional problems

A one-dimensional strain-based nonlocal model can be introduced from the following integral operator (see for instance 
[7]):

N(x) = E A

L∫
0

G(x, y)ε(y)dy (1)

for a finite bar of length L, where N is the normal force, ε is the axial strain, E is the Young modulus, A is the area and 
G(x, y) is the nonlocal kernel of the strain-based nonlocal model, which should verify the translational invariance principle 
for homogeneous isotropic media [7]:

G(x, y) = g(ξ) = g(−ξ) with ξ = y − x (2)

G has the dimension of the inverse of a length, i.e. L−1. The normalization procedure, in order to leave the uniform strain 
unchanged, for finite structural elements (see also [7] or [19]; or [40] for the discussion of the criterion for finite solids) can 
be written as:

L∫
0

G(x, y)dy = 1 (3)

To avoid any difficulties at the limit of the finite domain, and following the methodology that is applied to lattice problems 
which may be also investigated within nonlocal mechanics (see also [7]), it is sometimes preferred to extend the finite do-
main outside its domain of definition following some symmetrical properties or periodic properties, leading to the nonlocal 
normal force strain-based definition:

N(x) = E A

+∞∫
G(x, y)ε(y)dy (4)
−∞
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In this case, the normalization procedure is simply reduced to

+∞∫
−∞

G(x, y)dy = 1 (5)

Two possible useful nonlocal kernels can be mentioned at this stage (which verifies the normalization procedure given by 
Eq. (5)), namely the symmetrical bilinear kernel function used by Eringen and Kim [20]:{

G(x, y) = 1
a2 (a − |x − y|) if |x − y| ≤ a

G(x, y) = 0 if |x − y| ≥ a
(6)

Another widely used nonlocal kernel is the exponential kernel:

G(x, y) = 1

2lc
e− |x−y|

lc (7)

This kernel does not verify the normalization criterion for finite-length structures. Furthermore, as detailed by Benvenuti 
and Simone [21] for instance part (see also the recent discussions in [14] or in [15] for nonlocal beam problems), the choice 
of the kernel of the nonlocal model leads to an integro-differential equation that has to be compatible with the natural 
and essential boundary conditions of the mechanical problem. We will explore in the paper some other exponential-based 
kernels, which may satisfy the normalization criterion for finite-length problems.

Another class of nonlocal model is the stress gradient model of Eringen [22] based on the differential law:

N(x) − l2c N ′′(x) = E Aε(x) (8)

whose kernel depends on the boundary conditions, as will be discussed in the paper. It is easy to show that the kernel 
in Eq. (7) verifies the differential equation of the Eringen model [22]. However, as the normalization criterion applied to 
the kernel of Eq. (7) is only valid for an infinite domain, as characterized by Eq. (5), the correspondence between Eq. (7)
and Eq. (8) is only valid for infinite domains (infinite domain, or finite domain extended at the infinite using periodicity 
boundary conditions).

Finally, the peridynamic model (also called relative displacement-based nonlocal model) can be formulated as [9,10,12]:

N ′(x) = E A

L∫
0

H(x, y)
[
u(y) − u(x)

]
dy (9)

where H(x, y) is the nonlocal kernel of the peridynamics nonlocal model. H has the dimension of the inverse of a volume, 
i.e. L−3.

For homogeneous isotropic media, the translational invariance principle is also fulfilled:

H(x, y) = h(ξ) = h(−ξ) with ξ = y − x (10)

The normalization procedure for the finite length peridynamic kernel can be defined from:

L∫
0

H(x, y)(y − x)2 dy = 2 (11)

For infinite domains, one has:

N ′(x) = E A

+∞∫
−∞

H(x, y)
[
u(y) − u(x)

]
dy (12)

where H(x, y) is the nonlocal kernel of the peridynamics nonlocal model, which should verify the normalization procedure 
(see [10,16,17]) given by:

+∞∫
−∞

H(x, y)(y − x)2 dy = 2 (13)

The normal force can be calculated, by performing one integration (see for instance [12]), which can be written for an 
infinite bar as:
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N(x) = E A

x∫
y1=−∞

+∞∫
y2=x

H(y1, y2)
[
u(y2) − u(y1)

]
dy1 dy2 (14)

For a finite length problem, one cannot extend this double integral directly for finite domain:

N(x) �= E A

x∫
y1=0

+L∫
y2=x

H(y1, y2)
[
u(y2) − u(y1)

]
dy1 dy2 (15)

This is due to the fact that:

d

dx

[ x∫
y1=0

+L∫
y2=x

H(y1, y2)
[
u(y2) − u(y1)

]
dy1 dy2

]
=

L∫
0

H(x, y)
[
u(y) − u(x)

]
dy

−
L∫

x

H(0, y)
[
u(y) − u(0)

]
dy −

x∫
0

H(L, y)
[
u(y) − u(L)

]
dy (16)

In fact, there is a strong connection between peridynamic and strain-based integral models for infinite media: assuming 
the differentiability of the displacement field, peridynamic models can be converted into strain-based integral models by 
assuming a kernel correspondence between both nonlocal models:

h(ξ) = g′′(ξ) = d2 g

dξ2
(17)

The proof is given by Silling et al. [10] for general kernels and is also mentioned in [12] for exponential-based kernels. The 
proof is obtained by assuming that there exists a kernel operator g∗ such as:

d2 g∗

dξ2
= h(ξ) (18)

which asymptotically vanishes for infinite values, a property also valid for the first- and second-order derivative of this 
kernel. Rewriting the peridynamic governing equation (which couples the constitutive law with the balance equation) with 
the difference variable ξ gives:

N ′(x) = E A

+∞∫
−∞

∂2 g∗

∂ξ2

[
u(x + ξ) − u(x)

]
dξ (19)

which can be integrated two times, thus leading to:

N ′(x) =
[

E A
∂ g∗(ξ)

∂ξ

[
u(x + ξ) − u(x)

]]+∞

−∞
−

[
E Ag∗(ξ)

∂u(x + ξ)

∂ξ

]+∞

−∞
+ E A

+∞∫
−∞

g∗(ξ)
∂2u(x + ξ)

∂ξ2
dξ (20)

Assuming that the boundary terms are vanishing, this equation can be equivalently written as:

dN

dx
= E A

∂

∂x

+∞∫
−∞

g∗(ξ)
∂u(x + ξ)

∂ξ
dξ ⇒ N(x) = E A

+∞∫
−∞

g∗(ξ)
∂u(y)

∂y
dy (21)

with ξ = y − x, which shows that g = g∗ can be used as a possible kernel of the equivalent strain-based integral nonlocal 
model (for sufficiently smooth displacement fields).

For infinite media, the normalization procedure of the peridynamic model can follow from the normalization criterion of 
the strain-based integral model:

+∞∫
−∞

h(ξ)ξ2 dξ =
+∞∫

−∞
g′′(ξ)ξ2 dξ = [

g′(ξ)ξ2]+∞
−∞ − [

2ξ g(ξ)
]+∞
−∞ +

+∞∫
−∞

2g(ξ)dξ = 2 (22)

It is worth mentioning that there are generally no kernel correspondences between integral-based and peridynamic nonlocal 
models for finite-length structural elements. This correspondence can be eventually shown on some specific kernels such as 
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the bilinear kernel considered by Eringen and Kim [20], and based on lattice interaction. Using Eq. (6), as shown by Eringen 
and Kim [20], it is possible to derive the continualized lattice-based equations:

N ′ = E A
u(x + a) − 2u(x) + u(x − a)

a2
(23)

Eq. (23) may be classified as a functional equation, which is the continualization of the associated difference equation (see 
[23]).

The proof of Eq. (23) is also based on the following integration by part:

L∫
0

G(x, y)
∂u

∂y
dy = 1

a

x+a∫
x−a

(
1 − |x − y|

a

)
∂u

∂y
dy

=
[

1

a

(
1 − |x − y|

a

)
u(y)

]x+a

x−a
− 1

a2

x+a∫
x−a

sgn(x − y)u(y)dy

= − 1

a2

x∫
x−a

u(y)dy + 1

a2

x+a∫
x

u(y)dy (24)

The continualized lattice model is a particular case of the peridynamic model with the following kernel (see also [24]):

H(x, y) = δ(x + a, y) − 2δ(x, y) + δ(x − a, y)

a2
(25)

where the Dirac distribution has been used. Again, using Eq. (25), one is able to build Eq. (23), which is the continualized 
nonlocal lattice model with direct neighbouring interaction. It means that for some specific kernels, and for infinite media, 
strain-based nonlocal integral models are exactly coincident with relative-based displacement models. It is however worth 
mentioning the strong difference between the kernel of Eq. (25) and the one of Eq. (6), which shows that the kernel of 
peridynamic models cannot be chosen, in general, in the same form as the one of the strain-based nonlocal model. For this 
lattice-based nonlocal model, it is possible to show that the mathematical property of the kernel equivalence of Eq. (17) is 
fulfilled, at least if the derivative is understood in the distributed sense. We also mention some links between the discretized 
version of the peridynamic model with the finite difference formulation of local elasticity models (see [25]); the latter one 
can be also viewed as the difference equations of the lattice medium with direct neighbour interactions.

This correspondence (valid for infinite media) can be also achieved for the exponential kernel of the strain-based nonlocal 
model given by Eq. (7), whose peridynamic analogous would be formulated by (see also [12] for this specific model):

H(x, y) = 1

2l3c
e− |x−y|

lc (26)

Finally, we would like to emphasize that for infinite media (or finite media with extended reflection rules), Eringen’s 
differential model given by Eq. (8) can be reformulated into a consistent strain-based integral nonlocal model with the 
exponential kernel of Eq. (7), or into a relative-based displacement integral nonlocal model with a modified exponential 
kernel given by Eq. (26). These nonlocal models are now applied to some simple structural cases, both in statics and in 
dynamics.

3. Static case – finite domain

3.1. Loading configuration

We are studying a uniform bar of length L under pure tension, which may be expressed from the principle of virtual 
work:

L∫
0

σ Aδu′ dx − σ0 Aδu(L) = 0 (27)

where σ0 is the uniform tension stress applied at the end vicinity, and A is the cross-sectional area. The bar is fixed at 
x = 0, which means, after an integration by part, that

L∫
−(σ A)′δu dx + [σ Aδu]L

0 − σ0 Aδu(L) = 0 (28)
0
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The boundary conditions are obtained:

u(0) = 0 and σ(L) = σ0 (29)

and the stress is homogeneous for a uniform bar A′(x) = 0:

N ′(x) = 0 ⇒ σ(x) = σ0 (30)

3.2. Eringen’s differential model

For Eringen’s differential model [22], the nonlocal elasticity model degenerates into the local model:

N ′(x) = 0 ⇒ N − l2c N ′′ = N = E Au′ (31)

and we then obtain the local elasticity solution:

u(x) = σ0x

E
(32)

3.3. Exponential kernel with infinite domain

The displacement field has to be extended outside the domain to be compatible with natural and essential boundary 
conditions of the bar problem. Recently, Sumelka [26] used a similar concept based on the extension of the domain outside 
its initial definition. One possibility is to take the continuation rule:

u−(x) = u+(x) for x ≤ 0 and u−(x) = u+(x) for x ≥ L (33)

In this case, it is easy to check that the uniform solution:

u(x) = σ0

E
x ⇒ u′(x) = σ0

E
for x ∈ [−∞;+∞] (34)

is solution to:

N(x) = E A

+∞∫
−∞

1

2lc
e− |x−y|

lc ε(y)dy = σ0 A (35)

There is an equivalence between the integral model for infinite domain with periodic boundary conditions and the Eringen’s 
stress gradient model also extended to an infinite domain. The correspondence (valid for infinite media) can be also achieved 
for the peridynamic model with the exponential kernel given by Eq. (26).

3.4. Exponential kernel with finite domain – direct nonlocal measure

If now one considers the integral model with a truncated exponential kernel, one would obtain:

N(x) = E A

L∫
0

1

2lc
e− |x−y|

lc ε(y)dy = σ0 A (36)

As shown by Benvenuti and Simone [21], such integral equation implicitly contains some constraints on the normal force at 
the boundary such as:

N ′(0) − 1

lc
N(0) = 0 and N ′(L) + 1

lc
N(L) = 0 (37)

Clearly, these boundary conditions violate the natural boundary conditions of the problem, and the kernel of Eq. (36) is 
not admissible for the loading case considered in this part (see also the recent discussions in [14] or in [15] for nonlocal 
beam problems – see also the discussion in Appendix A). Furthermore, the kernel chosen in Eq. (36) does not verify the 
normalization criterion given by Eq. (3).
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3.5. Exponential kernel with finite domain – combination of nonlocal and local measures

Following the methodology of Eringen [27], it is possible to consider a combination of local and nonlocal measures given 
by:

N(x) = E A[ξ1ε + ξ2ε] with ξ1 + ξ2 = 1, ξ1 ∈ [0;1] and ξ2 ∈ [0;1] (38)

The requirement ξ1 ∈ [0; 1] is necessary to preserve the positivity of the nonlocal kernel operator. For ξ1 > 1, ξ2 = 1 − ξ1

becomes negative and the associated nonlocal strain-based energy functional loses its definite positiveness, thus preventing 
to obtain the uniqueness property of the integral nonlocal boundary value problem [6,5]. It is eventually possible to express 
this model in term of nonlocal strain and strain gradient energy functional (see [28,29] or [30]), which may eventually 
restore the positive definiteness of the nonlocal strain and strain gradient energy functional. However, the paper is mainly 
focused on strain-based nonlocal models and we will impose that both ξ1 and ξ2 belong to [0; 1]. As shown by Challamel 
and Wang [28] for nonlocal bending problems or by Challamel et al. [29] for nonlocal axial rods, the nonlocal kernel can be 
introduced from the following nonlocal measure (which is used by Peerlings et al. [31] for nonlocal damage applications):

ε − l2cε
′′ = ε (39)

Furthermore, the following boundary conditions have been obtained by Challamel and Wang [28] or Challamel et al. [29]
from the application of a variational principle:

ε′(0) = ε′(L) = 0 ⇒ ε =
L∫

0

F (x, y)ε(y)dy with

⎧⎪⎪⎨
⎪⎪⎩

F (x, y) = 1
lc

cosh
( L−y

lc

)
sinh

( L
lc

) cosh
( x

lc

)
if x ≤ y

F (x, y) = 1
lc

cosh
( L−x

lc

)
sinh

( L
lc

) cosh
( y

lc

)
if x ≥ y

(40)

Such a kernel can be found in [32] as the Green function associated with the differential equation associated with the 
considered boundary conditions (see also [33] for nonlocal damage mechanics applications).

These higher-order boundary conditions can be re-expressed in term of mixed normal force–strain variable as:

1

ξ2

[
N ′(0)

E A
− ξ1ε

′(0)

]
= 1

ξ2

[
N ′(L)

E A
− ξ1ε

′(L)

]
= 0 (41)

We note that the uniform local solution for both the stress and the strain is compatible with these boundary conditions:

N(x) = σ0 A = AEε(x) (42)

We finally have:

G(x, y) = ξ1δ(x, y) + ξ2 F (x, y) with ξ1 + ξ2 = 1 (43)

Note that this model is also equivalent to a nonlocal coupled strain gradient elasticity model:

N(x) − l2c N ′′(x) = E A
[
ε(x) − a2ε′′(x)

]
with ξ1 =

(
a

lc

)2

∈ [0;1] (44)

Applying this model to the uniform bar under tension gives the local solution and the uniform strain model. Note that this 
model can be cast in the so-called micromorphic approach [29,34]. Exact solutions for nonlocal beam problems (including 
bending, buckling and vibration) have been elaborated by Zhang et al. [35]. Lim et al. [30] also showed the thermodynamic 
background of this model, which can be classified also as a nonlocal strain gradient model.

3.6. Alternative of the exponential kernel with finite domain – nonlocal solution affected by the small-length-scale terms

In this model, used by Benvenuti and Simone (2013), Eqs. (38) and (39) are used (Eq. (44) is also valid) but the boundary 
conditions for defining the nonlocal strain differ and are defined by:

ε′(0) − 1

lc
ε(0) = 0 and ε′(L) + 1

lc
ε(L) = 0 (45)

which can be re-expressed in term of mixed normal force–strain boundary conditions as:
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1

ξ2

[
N ′(0)

E A
− ξ1ε

′(0)

]
− 1

ξ2lc

[
N(0)

E A
− ξ1ε(0)

]
= 1

ξ2

[
N ′(L)

E A
− ξ1ε

′(L)

]
+ 1

ξ2lc

[
N(L)

E A
− ξ1ε(L)

]
= 0 (46)

We note that the uniform local solution given by Eq. (42) for both the stress and the strain is not compatible with these 
boundary conditions, which would imply that:

N ′ = 0 and ε′ = 0 ⇒ N = E Aξ1ε (47)

Equation (44) which is also valid for this model, can be equivalently presented in the following differential form:

N(x) − l2c N ′′(x) = E A
[
ε(x) − ξ1l2cε

′′(x)
]

(48)

Note that the consideration of Eqs. (47) and (48) shows that the uniform local solution for both the stress and the strain 
cannot be a solution to this nonlocal model, except in the local case where ξ1 = 1. The kernel of this nonlocal model is 
obtained from:

G(x, y) = ξ1δ(x, y) + ξ2 F (x, y) with F (x, y) = 1

2lc
e− |x−y|

lc and ξ1 =
(

a

lc

)2

(49)

The solution to this problem is given by Benvenuti and Simone [21] for nonlocal axial bars or by Khodabakhshi and 
Reddy [36] or Wang et al. [37] for nonlocal beams. Such a model has been also considered by Pisano and Fuschi [38] – 
see also the recent discussion of Pisano and Fuschi [39].

The solution for uniform stress is clearly affected by the small-length-scale terms. It is possible to check in this case that 
the normalization criterion is not fulfilled in the finite domain:

L∫
0

G(x, y)dy �= 1 (50)

3.7. Some alternative kernels – a spatial-dependent combination of local and nonlocal measures

The following nonlocal measure has been first proposed by Borino et al. [19] for nonlocal damage mechanics applications 
(see also the discussion in [40]), and has been used quite recently by Koutsoumaris et al. [41] for nonlocal elastic beams. 
The model can be presented in the following form:

N(x) = E A[ξ1ε + ξ2ε] with ξ1 + ξ2 = 1 and ε =
[

1 −
L∫

0

F (x, y)dy

]
ε +

L∫
0

F (x, y)ε(y)dy (51)

If now we specify ξ2 = 1, the nonlocal kernel is obtained:

G(x, y) =
[

1 −
L∫

0

F (x, y)dy

]
δ(x, y) + F (x, y) with F (x, y) = 1

2lc
e− |x−y|

lc (52)

In this case, the normalization criterion is effectively checked. This problem has been numerically investigated by Kout-
soumaris et al. [41] for beam problems, but no analytical solutions have been found up to now.

This model can be also expressed in the following form:

N(x) = E A
[
ξ1(x)ε + ε

]
with ε =

L∫
0

F (x, y)ε(y)dy, ξ1(x) = 1 −
L∫

0

F (x, y)dy and F (x, y) = 1

2lc
e− |x−y|

lc (53)

The coefficient ξ1(x) can be easily calculated as:

ξ1(x) = 1

2

[
e− x

lc + e− L−x
lc

]
(54)

This model can be cast in a differential form:

N(x) − l2c N ′′(x) = E A
[
(1 + ξ1)ε(x) − l2c

[
ξ1ε(x)

]′′]
(55)

It is easy to check from Eq. (55) that:

ε(x) = ε0 ⇒ N(x) − l2c N ′′(x) = E Aε0 (56)
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However, from the boundary conditions to be checked by Eq. (45), we find that:[
N ′(0)

E A
− (ξ1ε)′(0)

]
− 1

lc

[
N(0)

E A
− ξ1ε(0)

]
=

[
N ′(L)

E A
− (ξ1ε)′(L)

]
+ 1

lc

[
N(L)

E A
− ξ1ε(L)

]
= 0 (57)

Again, we note that the uniform local solution given by Eq. (42) for both the stress and the strain is not compatible with 
these boundary conditions.

3.8. Peridynamic model – kernel with inverse distance

Semi-analytical solutions are available and are expressed in integral form in [10] and [16] for the static analysis of in-
finite bars with the relative displacement-based (or peridynamic) model. Recently, Nishawala and Ostoja-Starzewski [18]
obtained an explicit analytical solution for a homogeneous elastic bar with various distributed loading, based on the follow-
ing peridynamic model with the inverse distance interaction function:

N ′(x) = E A

x+a∫
x−a

H(x, y)
[
u(y) − u(x)

]
dy with H(x, y) = 2

a2|y − x| (58)

and the normal force is calculated by integration:

N(x) = N(0) + 2E A

a2

x∫
y1=0

y1+a∫
y2=y1−a

u(y2) − u(y1)

|y2 − y1| dy2 dy1 (59)

It can be checked that the normalization criterion is verified, at least if the kernel interaction is extended beyond the limit 
of the finite bar:

+∞∫
−∞

H(x, y)(y − x)2 dy =
x+a∫

x−a

H(x, y)(y − x)2 dy =
x+a∫

x−a

2

a2
|y − x|dy = 2 (60)

Note that the normalization criterion cannot be checked in the vicinity of the boundaries, if the kernel is truncated at 
the boundaries, as suggested by Nishawala and Ostoja-Starzewski [18]. Consequently, Nishawala and Ostoja-Starzewski [18]
obtained a non-uniform stress state for the homogeneous bar under pure tension, by adding some distributed forces at the 
boundary to correct this effect.

To avoid this effect due to the truncated nonlocal measure, and following the methodology introduced for the strain-
based nonlocal problem, the displacement field can be extended outside the domain to be compatible with the natural 
and essential boundary conditions of the bar problem, which can be related to the extended layer concept introduced by 
Silling [9] or Macek and Silling [11].

As the kernel is truncated over a distance defined by a, the extended domain is concerned by x ∈ [−a; 0] and x ∈
[L; L + a].

One possibility is to take the continuation rule:

u−(x) = u+(x) for x ≤ 0 and u−(x) = u+(x) for x ≥ L (61)

The following local-type solution is solution to the problem:

u(x) = σ0

E
x for x ∈ [−a; L + a] (62)

It can be checked that this solution verified the nonlocal governing equation (58), i.e. N ′(x) = 0 for x ∈ [0; L], and the 
boundary conditions:

u(0) = 0 and N(L) = N(0) = σ0 A (63)

due to the normal force integration along the bar:

2E A

a2

L∫
y1=0

y1+a∫
y2=y1−a

u(y2) − u(y1)

|y2 − y1| dy2 dy1 = 2σ0 A

a2

L∫
y1=0

y1+a∫
y2=y1−a

y2 − y1

|y2 − y1| dy2 dy1 = 0 (64)

The natural boundary condition of this problem would not have been verified with a truncated kernel, as observed by 
Nishawala and Ostoja-Starzewski [18].
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3.9. Peridynamic model – kernel with discrete distance

Let us now consider the following peridynamic model (based on single discrete symmetrical interactions) for a finite bar 
with some extended compatible boundary conditions:

N ′(x) = E A

+∞∫
−∞

H(x, y)
[
u(y) − u(x)

]
dy with H(x, y) = δ(x + a, y) − 2δ(x, y) + δ(x − a, y)

a2
(65)

which is equivalent to:

N ′ = E A
u(x + a) − 2u(x) + u(x − a)

a2
= 0 with N = σ0 A (66)

which is a functional equation that should be valid for x ∈ [0; L]. This functional equation needs to define the displacement 
function for x ∈ [−a; L + a], which is somehow related to the extended layer concept introduced by Silling [9] or Macek and 
Silling [11].

By integration of Eq. (66), the normal force of this peridynamic model can be calculated from:

N(x) = E A

x∫
x−a

u(y + a) − u(y)

a2
dy (67)

or equivalently from:

N(x) = E A

x+a∫
x

u(y) − u(y − a)

a2
dy (68)

or also using a “centred scheme”:

N(x) = E A

x+ a
2∫

x− a
2

u(y + a/2) − u(y − a/2)

a2
dy (69)

The domain is extended outside its physical definition x ∈ [−a; 0] and x ∈ [L; L + a], following the same method used for 
finite difference problems using some fictitious points.

Again, the homogeneous solution Eq. (62) is valid for this nonlocal peridynamic bar, and it can be checked that the 
natural and essential boundary conditions are checked:

u(0) = 0 and N(L) = E A

L∫
L−a

u(y + a) − u(y)

a2
dy = σ0 A (70)

As already pointed out in the paper, and as mentioned by Silling [9] or Macek and Silling [11], the static boundary condition 
needs to include the behaviour of the bar outside its initial domain, using some extension properties, as used in finite 
difference method by the concept of fictitious nodes.

The solution to the functional equation (66) with the boundary conditions – Eq. (70) – partially expressed in integral 
format is the local displacement solution, given by Eq. (62).

The proof comes from the difference formulation associated with the functional problem, and expressed by:

E A
ui+1 − 2ui + ui−1

a2
= 0 with u0 = 0 (71)

The solution to this linear second-order difference equation can be built from the difference equation:

ui+1 − 2ui + ui−1 = 0 ⇒ ui = αi + β (72)

Introducing the fixed boundary condition leads to

u0 = 0 ⇒ ui = αi ⇒ u(x) = α
x

a
(73)

The last boundary condition N(L) = σ0 A gives α = σ0a
E . Of course, these results, valid for the peridynamic model based on 

the kernel given by Eq. (25), are also valid for the strain-based nonlocal model with the kernel given by Eq. (6), due to the 
correspondence rule.
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4. Dynamic case

4.1. Loading configuration

We are now studying the vibration of a fixed–fixed uniform nonlocal bar, where the integral nonlocality can be related 
to a strain-based or to a relative displacement-based (or peridynamic) model.

The principle of virtual work which includes the inertia effects can be written as:

L∫
0

Nδu′ + ρ Aüδu dx = 0 (74)

which means, after an integration by part, that

L∫
0

−N ′δu + ρ Aüδu dx + [Nδu]L
0 = 0 (75)

The boundary conditions are obtained for the fixed–fixed bar from:

u(0) = 0 and u(L) = 0 (76)

and the balance equation is given by:

N ′ = ρ Aü (77)

Considering the harmonic motion u(t) = uejωt where j = √−1 and ω is the angular frequency of vibration, the balance 
equation reads:

N ′ + ω2ρ Au = 0 (78)

4.2. Eringen’s differential model for finite domain

For finite domains, the strain-based nonlocal problem to be solved is the following integro-differential eigenvalue prob-
lem:

d

dx
E A

L∫
0

G(x, y)
∂u

∂y
(y)dy + ω2ρ Au = 0 with u(0) = u(L) (79)

The kernel of Eringen’s differential model depends on the compatible natural boundary condition. Due to Eq. (78), the 
fixed–fixed boundary conditions can be expressed in term of static equivalent boundary conditions:

u(0) = u(L) ⇒ N ′(0) = N ′(L) = 0 (80)

so that Eringen’s differential model can be inverted in this case in the following form (see also Eq. (40)):

N − l2c N ′′ = E Au′ ⇒ N(x) = E A

L∫
0

G(x, y)
∂u

∂y
dy with

⎧⎪⎪⎨
⎪⎪⎩

G(x, y) = 1
lc

cosh
( L−y

lc

)
sinh

( L
lc

) cosh
( x

lc

)
if x ≤ y

G(x, y) = 1
lc

cosh
( L−x

lc

)
sinh

( L
lc

) cosh
( y

lc

)
if x ≥ y

(81)

The integro-differential Eq. (79) can be equivalently cast in a single second-order differential equation:(
E A − ω2ρ Al2c

)
u′′ + ω2ρ Au = 0 with u(0) = u(L) (82)

The dimensionless parameters can be introduced as:

u = u

L
, x = x

L
; β = ρ

ω2L2

E
and μ = l2c

L2
(83)

The nonlocal vibration equation is then obtained from:

(1 − βμ)u′′ + βu = 0 with u(0) = u(1) (84)
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where the derivatives are now expressed with respect to the dimensionless spatial variable x. For the fixed–fixed nonlocal 
rod, the natural modes and the natural frequencies are obtained as (see [42]):

u(x) = U sin

(
nπx

L

)
and βn = (nπ)2

1 + μ(nπ)2
≤ (nπ)2 with βn = ρ

ω2
n L2

E
and μ = l2c

L2
(85)

It is shown that the small-length-scale term μ tends to soften the natural frequencies of this nonlocal bar, a conclusion 
that is in agreement with the results obtained for nonlocal beams [43]. It is worth mentioning that such a nonlocal kernel 
may be considered as a good approximation of lattice model with direct neighbouring interaction, as shown by Challamel 
et al. [24] for instance.

It may be also commented that the exponential kernel considered in Eq. (36) cannot be used because the stress-
based boundary conditions in Eq. (37) coupled with the natural and essential boundary conditions would lead to an 
over-constrained problem without any solution. The same incompatibility was found for the bar in pure tension.

4.3. Exponential kernel with finite domain – combination of nonlocal and local measures

The dynamic behaviour of a nonlocal bar composed of local and nonlocal strain measures (which has been shown to 
be equivalent to a nonlocal strain gradient model) was considered by Challamel et al. [29], Song et al. [44], Challamel [45]
or Lim et al. [30] from the wave dispersion properties. Recently, Li et al. [46] studied the vibration of such a nonlocal bar, 
using the combination of local and nonlocal strain measures. In this case, the nonlocal strain measure is given by Eq. (39).

Using Eq. (48) coupled to the balance equation (78) leads to the normal force expression:

N = (
E A − ω2ρ Al2c

)
u′ − ξ1l2c E Au′′′ (86)

The fourth-order governing differential equation is finally obtained:

−ξ1l2c E Au(4) + (
E A − ω2ρ Al2c

)
u′′ + ω2ρ Au = 0 (87)

This is a higher-order elasticity theory with a fourth-order spatial derivative similar to what was observed for gradient 
elasticity theories of axial bar (see [46–49]), which can be presented as a generalization of the nonlocal equation (82):

−ξ1μu(4) + (1 − βμ)u′′ + βu = 0 with u(0) = u(1) = βu(0) + ξ1u′′(0) = βu(1) + ξ1u′′(1) = 0 (88)

where the higher-order boundary conditions ε′(0) = ε′(1) = 0 has been used. The solution to this fourth-order differential 
equation may be expressed as:

u(x) = C0 cos(λ1x) + C1 sin(λ1x) + C2 cosh(λ2x) + C3 sinh(λ2x)

with λ1 =
√√

(1 − βμ)2 + 4βξ1μ − 1 + βμ

2ξ1μ
and λ2 =

√√
(1 − βμ)2 + 4βξ1μ + 1 − βμ

2ξ1μ
(89)

Injecting the four boundary conditions give the vibration mode and the natural frequency of this nonlocal bar:

u(x) = C1 sin(nπx) and βn = (nπ)2 1 + ξ1μ(nπ)2

1 + μ(nπ)2
≤ (nπ)2 (90)

which is also the value reported by Li et al. [46]. It is shown that the small length scale term μ also tends to soften the 
natural frequencies of this nonlocal bar, as ξ1 ∈ [0; 1] a conclusion in agreement with the results presented for nonlocal 
beams [28,35,45].

4.4. Eringen’s differential model for infinite domain

If we now consider the Eringen’s differential model – Eq. (8) – for an infinite medium, we assume a continuous kinematic 
field outside the domain, so that the natural vibration mode is valid not only for x ∈ [0; L], but also outside the domain of 
definition:

u(x) = U sin

(
nπ

x

L

)
for x ∈ [−∞;+∞] (91)

It can be checked that this trigonometric solution verifies the following integrodifferential equation:

d

dx
E A

+∞∫
1

2lc
e− |x−y|

lc
∂u

∂y
(y)dy + ω2ρ Au = 0 (92)
−∞
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which is equivalent to the differential Eringen model applied to the infinite periodic problem. Introducing Eq. (91) in Eq. (92)
gives:

E A

2l2c
U

nπ
L

[
−

+x∫
−∞

e
−x+y

lc cos

(
nπ

y

L

)
dy +

+∞∫
x

e
x−y

lc cos

(
nπ

y

L

)
dy

]
+ ω2ρ AU sin

(
nπ

x

L

)
= 0 (93)

It can be shown by integration by part that:

(
1 + L2

(nπ)2l2c

) +x∫
−∞

e
−x+y

lc cos

(
nπ

y

L

)
dy = L

nπ
sin

(
nπ

x

L

)
+ L2

(nπ)2lc
cos

(
nπ

x

L

)
and

(
1 + L2

(nπ)2l2c

) +∞∫
x

e
x−y

lc cos

(
nπ

y

L

)
dy = − L

nπ
sin

(
nπ

x

L

)
+ L2

(nπ)2lc
cos

(
nπ

x

L

)
(94)

and then Eq. (94) shows that βn = (nπ)2

1+μ(nπ)2 which is the value reported for Eringen’s differential model.

In other words, for this dynamic problem, Eringen’s differential model is equivalent to an integral approach with a finite 
kernel based on Eq. (79) for the finite bar, or an integral approach with an infinite kernel given by Eq. (92) using a contin-
ualization of the kinematic field outside the finite domain of the bar. It is also possible, using the correspondence principle 
between the strain-based and the peridynamic nonlocal models, to derive the same solution valid for the peridynamic bar 
for the extended infinite periodic bar with the exponential kernel given by Eq. (26).

4.5. Peridynamic model – kernel with discrete distance

Finally, the lattice-based peridynamic model based on the discrete kernel of Eq. (23) can be formulated by the functional 
equation:

E A
u(x + a) − 2u(x) + u(x − a)

a2
+ ω2ρ Au(x) = 0 with u(0) = u(L) = 0 (95)

and the continuation rule – Eq. (33) – is followed.
Then, the problem can be converted, for some solution points of the problem, into a second-order linear difference 

eigenvalue problem, expressed by:

E A
ui+1 − 2ui + ui−1

a2
+ ω2ρ Aui = 0 with u0 = up = 0 (96)

where the integer parameter p is defined such as pa = L. This problem is analogous to the vibration problem of a string 
with concentrated masses, as already solved by Lagrange [50,51] for the string of the axial lattice. The vibration solution 
can be also expressed in sinusoidal form (see also [24]), analogous to Eq. (91), but now presented in its discrete version, 
u(x) = U sin(nπ i

p ) for i ∈ {0; 1; 2...p − 1; p}. More generally, it can be shown that Eq. (91) is the continuous solution to the 
functional difference equation. Note, however, that Eq. (91) is a continuous solution, instead of the discrete solution induced 
by the difference eigenvalue problem. The Lagrange solution is obtained from the resolution of the linear second-order 
difference equation:

βn = 4p2 sin2
(

nπ
2p

)
for n ∈ {1;2...p − 1; p} (97)

which also leads to the softening effect, due to the approximated formulae βn = (nπ)2

1+(nπ)2 a2

12L2

+ .... It is shown that the small 

length scale term μ = a2/(12L2) also tends to soften the natural frequencies of this nonlocal bar, a conclusion in agreement 
with what we previously observed for strain-based or relative displacement-based nonlocal models. We then obtained an 
approximated formula for the frequency of this fixed–fixed peridynamic bar. One also recognized in the approximated 
formulae the natural frequency equation of a nonlocal bar based on Eringen’s differential model, as shown by Eq. (85).

The present solution is also valid for strain-based nonlocal bar based on the kernel exposed in Eq. (6). In a certain sense, 
Lagrange [50,51] indirectly obtained the first analytical solution to a peridynamic problem, by solving a lattice problem 
based on a difference equation, whose continualization constitutes a particular strain-based or relative displacement-based 
(or peridynamic) nonlocal problem.

We may also comment that the sinusoidal function has been found as a common solution to various integral strain-based 
or peridynamic nonlocal models. This property, however, would not have been verified for the vibration of a peridynamic 
bar with the model considered by Nishawala and Ostoja-Starzewski [18], who used an alternative kernel.
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5. Conclusions

Strain-based or relative displacement-based (also referred to as peridynamic) integral nonlocal models need to account 
for the finiteness of the structural element for engineering applications. This paper aims to classify different nonlocal models, 
with respect to their mathematical properties and their ability to preserve some fundamental features such as the invariance 
of the nonlocal operator for uniform field. It is shown in this paper that such a fundamental requirement is preserved for:

– an unmodified infinite kernel for finite domain by extending the domain outside its boundary. This method is used, for 
instance, for solving the finite difference equation using the so-called fictitious point method. As already outlined by 
Maugin for instance ([52]; see also [53]), lattice difference equations may be related to the finite difference formulation 
of the partial differential equations associated with the local continuum mechanics problem. In that spirit, it is not 
surprising that integral nonlocal models that may capture the small-scale effects in lattice mechanics have similar 
features in terms of mechanical resolution. Strain-based or relative displacement-based nonlocal models are similar 
from this point of view;

– a modified finite kernel valid inside the domain by combining a local measure with a nonlocal one. The nonlocal 
measure should be compatible with the natural and essential boundary conditions of the problem. It has also to respect 
the invariance of the homogeneous strain state for uniform stress state.

Analytical solutions valid for finite bars have been derived for nonlocal integral models including strain-based and peridy-
namic models, both in static and in dynamic conditions. It has been shown for both families of integral models (peridynamic 
or strain-based nonlocal integral models) that softening occurs in presence of non-homogeneous strain states, with relevant 
nonlocal strain measures. These analytical solutions can be used as benchmark solutions in the computational validation of 
nonlocal structural problems. The conclusions of this paper, especially the ones associated with the softening effect induced 
by the nonlocal scale effects are valid for the simple one-dimensional cases considered in this paper, with the considered 
kernels, and should be investigated more generally for two-dimensional and three-dimensional nonlocal media.

Appendix A

Starting from the introduction of the integral model in the finite domain, it is not difficult to show that:

N(x) = E A

L∫
0

1

2lc
e− |x−y|

lc ε(y)dy = E A

[ x∫
0

1

2lc
e− x−y

lc ε(y)dy +
L∫

x

1

2lc
e

x−y
lc ε(y)dy

]
(98)

By derivation and using Leibniz’s rule for differentiation, the derivative of the normal force is equal to:

N ′(x) = E A

lc

[
−

x∫
0

1

2lc
e− x−y

lc ε(y)dy +
L∫

x

1

2lc
e

x−y
lc ε(y)dy

]
(99)

By combining both equation (98) and equation (99), the integral definition of the normal force in the finite domain implies 
a constraint on both the normal force and its derivative at the boundaries of the domain (as also shown by Benvenuti and 
Simone [21]):

N ′(0) − 1

lc
N(0) = 0 and N ′(L) + 1

lc
N(L) = 0 (100)

which may violate the natural boundary conditions of the mechanical problem to be studied. Furthermore, the uniform 
strain field ε(x) = ε0 leads to the non-uniform normal force field:

N(x) = E Aε0

L∫
0

1

2lc
e− |x−y|

lc dy = E A

[
1 − 1

2

(
e− x

lc + e
x−L

lc
)]

(101)

Lignola et al. [54] recently suggest adding a stress-based boundary term in the integral definition of the normal force. This 
additional boundary term could be chosen as:

N(x) = E A

L∫
0

1

2lc
e− |x−y|

lc ε(y)dy + g
(
N(x), x, lc

)
with g

(
N(x), x, lc

) = 1

2

[
N(0)e− x

lc + N(L)e
x−L

lc
]

(102)

One easily verifies that the additional term automatically fulfils the following second-order differential equation:
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g(x) − l2c g′′(x) = 0 (103)

so that both nonlocal elastic laws equation (98) and equation (102) verify Eringen’s differential law:

N(x) − l2c N ′′(x) = E Aε(x) (104)

The advantage of the nonlocal law of equation (102) is that the uniform strain field ε(x) = ε0 is associated with a uniform 
normal force field N(x) = E Aε0, as shown by the normal force equation valid for the homogeneous strain field:

N(x) − 1

2

[
N(0)e− x

lc + N(L)e
x−L

lc
] = E Aε0

[
1 − 1

2

(
e− x

lc + e
x−L

lc
)]

(105)

However, this integral definition of the normal force is also associated with some constraints on the normal force. Indeed, 
it can be easily shown that:

g′(0) − 1

lc
g(0) = −N(0)

lc
and g′(L) + 1

lc
g(L) = N(L)

lc
(106)

Applying the combination of the normal force derivative and the normal force to Eq. (5) gives by superposition:

N ′(0) − 1

lc
N(0) = − 1

lc
N(0) and N ′(L) + 1

lc
N(L) = 1

lc
N(L) (107)

The nonlocal integral definition of the normal force in equation (102) is then equivalent to the normal force boundary 
conditions:

N ′(0) = 0 and N ′(L) = 0 (108)

which may also violate the natural boundary conditions of the mechanical problem to be studied. Even if this measure 
leaves the uniform strain field invariant, it may be as well in contradiction with the imposed natural boundary conditions 
of the problem. Note that equation (102) can be equivalently written as:

N = E A

L∫
0

F (x, y)ε(y)dy with

⎧⎪⎪⎨
⎪⎪⎩

F (x, y) = 1
lc

cosh
( L−y

lc

)
sinh

( L
lc

) cosh
( x

lc

)
if x ≤ y

F (x, y) = 1
lc

cosh
( L−x

lc

)
sinh

( L
lc

) cosh
( y

lc

)
if x ≥ y

(109)
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