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This paper deals with the stability analysis of internally damped rotating composite 
shafts. An Euler–Bernoulli shaft finite element formulation based on Equivalent Single 
Layer Theory (ESLT), including the hysteretic internal damping of composite material 
and transverse shear effects, is introduced and then used to evaluate the influence 
of various parameters: stacking sequences, fiber orientations and bearing properties on 
natural frequencies, critical speeds, and instability thresholds. The obtained results are 
compared with those available in the literature using different theories. The agreement 
in the obtained results show that the developed Euler–Bernoulli finite element based on 
ESLT including hysteretic internal damping and shear transverse effects can be effectively 
used for the stability analysis of internally damped rotating composite shafts. Furthermore, 
the results revealed that rotor stability is sensitive to the laminate parameters and to the 
properties of the bearings.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

A precise prediction of damping effects is basically necessary in the stability analysis of rotor dynamic behaviour. Damp-
ing is considered as an internal damping such as material damping or as an external damping as in the case of bearing 
damping, and it is principally modeled using viscous or hysteretic damping. The basic difference between viscous and hys-
teric models is that the dissipation of energy by viscous damping depends on frequency, while the dissipation of energy by 
hysteretic damping does not. In composite rotor dynamic field, internal damping can be meaningful because of the damping 
capacity of the matrix [1]. Moreover, most materials, such as metallic materials, carbon/epoxy materials, and viscoelastic 
materials show a vibratory damping behaviour that looks like hysteretic internal damping much more than like viscous 
internal damping [2]. Due to the specific strength and stiffness of the fiber-reinforced composite materials, metal shafts 
have been replaced by composite shafts in many applications, such as drive shafts for helicopters and automotive industries 
[3–7]. These materials offer benefits in terms of reduction of the weight and augmentation of the strength, stiffness and 
damping capacity, and provide structural designers the possibility of obtaining required behaviours by changing the stacking 
sequence of the composite layers in terms of number and orientation of layers [8,9].

Many researchers studied the damping effects on rotor dynamic and stability behaviour [1,2,10–15]. First investigations 
by Newkirk [10] showed that rotors may undergo violent whirling at speeds above the first critical speed because of in-
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Fig. 1. Composite shaft.

ternal damping. After that, Genta [12] explained similarly that the hysteretic internal damping of the rotating elements of 
a structure is stabilizing in the subcritical range and destabilizing in the supercritical range; they proved that an error is 
made when admitting that hysteretic internal damping of rotating elements is destabilizing at all rotational speeds. Montag-
nier and Hochard [2] demonstrated likewise that damping associated with the non-rotating elements of the structure has 
a stabilizing effect, while damping associated with the rotating elements may provoke instability in the supercritical range. 
Besides, many researchers have studied the combined influence of internal and external damping. The results show that 
rotor stability is enhanced by increasing bearing damping; however, increasing internal damping can reduce the instability 
threshold [11,16]. Pereira and Silveira [11] used an optimization techniques to avoid the instability, reduce the unbalanced 
response, and augment the stability limit speed. They adopted the Equivalent Modulus Beam Theory (EMBT) developed by 
Singh and Gupta [17,18]. In fact, EMBT has many limitations and is only valid for symmetric stacking sequences. Simplified 
Homogenized Beam Theory (SHBT) based on Timoshenko’s beam theory has been developed by Sino et al. [14] to consider 
the effects of the stacking sequence and internal damping of composite material. Jacquet-Richardet et al. [15] illustrated 
and validated the theoretical formulation proposed by Sino et al. [14] by developing an experimental setup to analyse the 
dynamic instability of an internally damped rotating composite shaft. More recently, Ben Arab et al. [19] developed ESLT 
based on Timoshenko’s beam theory to consider the effects of stacking sequence, fiber orientations, and shear-normal cou-
pling. ESLT considers the laminated shaft made of several orthotropic layers as an equivalent single layer having mechanical 
properties equivalent to those of all the layers. The authors proved that ESLT is quite adequate for the dynamic analysis of 
rotating composite shafts in both symmetric and non-symmetric stacking sequences.

In this paper, an Euler–Bernoulli shaft finite element formulation based on Equivalent Single Layer Theory (ESLT) is 
adopted. ESLT consists in considering a laminated shaft made of several orthotropic layers as an equivalent single layer hav-
ing mechanical properties equivalent to those of all the layers [19,20]. The developed formulation considers the translatory, 
rotary inertia, and gyroscopic effects as well as the shear transverse effect that was introduced in the shape functions. This 
formulation is developed to analyse the effects of hysteric internal damping, fiber orientation, and stacking sequence on 
natural frequencies, critical speeds, and instability thresholds of internally damped rotating composite shafts. The technical 
contribution of the present investigation is to study the stability behaviour of internally damped rotating composite shaft 
considering the shear transverse effect by developing an Euler–Bernoulli shaft finite element formulation based on Equiva-
lent Single Layer Theory (ESLT). A brief description of the theoretical background concerning the hysteretic internal damping 
modeling is presented. First, the kinetic energy T and the deformation energy � of the rotor system are established. Then, 
the finite element method is employed, and the equation of motion is determined using Lagrange’s equations.

2. Composite shaft

The composite shaft is obtained by winding several layers of embedded fibers on a mandrel. Each layer has an orthotropic 
mechanical behaviour (see Fig. 1).

The generalized Hooke law for an orthotropic material is given by:

{σ } = [Q ] {ε} (1)

where {σ } and {ε} are, respectively, the stress and the strain fields, and [Q ] is the material stiffness matrix. When linked 
to the orthotropic axis, each layer can be characterized by a plane stress state. So, one gets:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ1
σ2
τ23
τ31
τ12

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎣

E1
1−ν12ν21

ν12 E2
1−ν12ν21

0 0 0
ν12 E2

1−ν12ν21

E2
1−ν12ν21

0 0 0
0 0 G23 0 0
0 0 0 G13 0
0 0 0 0 G

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε1
ε2
γ23
γ31
γ12

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2)
12
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where the Young moduli E1 and E2, the shear moduli G23, G13, and G12, and the Poisson ratios ν12 and ν21 are identified 
for each layer in the orthotropic axes (1, 2, 3): 1 is the fiber orientation, 2 is the transversal direction to the fibers, and 3 is 
the perpendicular direction to the layer as shown in Fig. 1b.

The stress–strain relation for a composite shaft including the hysteretic internal damping is given by [11]:

{σ } = [Q ] {ε} + [Q ]ψ {ε̇} (3)

where [Q ]ψ = [Q ] [η] is the damped material stiffness matrix and [η] is the damping matrix of the layer, which can be 
linked to the specific damping capacity matrix [ψ] as follows:

[η] = 1

2π
[ψ] (4)

The dissipative properties of the layer can also be expressed by using the specific damping capacity matrix [ψ] defined 
as:

[ψ] =

⎡
⎢⎢⎢⎣

ψ1 0 0 0 0
0 ψ2 0 0 0
0 0 ψ23 0 0
0 0 0 ψ13 0
0 0 0 0 ψ12

⎤
⎥⎥⎥⎦ (5)

Consequently, the damped material stiffness matrix [Q ]ψ is expressed as a function of the specific damping capacity 
matrix [ψ] as:

[Q ]ψ = 1

2π
[Q ] [ψ] (6)

Let consider an arbitrary layer of the laminate whose fiber orientation makes an angle α with respect to the x axis, as 
shown in Fig. 1b. The stress–strain relation can be written in the global frame (x, y, z) as:

{σ } = [
Q̄
] {ε} + [

Q̄
]ψ {ε̇} (7)

where 
[

Q̄
]

is the transformed material stiffness matrix and 
[

Q̄
]ψ

is the transformed damped material stiffness matrix of 
the layer:[

Q̄
] = [T ]ᵀ [Q ] [T ] and

[
Q̄
]ψ = [T ]ᵀ [Q ]ψ [T ] (8)

where the transformation matrix [T ] is given by [21]:

[T ] =

⎡
⎢⎢⎢⎢⎣

cos2 α sin2 α 0 0 cosα sinα

sin2 α cos2 α 0 0 − cosα sinα
0 0 cosα − sinα 0
0 0 sinα cosα 0

−2 cosα sinα 2 cosα sinα 0 0 cos2 α − sin2 α

⎤
⎥⎥⎥⎥⎦ (9)

The stress–strain relation expressed in Equation (7) can be written as follows:

{σ } =

⎧⎪⎪⎨
⎪⎪⎩

σxx = Q̄ 11εxx + Q̄ ψ
11ε̇xx

τxz = ks Q̄ 55γxz + ks Q̄ ψ
55γ̇xz

τxy = ks Q̄ 66γxy + ks Q̄ ψ

66γ̇xy

(10)

where ks is the shear correction factor and Q̄ i j and Q̄ ψ

i j are the constitutive terms that are related to the fiber orientation 
angle α and to the elastic constants of the principal axes of each orthotropic layer, as follows:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
Q̄ 11 = cos4 (α) Q 11 + sin4 (α) Q 22 + cos2 (α) sin2 (α) (2Q 12 + 4Q 66)

Q̄ 55 = sin2 (α) Q 44 + cos2 (α) Q 55

Q̄ 66 = cos2 (α) sin2 (α) (Q 11 + Q 22 − 2Q 12) +
(

cos2 (α) − sin2 (α)
)2

Q 66

(11)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Q̄ ψ
11 = cos4 (α)ψ1 Q 11 + sin4 (α)ψ2 Q 22 + cos2 (α) sin2 (α) (ψ1 Q 12 + ψ2 Q 12 + 4ψ12 Q 66)

Q̄ ψ
55 = sin2 (α)ψ23 Q 44 + cos2 (α)ψ13 Q 55

Q̄ ψ

66 = cos2 (α) sin2 (α) (ψ1 Q 11 + ψ2 Q 22 − ψ1 Q 12 − ψ2 Q 12) +
(

cos2 (α) − sin2 (α)
)2

ψ12 Q 66

(12)



294 S. Ben Arab et al. / C. R. Mecanique 346 (2018) 291–307
Fig. 2. Displacement field variables.

Fig. 3. Inner and outer radius of the pth layer of the composite shaft.

3. Kinetic and deformation energies

An Euler–Bernoulli shaft based on Equivalent Single Layer Theory (ESLT) is developed in this work. In fact, ESLT consists 
in considering a laminated shaft made of P orthotropic layers as an equivalent single orthotropic layer having mechanical 
properties equivalent to those of all the layers. Indeed, each orthotropic layer contributes with its fiber orientation and its 
distance from the shaft longitudinal axis [19].

The displacement field is described by transverse displacements v and w along the y and z directions, respectively, and 
the slopes θy and θz in x–y and x–z planes, respectively, as shown in Fig. 2.

3.1. Kinetic energy

Integrating over the shaft cross sectional area by summing up the contribution of each orthotropic layer, the kinetic 
energy of the rotating laminated shaft including the translatory, rotary inertia and gyroscopic effects is given by [19]:

T = 1

2

L∫
0

[
Im

(
v̇2 + ẇ2

)
+ Id

(
θ̇2

y + θ̇2
z

)
− 2Ip�θy θ̇z + Ip�2

]
dx (13)

where L is the length of the composite shaft. The mass quantity Im denotes the mass per unit length of the composite shaft, 
while Id and Ip denote respectively the diametrical and the polar moment of inertia of the shaft cross section, defined as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Im = π
P∑

p=1

ρp

(
R2

p − R2
p−1

)

Id = π
4

P∑
p=1

ρp

(
R4

p − R4
p−1

)

Ip = π
2

P∑
p=1

ρp

(
R4

p − R4
p−1

)
(14)

where P represents the number of layers, ρp is the mass density, and R p−1 and R p are, respectively, the inner and the outer 
radius of the pth layer of the composite shaft as shown in Fig. 3. The term Id

(
θ̇2

y + θ̇2
z

)
, given in Equation (13), represents 

the rotary inertia effect and 2 Ip � θy θ̇z accounts for the gyroscopic effect.
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Fig. 4. Coordinates of the geometric center C and of an arbitrary point G in the shaft cross section axis system.

3.2. Deformation energy

Considering small deformations, the longitudinal strain subjected to the bending efforts is given by:

εxx = z
∂θy

∂x
− y

∂θz

∂x
(15)

Deriving the longitudinal strain expression (15) with respect to time, one gets:

ε̇xx = z
∂θ̇y

∂x
− y

∂θ̇z

∂x
(16)

According to the Euler–Bernoulli equations, the relations between the displacements v∗ and w∗ of the geometric center 
of the shaft cross section and the slopes θy and θz about the y and z axis, respectively, are given as:

θy = −∂ w∗

∂x
and θz = ∂v∗

∂x
(17)

Substituting Equations (17) into Equations (15) and (16), one gets:⎧⎪⎪⎨
⎪⎪⎩

εxx = −z
∂2 w∗

∂x2
− y

∂2 v∗

∂x2

ε̇xx = −z
∂2 ẇ∗

∂x2
− y

∂2 v̇∗

∂x2

(18)

The composite shaft deformation energy is given by:

� = 1

2

∫
V

εᵀσ dV (19)

Considering the longitudinal strain subjected to the bending εxx and using Equation (10), the internally damped com-
posite shaft deformation energy can be expressed as:

� = 1

2

∫
V

(
Q̄ 11ε

2
xx + Q̄ ψ

11εxxε̇xx

)
dV (20)

Substituting Equations (18) into the composite shaft deformation energy expression (20) yields:

� = 1

2

∫
V

Q̄ 11

(
−z

∂2 w∗

∂x2
− y

∂2 v∗

∂x2

)2

dV + 1

2

∫
V

Q̄ ψ
11

(
−z

∂2 w∗

∂x2
− y

∂2 v∗

∂x2

)(
−z

∂2 ẇ∗

∂x2
− y

∂2 v̇∗

∂x2

)
dV (21)

Accordingly to Fig. 4, the relations between the displacements v∗ and w∗ and the displacements v and w measured in 
the inertial axes system are:{

v∗ = w sin (�t) + v cos (�t)

w∗ = w cos (�t) − v sin (�t)
(22)

Deriving Equation (22) with respect to time, one gets the velocity expressions:{
v̇∗ = ẇ sin (�t) + w� cos (�t) + v̇ cos (�t) − v� sin (�t)

ẇ∗ = ẇ cos (�t) − w� sin (�t) − v̇ sin (�t) − v� cos (�t)
(23)
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Fig. 5. Shaft finite element.

Substituting Equations (22) and (23) into composite shaft deformation energy expression (21) and integrating over the 
shaft cross sectional area by summing up the contribution of each orthotropic layer, the internally damped composite shaft 
deformation energy can be expressed as:

� = 1

2
A11

L∫
0

[(
∂2 v

∂x2

)2

+
(

∂2 w

∂x2

)2]
dx

+ 1

2
Aψ

11

L∫
0

[(
∂2 v

∂x2

∂2 v̇

∂x2

)
+

(
∂2 w

∂x2

∂2 ẇ

∂x2

)]
dx

+ 1

2
Aψ

11�

L∫
0

[(
∂2 v

∂x2

∂2 w

∂x2

)
−

(
∂2 w

∂x2

∂2 v

∂x2

)]
dx (24)

where the second and the third terms are related to the hysteretic internal damping, and the terms A11 and Aψ
11 are given 

as follows:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

A11 = π
4

P∑
p=1

Q̄ 11p

(
R4

p − R4
p−1

)

Aψ
11 = π

4

P∑
p=1

Q̄ ψ
11p

(
R4

p − R4
p−1

) (25)

4. Finite element formulation

The developed shaft finite element has two nodes, as shown in Fig. 5. For each node, the element has four degrees of 
freedom: two displacements v and w , and two slopes θy and θz about y and z axes, respectively.

The nodal degrees of the freedom vector of the shaft element is given by (see Fig. 5):{
qe} = {

v1 w1 θy1 θz1 v2 w2 θy2 θz2

}ᵀ (26)

which, accordingly to the relations (17), includes the nodal vectors {qe
v } and {qe

w} given by:{
qe

v

} = {
v1 θz1 v2 θz2

}ᵀ{
qe

w

} = {
w1 −θy1 w2 −θy2

}ᵀ (27)

The displacement functions v and w at the finite element domain are interpolated as:

v = [N] {qe
v} and w = [N] {qe

w} (28)

where [N] is the shape function matrix. Under the Euler–Bernoulli beam hypothesis [22] and considering the transverse 
shear effect through the parameter �, the shape function matrix is defined as:
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[N] = 1

4(1 + �)

[
N1 N2 N3 N4

]
(29)

Using the normalized coordinate ξ ∈ [−1, 1] with its origin at x = Le/2, the one-dimensional interpolation functions in 
terms of the normalized coordinate are defined as:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

N1 = 2 − 3ξ + ξ3 + 2�(1 − ξ)

N2 = J
(

1 − ξ − ξ2 + ξ3 + �
(

1 − ξ2
))

N3 = 2 + 3ξ − ξ3 + 2�(1 + ξ)

N4 = J
(
−1 − ξ + ξ2 + ξ3 − �

(
1 − ξ2

))
(30)

where J is the Jacobian of the transformation.
For a composite shaft, the transverse shear effect parameter �, presented in Equations (29) and (30), is given by [23]:

� = 12A11

ks(A55 + A66)L2
e

(31)

where the term A11 is defined in Equation (25) and the terms A55 and A66, including the contribution of each orthotropic 
layer, are given as follows:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

A55 = π
P∑

p=1

Q̄ 55p

(
R2

p − R2
p−1

)

A66 = π
P∑

p=1

Q̄ 66p

(
R2

p − R2
p−1

) (32)

4.1. Elementary mass and gyroscopic matrices

The rotating shaft kinetic energy described in Equation (13) can be expressed as the sum of the elemental kinetic 
energy leading to the definition of the elementary mass and gyroscopic matrices. Adding the contribution of all the E finite 
elements, the kinetic energy can be expressed as:

T =
E∑

e=1

T e (33)

Using the interpolation (28) for the displacement functions v and w and the kinetic energy expression (13), the elemen-
tal kinetic energy T e can be expressed as:

T e = 1

2
Im

Le∫
0

[
{q̇e

v}ᵀ [N]ᵀ [N] {q̇e
v} + {q̇e

w}ᵀ [N]ᵀ [N] {q̇e
w}

]
dx

+ 1

2
Id

Le∫
0

[
{q̇e

v}ᵀ
d

dx
[N]ᵀ

d

dx
[N] {q̇e

v} + {q̇e
w}ᵀ d

dx
[N]ᵀ

d

dx
[N] {q̇e

w}
]

dx

− Ip�

Le∫
0

[
{qe

v}ᵀ
d

dx
[N]ᵀ

d

dx
[N] {q̇e

w}
]

dx (34)

So, the kinetic energy can be written as:

T =
E∑

e=1

T e =
E∑

e=1

(
1

2

{
q̇e}ᵀ [Me] {q̇e}+ 1

2

{
qe}ᵀ [Ge (�)

] {
q̇e}) (35)

where [Me] is the elementary mass matrix and [Ge (�)] is the elementary gyroscopic matrix, which are expressed in 
Appendix A (respectively, Equations (45) and (46)).
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4.2. Elementary stiffness, dissipation and circulation matrices

The deformation energy described in Equation (24) can be expressed as the sum of the elemental deformation energy 
leading to the definition of the elementary stiffness, dissipation and circulation matrices. Adding the contribution of all the 
E finite elements, the deformation energy can be expressed as:

� =
E∑

e=1

�e (36)

Using the interpolation (28) for the displacement functions v and w and the deformation energy expression (24), the 
elemental internally damped composite shaft deformation energy �e can be expressed as:

�e = 1

2
A11

Le∫
0

[
{qe

v}ᵀ
d2

dx2 [N]ᵀ
d2

dx2 [N] {qe
v} + {qe

w}ᵀ d2

dx2 [N]ᵀ
d2

dx2 [N] {qe
w}

]
dx

+ 1

2
Aψ

11

Le∫
0

[
{qe

v}ᵀ
d2

dx2 [N]ᵀ
d2

dx2 [N] {q̇e
v} + {qe

w}ᵀ d2

dx2 [N]ᵀ
d2

dx2 [N] {q̇e
w}

]
dx

+ 1

2
Aψ

11�

Le∫
0

[
{qe

v}ᵀ
d2

dx2 [N]ᵀ
d2

dx2 [N] {qe
w} − {qe

w}ᵀ d2

dx2 [N]ᵀ
d2

dx2 [N] {qe
v}
]

dx (37)

So, the internally damped composite shaft deformation energy can be written as:

� =
E∑

e=1

�e =
E∑

e=1

(
1

2

{
qe}ᵀ [K e] {qe}+ 1

2

{
qe}ᵀ [He

d

] {
q̇e}+ 1

2

{
qe}ᵀ [He

c (�)
] {

qe}) (38)

where [K e] is the elementary stiffness matrix and 
[

He
d

]
and 

[
He

c (�)
]

are the elementary matrices related to the hysteretic 
internal damping, which are expressed in Appendix B (respectively, Equations (49), (50) and (51)).

5. Equation of motion

The development for the definition of the equation of motion of the hysteretic damped rotating system is given in 
Appendix C; it is expressed as follows:

[M]{q̈} +
(
[G (�)] + [Kd]

)
{q̇} +

(
[K ] + [Kc (�)]

)
{q} = {0} (39)

where spatial matrices are of order n for an n-degree-of-freedom system.
The dynamic equilibrium equation (39) can be written in the first-order form as:

[A] {ẋ} + [B (�)] {x} = {0} (40)

which is the state-space form of the equation of motion, where the 2n × 2n matrix [A] is a real symmetric positive definite 
matrix, the 2n × 2n matrix [B] is a real non-symmetric matrix, and the 2n vector {x} is the state-space vector, defined as:

[A] =
[

[M] [0]
[0] [M]

]
, [B (�)] =

[
[0] − [M]

[K ] + [Kc (�)] [G (�)] + [Kd]

]
, {x} =

{
q
q̇

}
(41)

The solutions to Equation (40) can be assumed to be:

{x} = {X} eλt (42)

which, after introduction in (40), leads to the generalized eigenvalue problem:

[B (�)]{X} = −λ[A]{X} (43)

which has 2n eigensolutions (λr, Xr). The eigenvalues λr are obtained as n pairs of complex conjugates of the form:

λr = μr ± jωr (44)

where the imaginary parts ωr are the natural frequencies and the real parts μr characterise the stability of the system. In 
fact, if μr > 0, the system is unstable [11].
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Fig. 6. Composite shaft with two discs supported by two bearings.

Table 1
Carbon/epoxy shaft material properties.

E1 (GPa) E2 (GPa) Gij (GPa) ν12 ρ (kg/m3) ψ1(%) ψ2(%) ψ12(%)

172.7 7.2 3.76 0.3 1446.2 0.45 4.22 7.05

Table 2
Stacking sequence effects on the fundamental natural frequency (Hz) and the instability threshold (rpm).

Stacking sequence ω1 (Hz) Instability threshold (rpm)

EMBT [11] SHBT [14] ESLT EMBT [11] SHBT [14] ESLT

1: [±75]8S 16.88 16.88 17.22 1167 1167 1210
2: [902,45,0]S 42.76 39.87 42.20 6956 5864 6481
3: [90,0,90,45,90,45,0,90] 42.76 40.08 42.41 6965 5913 6559
4: [90,45,02]S 52.37 50.71 51.79 12064 10981 11060
5: [02,452,902,02] 53.37 50.91 51.83 12064 11106 11084
6: [02,90,45]S 52.37 50.92 51.96 12064 11111 11165
7: [45,0,45,0,90,0,90,0] 52.37 51.36 52.07 12064 11395 11235

6. Results and discussion

6.1. Validation case study – stacking sequence effects

The test rotor, studied first by Pereira and Silveira [11] and then by Sino et al. [14], which is a composite shaft with two 
rigid steel discs supported by two bearings at the ends as shown in Fig. 6, is considered.

This structure presents the following geometric and material properties:

• carbon/epoxy shaft: L = 1.2 m, outer radius = 0.048 m, wall thickness = 0.008 m; shear correction factor: ks = 1/2 1;
• steel disk: inner radius = 0.048 m, outer radius = 0.15 m, thickness = 0.05 m;
• anisotropic bearings: K yy = 1 × 108 N/m, Kzz = 1 × 107 N/m, K yz = Kzy = 0 N/m.

The carbon/epoxy shaft material properties are given in Table 1.
Table 2 gives the fundamental natural frequency and the instability threshold obtained from the proposed finite element 

based on ESLT for different stacking sequences in symmetric as well as non-symmetric configurations with eight layers of 
equal thickness, and presents a comparison between the results obtained using ESLT and those available in the literature 
using EMBT, as proposed by Pereira and Silveira [11] and SHBT proposed by Sino et al. [14].

The instability thresholds obtained using ESLT shown in Table 2 are determined from Fig. 7, where the real parts of the 
complex eigenvalues are presented as a function of the rotational speed of the rotor. In fact, when the real parts of the 
complex eigenvalues become positive, instability occurs.

It appears from Table 2 that the obtained results are in good agreement with those obtained using both theories and are 
closer to the ones obtained by Pereira and Silveira [11] using a formulation based on EMBT. In fact, Pereira and Silveira [11]
used Euler–Bernoulli’s theory based on EMBT, excluding the transverse shear. Actually, Singh and Gupta [17,18] showed that 
EMBT is quite adequate for the estimation of the dynamic behaviour of rotating composite shafts, but predicts inaccurate 
results for non-symmetric stacking sequences. On the other hand, the SHBT proposed by Sino et al. [14] used Timoshenko’s 

1 For thin tubes: ks = 1/2 [8,19,24].
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Fig. 7. Real part of the complex eigenvalue of the first forward mode.

Fig. 8. Campbell diagram: second stacking sequence [902,45,0]S .

beam theory, considering the transverse shear effects and the stacking sequence effects. However, the formulation developed 
in this work employs Euler–Bernoulli’s shaft theory based on ESLT, including transverse shear and the stacking sequence 
effects as well as hysteretic internal damping effects. It can be concluded that the developed Euler–Bernoulli finite element 
formulation based on ESLT is adequate for the dynamic and stability analysis of rotating composite shafts considering 
transverse shear, stacking sequence, and hysteretic internal damping effects.

Stacking sequences 2–3 are composed of four layers with fiber orientations at 90◦ , two layers at 45◦ , and two layers at 
0◦ , whereas stacking sequences 4–7 are composed of four layers with fiber orientations at 0◦ , two layers at 45◦ , and two 
layers at 90◦ . Each layer contributes as a function of its fiber orientation and of its distance from the longitudinal shaft 
axis. When comparing stacking sequences 2 to 7, differences of 19% for the fundamental natural frequency and 42% for 
the associated instability threshold are obtained. When comparing the instability threshold values obtained for the stacking 
sequence 1 with 2 and those obtained for the stacking sequence 3 with 4, 5, 6 and 7 (see Table 2), it can be shown that 
the greater the number of layers with fibers oriented at 90◦ and positioned at the outer and the inner radius, the more the 
instability may appear at lower rotational speed.

A modal analysis is performed to see the effects of changing rotational speeds, from a non-rotating to a high rotational 
speed and to follow the frequencies associated with the bending modes. Figs. 8 and 9 show the Campbell diagrams for for-
ward and backward natural frequencies over a wide speed range for the second and the fifth stacking sequences respectively 
(see Table 2). From this figures, it can observed that the frequencies of the bending modes do change over the rotational 
speed range. The backward mode (BW) decreases in frequency, while the forward mode (FW) increases.

The Campbell diagrams, corresponding to the second and the fifth stacking sequence (see Table 2) that are shown 
respectively in Figs. 8 and 9, perform the evolution of natural frequencies with rotational speeds and explain the meaningful 
influence of stacking sequences on natural frequencies, critical speeds, and instability thresholds. Variations of 18% for 
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Fig. 9. Campbell diagram: fifth stacking sequence [02,452,902,02].

fundamental natural frequencies and 41% for the instability thresholds are obtained when comparing the second and the 
fifth stacking sequences. As it is expected, for different stacking sequences, the instability appears only in the supercritical 
ranges of the forward bending modes (FW). The backward bending modes (BW) are stable for all the rotational speeds. 
For the second stacking sequence, instability occurs in the first and the second forward bending modes (FW1 and FW2), 
whereas, for the fifth stacking sequence, instability occurs just in the first forward bending mode (FW1) in the considered 
rotational speed range. For the fifth stacking sequence, critical speeds are higher than those of the second stacking sequence, 
and the rotor speed surpasses the third critical speed, without producing rotor instability, while, for the second stacking 
sequence, instability appears following the second critical speed. This behaviour is explained by the fact that the greater the 
number of layers with fibers oriented at 90◦ and positioned at the outer and the inner radius such as the second stacking 
sequence [902, 45, 0]S , the more instability may appear at lower rotational speed. Consequently, it can be concluded that 
the greater the number of layers with fibers oriented close to the longitudinal direction of the shaft (fibers oriented at 0◦) 
and positioned at the outer and the inner radius of the shaft, the more they contribute to the shaft rigidity and, therefore, 
the higher natural frequencies and critical speeds are, and the lower the internal composite materials damping is and, thus, 
the more instability appears at higher rotational speed.

6.2. Fiber orientation effects

In order to show the effects of fiber orientations on natural frequencies, critical speeds and instability threshold, a rotor 
with the same geometric and material properties as the test rotor (see Section 6.1) with two rigid steel discs and supported 
by two isotropic bearings at the ends (K yy = Kzz = 1 × 108 N/m) is considered. The stacking sequence of the composite 
material consists of one layer [α]. Fig. 10 shows the Campbell diagram of the first pairs of the bending mode and the rotor 
instability region (symbolized by a dashed line).

It can be observed from Fig. 10 that the backward modes (BW) are stable at all rotational speeds, whereas the forward 
modes (FW) destabilize from the first critical speed. Fig. 11 shows the instability threshold for different fiber orientations. 
The instability region corresponds to the region above the curve.

As it was concluded in the above sections, the higher is the fiber orientation angle, higher is the internal damping of 
the composite material matrix, and therefore instability occurs at lower rotational speed. It can be observed from both 
Figs. 10 and 11 that, for small fiber orientation angles, the internal composite material damping has a lesser influence on 
rotor instability, which occurs at higher rotational speed compared to the large fiber orientation angles. It can be concluded 
that the closer the fiber is oriented to the longitudinal direction of the shaft, the higher the natural frequencies and critical 
speeds are; at higher rotational speeds, rotor instability appears.

6.3. Effects of the properties of the bearings

To analyse the combined influence of internal composite material damping and of damping by external bearings on 
natural frequencies, critical speeds, and instability thresholds, a rotor with the same geometric and material properties as the 
test rotor (see Section 6.1) with two rigid steel discs and supported by two isotropic bearings at the ends is considered. As 
the bearings are isotropic, their stiffness and their damping are the same in two orthogonal directions: K yy = Kzz = 1 × 108

N/m and C yy = Czz . Isotropic bearings with coupled terms K yz = Kzy = 1 × 107 N/m are also considered. The composite 
shaft stacking sequence is balanced and symmetric, with eight layers of equal thickness: [±15]8S .
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Fig. 10. Fiber orientation effects on the first bending mode of the rotating composite shaft (– FW1; - - BW1).

Fig. 11. Rotor instability region for different fiber orientations.

Considering isotropic bearings without external damping, Fig. 12 shows the Campbell diagram of the rotating composite 
shaft supported by isotropic bearings, while Fig. 13 shows the Campbell diagram of the rotating composite shaft supported 
by isotropic bearings with coupled terms.

It can be seen from Fig. 12 that instability occurs at the critical speeds for the forward modes (FW), while, comparing 
Figs. 12 and 13, it can be observed that the associated coupling terms destabilize the forward modes at rotational speeds 
slightly higher than the critical speeds.

Considering now isotropic bearings with external damping, Figs. 14 and 15 show the Campbell diagrams of the rotating 
composite shaft supported by isotropic bearings with different values of external damping. It can be observed that the 
external damping introduced by the bearings increases quite the threshold instability and that, for higher external damping, 
the rotor would be stable at all rotational speeds, as shown in Fig. 15.

Fig. 16 shows the Campbell diagrams of the rotating composite shaft supported by isotropic bearings with external 
damping and coupled terms. Comparing Figs. 14 and 16, it can be observed that the coupled terms introduced by the 
bearings increase slightly the threshold instability. It can be concluded that rotor stability is improved by increasing the 
damping and the coupled terms provided by the bearings, whereas increasing internal composite material damping may 
reduce the instability threshold.
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Fig. 12. Case: isotopic bearings without external damping and coupled terms.

Fig. 13. Case: isotopic bearings without external damping and with coupled terms K yz = Kzy = 1 × 107 N/m.

Fig. 14. Case: isotopic bearings without coupled terms and with external damping C yy = Czz = 1 × 102 N/m/s.
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Fig. 15. Case: isotopic bearings without coupled terms and with external damping C yy = Czz = 1 × 104 N/m/s.

Fig. 16. Case: isotopic bearings with external damping C yy = Czz = 1 × 102 N/m/s and coupled terms K yz = Kzy = 1 × 107 N/m.

7. Conclusion

This work deals with the stability analysis of internally damped rotating composite shafts. Euler–Bernoulli’s shaft finite 
element formulation based on Equivalent Single Layer Theory (ESLT) is developed and compared to Equivalent Modulus 
Beam Theory (EMBT) and Simplified Homogenized Beam Theory (SHBT). The agreement has been found to be good in terms 
of natural frequencies and instability threshold compared with results available in the literature using different theories. The 
developed formulation considers the effects of fiber orientation, stacking sequence for symmetric as well as non-symmetric 
configurations, transverse shear and hysteretic internal damping of the composite material. A study of the effects of different 
parameters on the natural frequencies, critical speeds, and instability threshold of rotating composite shafts is carried out. 
This analysis illustrates that the higher is the fiber orientation angle, the higher is the internal damping introduced by 
the composite material, and therefore, the instability regions appear at lower rotational speed. This study highlights also 
that rotor stability can be improved by increasing bearing damping, although increasing internal material damping can 
reduce the instability threshold. Consequently, fiber orientation, stacking sequence and bearing properties are considered 
as optimization parameters for the dynamic behaviour and, in particulary, for the stability analysis of internally damped 
rotating composite shafts.
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Appendix A. Elementary mass matrix [Me] and elementary gyroscopic matrix [Ge (�)]

[
Me] = Le

840 (1 + �)2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M1 0 0 M2 M3 0 0 M4
M1 −M2 0 0 M3 −M4 0

M5 0 0 M4 M6 0
M5 −M4 0 0 M6

M1 0 0 −M2
M1 M2 0

Sym. M5 0
M5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(45)

[
Ge (�)

] = Ip�

60Le (1 + �)2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 G1 G2 0 0 −G1 G2 0
0 0 G2 G1 0 0 G2

0 G3 G2 0 0 G4
0 0 G2 −G4 0

0 G1 −G2 0
0 0 −G2

Skew-Sym. 0 G3
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(46)

The elementary mass components presented in Equation (45) are given by:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M1 = Im

(
312 + 588� + 280�2

)
+ 1008 Id

L2
e

M2 = −ImLe

(
44 + 77� + 35�2

)
− (84 − 420�)Id

Le

M3 = Im

(
108 + 252� + 140�2

)
− 1008 Id

L2
e

M4 = ImLe

(
26 + 63� + 35�2

)
− (84 − 420�)Id

Le

M5 = ImL2
e

(
8 + 14� + 7�2

)
+ Id

(
112 + 140� + 280�2

)
M6 = −ImL2

e

(
6 + 14� + 7�2

)
− Id

(
28 + 140� − 140�2

)

(47)

and the elementary gyroscopic terms presented in Equation (46) are given by:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

G1 = −72

G2 = −Le (6 − 30�)

G3 = −L2
e

(
8 + 10� + 20�2

)
G4 = L2

e

(
2 + 10� − 10�2

)
(48)

Appendix B. Elementary stiffness matrix [K e] and elementary matrices related to the hysteretic internal damping 
[

H e
d

]

and 
[

H e
c (�)

]

[
K e] = A11

(1 + �) L3
e

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12 0 0 −6Le −12 0 0 −6Le
12 6Le 0 0 −12 6Le 0

(4 + �) L2
e 0 0 −6Le (2 − �) L2

e 0
(4 + �) L2

e 6Le 0 0 (2 − �) L2
e

12 0 0 6Le
12 −6Le 0

Sym. (4 + �) L2
e 0

(4 + �) L2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(49)
e
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[
He

d

] = Aψ
11

(1 + �) L3
e

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12 0 0 −6Le −12 0 0 −6Le
12 6Le 0 0 −12 6Le 0

(4 + �) L2
e 0 0 −6Le (2 − �) L2

e 0
(4 + �) L2

e 6Le 0 0 (2 − �) L2
e

12 0 0 6Le
12 −6Le 0

Sym. (4 + �) L2
e 0

(4 + �) L2
e

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(50)

[
He

c (�)
] = Aψ

11�

(1 + �) L3
e

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −12 −6Le 0 0 12 −6Le 0
0 0 −6Le −12 0 0 −6Le

0 − (4 + �) L2
e −6Le 0 0 − (2 − �) L2

e
0 0 −6Le (2 − �) L2

e 0
0 −12 6Le 0

0 0 6Le

Skew-Sym. 0 − (4 + �) L2
e

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(51)

Appendix C. Equation of motion

The relation between the elemental degrees of freedom 
{

qe
}

and the global degrees of freedom {q} is established through 
the connectivity matrices [Re], expressed as follows:

{
qe} = [

Re] {q} (52)

Introducing the connectivity (52) into the expression of kinetic energy (35) gives:

T = 1

2
{q̇}ᵀ [M] {q̇} + 1

2
{q}ᵀ [G (�)] {q̇} (53)

where the assembled global mass [M] and gyroscopic [G (�)] matrices are defined by:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[M] =
E∑

e=1

[
Re]ᵀ [Me] [Re]

[G (�)] =
E∑

e=1

[
Re]ᵀ [Ge (�)

] [
Re] (54)

Introducing also the connectivity (52) into the expression of internally damped composite shaft deformation energy (38)
gives:

� = 1

2
{q}ᵀ [K ] {q} + 1

2
{q}ᵀ [Hd] {q̇} + 1

2
{q}ᵀ [Hc (�)] {q} (55)

where the assembled stiffness matrix [K ] and the assembled matrices related to the hysteretic internal damping matrices 
[Hd] and [Hc (�)] are defined by:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[K ] =
E∑

e=1

[
Re]ᵀ [K e] [Re]

[Hd] =
E∑

e=1

[
Re]ᵀ [He

d

] [
Re]

[Hc (�)] =
E∑

e=1

[
Re]ᵀ [He

c (�)
] [

Re]
(56)

Applying Lagrange’s equations to the expressions of kinetic energy (53) and of deformation energy (55) yields the fol-
lowing equation of motion for the hysteretic damped rotating system:

[M] {q̈} +
(

[G (�)] + [Hd]
)

{q̇} +
(

[K ] + [Hc (�)]
)

{q} = {0} (57)
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where [M] is the symmetric mass matrix, [G (�)] is the skew-symmetric gyroscopic matrix, which is rotational speed �
dependent, [K ] is the stiffness matrix, and [Hd] and [Hc (�)] are the matrices related to hysteretic internal damping. {q̈}, 
{q̇} and {q} are respectively the nodal acceleration, nodal velocity and nodal displacement vectors.

Using the equivalence between hysteretic damping and viscous damping, the symmetric dissipation matrix [Kd] and the 
skew-symmetric circulation matrix [Kc (�)], which is rotational speed � dependent, are obtained as follows [25]:⎧⎪⎨

⎪⎩
[Kd] = 1

π
[Hd] [ω]−1

[Kc (�)] = 1

π
[Hc (�)] [ω]−1

(58)

where [ω] is the diagonal natural frequencies matrix of the undamped non-rotating system [26].
Therefore, the equation of motion of the hysteretic damped rotating system can be written as follows:

[M]{q̈} +
(
[G (�)] + [Kd]

)
{q̇} +

(
[K ] + [Kc (�)]

)
{q} = {0} (59)
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