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In this paper, we extend the energy-Casimir stability method for deterministic Lie–Poisson 
Hamiltonian systems to provide sufficient conditions for stability in probability of stochastic 
dynamical systems with symmetries. We illustrate this theory with classical examples of 
coadjoint motion, including the rigid body, the heavy top, and the compressible Euler 
equation in two dimensions. The main result is that stable deterministic equilibria remain 
stable in probability up to a certain stopping time that depends on the amplitude of the 
noise for finite-dimensional systems and on the amplitude of the spatial derivative of the 
noise for infinite-dimensional systems.
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r é s u m é

Dans cet article, nous étendons la méthode d’énergie-Casimir de stabilité des systèmes 
déterministes hamiltoniens de Lie–Poisson afin de fournir des conditions suffisantes de 
stabilité en probabilité des systèmes dynamiques stochastiques par des symétries. Nous 
illustrons cette théorie par des exemples classiques de mouvements coadjoints, comme le 
corps solide, la toupie pesante et l’équation d’Euler compressible en deux dimensions. Le 
principal résultat de cette extension est que les équilibres relatifs déterministes stables 
restent stables en probabilité jusqu’à un certain temps d’arrêt. Ce dernier dépend, d’une 
part, de l’amplitude du bruit pour les systèmes de dimensions finies et, d’autre part, de 
l’amplitude de la dérivée spatiale du bruit pour les systèmes de dimensions infinies.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In 1966, V. I. Arnold’s fundamental paper [1] showed that ideal fluid mechanics can be cast into a geometric framework. 
In this framework of differential geometry and Lie group symmetry, the mathematical properties of ideal (nondissipative) 
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classical fluid mechanical systems are easily identified. For example, Arnold’s geometric interpretation [1] of ideal incom-
pressible fluid dynamics as geodesic motion on the group of diffeomorphisms was soon followed by a series of fundamental 
results in analysis, e.g., in [2]. We shall be interested here in another development of Arnold’s geometric approach to fluid 
dynamics, which concerns the nonlinear stability of equilibrium (time-independent) solutions. A nonlinear fluid stability 
method based on the Lyapunov method was already introduced in the early days of geometric mechanics by Arnold in [3,4]
for ideal incompressible fluid flows, whose L2 kinetic energy norm provides the metric for their geodesic interpretation. This 
approach was extended in [5] to the energy-Casimir method, which allows for both kinetic and potential energy contribu-
tions and, hence, may be applied to a large class of ideal mechanical systems. This class of systems comprises Hamiltonian 
systems that admit reduction by Lie group symmetries. Such systems possess Lie–Poisson brackets whose null eigenvectors 
correspond to variational derivatives of conserved quantities called Casimirs. The Casimirs commute under the Lie–Poisson 
bracket with any functionals on the symmetry-reduced space, as well as with the system Hamiltonian itself. For Hamiltonian 
systems that do not have a Casimir function, the energy-momentum method, developed in [6], is used instead. This method 
uses momentum maps instead of the Casimirs to obtain stability results.

Interest has been growing recently in stochastic perturbations of mechanical systems with symmetries whose dynam-
ics can be investigated in the framework of geometric mechanics. The aim of this new science of stochastic geometric 
mechanics is to extend to stochastic systems the mathematical understanding gained for deterministic systems by using 
differential geometry and Lie groups. The theory of stochastic canonical Hamiltonian systems began with Bismut [7], and 
was recently updated in geometric terms in [8]. This theory was extended to stochastic ideal fluid dynamics in [9] by using 
a Lie-group symmetry reduction of a stochastic Hamilton principle. The general theory was developed and illustrated further 
for finite-dimensional Euler–Poincaré variational principles with symmetry, leading to noncanonical stochastic Hamiltonian 
mechanical systems in [10,11].

The present work will seek sufficient conditions for the probabilistic stability of critical points of stochastic geometric 
mechanics systems, by using an extension of the energy-Casimir method. For this endeavour, we will need to introduce an 
appropriate notion of stability in probability; so that a stochastic counterpart of the energy-Casimir method can be devel-
oped and applied to stochastic dynamical systems. The main result of this paper is the proof that a deterministically stable 
stationary solution remains stable in probability up to a finite stopping time, for multiplicative stochastic perturbations that 
preserve coadjoint orbits. This theorem applies only if unique solutions to the stochastic process exist. However, since the 
stability in probability is valid only for finite time, existence and uniqueness of solutions is only needed locally in time.

Plan of the paper. Section 2 reviews the theory of stochastic perturbations of mechanical systems with symmetries de-
veloped by [9,10]. It also distinguishes between the notions of stability in the deterministic and stochastic settings, in the 
context of the deterministic energy-Casimir method. Section 3 forms the core of the paper, in which the stochastic energy-
Casimir method is developed. Section 4 then illustrates the stochastic modifications of the energy-Casimir stability analysis 
for several classical examples, including the rigid body, the heavy top, and compressible Euler equations.

2. Preliminaries

2.1. Stochastic mechanical systems with symmetries

This section begins with defining the type of stochastic perturbations of mechanical systems that we will study in this 
work. For further detail, we refer the interested reader to [10,11] for finite-dimensional systems and to [9] for infinite-
dimensional systems. Although the theory has been studied quite generally in [11], here we will restrict ourselves to the 
examples in [10] and [9]. Let G be a Lie group and g its Lie algebra. For a probability space (�, Ft , P ), we consider a 
Wiener process Wt defined with respect to the standard filtration Ft . The construction is based on the following stochastic 
Hamilton–Pontryagin variational principle: δS = 0 for the stochastic action integral,

S(ξ, g,μ) =
∫

l(ξ)dt +
∫ 〈

μ,◦ g−1dg − ξ dt +
∑

i

σi ◦ dW i
t

〉
(1)

In this formula, g ∈ G , ξ ∈ g, μ ∈ g∗ , where g∗ is the dual of the Lie algebra g under the non-degenerate pairing 〈·, ·〉. 
The vector fields σi ∈ g represent constant multiples of Lie algebra basis elements and the symbol ◦ denotes Stratonovich 
stochastic integrals. The action integral (1) is invariant under left translations of the group G . We refer the reader to [12–15]
for more details on the Hamilton–Pontryagin principle and to [16,15] for the use of Lie groups. Upon taking free variations 
δξ, δμ and δg , and rearranging the terms, we find the momentum map relation δl

δξ
= μ and the Euler–Poincaré equation 

for its stochastic coadjoint motion,

dμ = ad∗
(◦g−1dg)

μ = ad∗
ξμdt + ad∗

σi
μ ◦ dW i

t (2)

where the relation ◦g−1dg = ξ dt − ∑
i σi ◦ dW i

t for the left-invariant reduced velocity is imposed by variations with re-
spect to μ, regarded as a Lagrange multiplier. Thus, the solutions to the stochastic Euler–Poincaré equation (2) preserve 
coadjoint orbits, even in the presence of noise. Besides the coadjoint orbits, other quantities conserved by the stochastic 
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Euler–Poincaré equation are called Casimir functions, denoted by C . The unique characterisation of such functions is that, 
for any function F defined on the phase space, the Casimir functions Poisson commute with F , that is, for a (Lie)–Poisson 
bracket {·, ·} and any function F ,

{C, F } = 0

As in many applications, systems depend on extra quantities, and in such case the Lagrangian l(ξ) is replaced by l(ξ, q)

to account for the explicit dependence on q ∈ V ∗ , with V a vector space upon which the Lie group G acts; the stochastic 
Euler–Poincaré equations are then

dμ + (
ad∗

ξμ + r � q
)

dt +
∑

i

ad∗
σi

μ ◦ dW i
t = 0

dq + q ξ dt +
∑

i

q σi ◦ dW i
t = 0

(3)

where r = ∂h
∂q , concatenation q ξ denotes the left Lie algebra action of ξ ∈ g on q ∈ V ∗ and � : V × V ∗ → g∗ is defined as 

〈r � q, ξ〉 = −〈qξ, r〉, with appropriate pairings. According to [17], the σi could depend on the advected quantities q, as well, 
but we will restrict ourselves to the case where they are constant. The two equations in (3) can, in fact, be written as a 
single equation, upon noticing their relation to the coadjoint operator for the semidirect product Lie algebra g�V , namely,

d(μ,q) + ad∗
(ξ,r)(μ,q)dt +

∑
i

ad∗
(σi ,0)(μ,q) ◦ dW i

t = 0 (4)

Consequently, stochastic Euler–Poincaré systems with advected variables undergo coadjoint motion for semidirect product 
Lie groups. This means that the energy-Casimir stability method will directly transfer to this more general case. We refer 
the reader to [18] for more details about this theory in the deterministic case and to [10] for the stochastic derivation. These 
semidirect-product Euler–Poincaré equations include the heavy top and the compressible 2D Euler equation, as we will see 
in the examples in section 4.

Provided the Lagrangian l(ξ) in (1) is hyper-regular, the stochastic Euler–Poincaré equation (4) can be Legendre trans-
formed into the stochastic Lie–Poisson equation

d f (μ) = { f ,h}dt +
∑

i

{ f ,�i} ◦ dW i
t (5)

where h(μ) = 〈μ, ξ〉 − l(ξ) is the standard Hamiltonian, �i(μ) = 〈σi, μ〉 is called the stochastic potential and {·, ·} is the Lie–
Poisson bracket for the smooth functions f , h : g∗ →R. This means that the stochastic Lie–Poisson system (5) is Hamiltonian 
in the sense of [7], with stochastic Hamiltonian

H(μ) := h(μ)dt +
∑

i

�i(μ) ◦ dW i
t (6)

Remark 1 (Energy conservation). Notice that the stochastic extension in (6) breaks the time-translation invariance of the 
original deterministic Hamiltonian equation. Consequently, it breaks the energy conservation assumed in applying the de-
terministic energy-Casimir method.

2.2. Deterministic stability

Before studying the stochastic stability of the general class of stochastic systems described above, let us review the 
deterministic notions of stability needed here. Consider a generic dynamical system ẋ = f (x) with a fixed point xe , i.e. 
f (xe) = 0, where f : Rn → R

n for x ∈ R
n . One of the strongest notions of stability in this situation is called nonlinear 

stability.

Definition 2.1 (Nonlinear stability). An equilibrium position xe of a dynamical system is nonlinearly stable if, for every neigh-
bourhood U of xe , there exists a neighbourhood V such that trajectories starting in V remain in U . In mathematical terms, 
given an appropriate norm ‖ · ‖, ∀ε > 0, ∃ δ > 0 such that if ‖x(0) − xe‖ < δ, then ‖x(t) − xe‖ < ε for t > 0.

In practice, for finite-dimensional systems, there is an equivalent formulation for nonlinear stability, which is called 
formal stability.

Definition 2.2 (Formal stability). An equilibrium point x0 is formally stable if a conserved quantity exists with vanishing first 
variation and definite second variation when evaluated at the equilibrium position.
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In infinite dimensions, such equivalence is not valid, thus nonlinear stability requires stronger conditions on the system 
and its solution. In this case, nonlinear stability may be derived by imposing an additional convexity condition, see [5] for 
more details.

2.3. Stochastic stability

We now describe the corresponding notion of stability for stochastic systems. Consider a generic stochastic differential 
equation

dxt = f (xt)dt +
∑

i

σi(xt) ◦ dW i
t (7)

where we take xt := x(t) and σi : Rn → R
n are given vector fields. Certain conditions on f and σi must be imposed for the 

existence of solutions to this stochastic process, which we shall assume as satisfied [19]. In our case, the noise amplitudes 
σi(x) will always be multiplicative, thus fixed points can be found such that dxe = 0 or f (xe) = σi(xe) = 0, ∀i. The existence 
of such fixed points will impose certain restrictions on the possible choice of vector fields σi . We will need to extend the 
standard notion of stability to the stochastic case by including a stopping time.

Definition 2.3 (Transient stochastic stability). For a suitable norm ‖ · ‖, a fixed point xe is (weakly) stable in probability with 
stopping time T (or transient stability) if, for every ε, σ > 0, there exists δ > 0 and T (ε, δ, C) > 0 such that if ‖x(0) − xe‖ < δ

and T > t > 0

P (‖x(t) − xe‖ > ε) < σ (8)

where P (A) is the probability of the event A on the same probability space as the original stochastic process.

We will refer to this notion as stochastic stability throughout this work. Notice that in the case when T → ∞, this notion 
coincides with the usual notion of stochastic stability. We refer the reader to [20] for more detailed discussions about the 
theory of stochastic stability.

The interpretation of the notion of stochastic stability with stopping time needs some clarification and should not be 
misinterpreted. First, the stability is only in probability, even if there is no stopping time. This means that for large enough 
times, the system will behave as if it were unstable, that is, it will leave the region near the stationary position. This 
cannot be prevented as we assume, according Hörmander’s theorem, that these systems are ergodic, thus a single path will 
eventually visit the entire phase space. This notion of stability in probability is thus a useful notion only for studying these 
stochastic systems for short times. In the long-time regime, one needs to study the invariant measure of the associated 
Fokker–Planck equation or other objects such as random attractors to understand the long-time behaviour of these systems, 
see [10]. The present work is thus only devoted to the short-time analysis of the same systems.

2.4. The energy-Casimir method

We now describe the deterministic energy-Casimir method following the exposition of [5] and introduce important no-
tations for the next section 3. We assume that our mechanical system can be written in Lie–Poisson form with Hamiltonian 
h : g∗ → R and Casimir function C : g∗ → R. Recall that the Casimir function is constant on the coadjoint orbits and cor-
responds to a constant of motion of the Lie–Poisson Hamiltonian system. We assume that this system has an equilibrium 
position μe : g∗ , that is μ̇e = 0.

To simplify the formulas, we introduce abbreviated notations for the variations of an arbitrary function F : g∗ → R. We 
will write the first variation of F as a map D F : g∗ → g, which is understood as the variational derivative of F with respect 
to its argument μ. The second variation of F is the variational derivative of D F (μ) with respect to its argument and is a 
map D2 F : g∗ → g × g. When evaluated at a point μ, this map is D2 F (μ) : g∗ × g∗ → R provided g∗∗ 
 g. Equivalently, we 
can write D2 F (μ) : g∗ → g for any δμ1, δμ2 ∈ g∗ , as

D2 F (μ)(δμ1, δμ2) = 〈δμ1, D2 F (μ)δμ2〉g∗×g

We now simply describe the energy-Casimir method; some proofs will be given in the stochastic context below. We begin 
by defining the extended Hamiltonian HC := h + C . We then need to find conditions on the form of the Casimir C such that 
〈D HC (μe), δμ〉 = 0 for all δμ ∈ g∗ . More explicitly, we have to find λ such that

〈D HC (μe), δμ〉 = 〈Dh(μe), δμ〉 + λ〈DC(μe), δμ〉 = 0

The last step is to compute the quadratic form 〈δμ, D2 HC (μe)δμ〉 and find additional conditions on the Casimir as well 
as specific relations between the equilibrium position μe and certain parameters of the system for this quantity to be 
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sign-definite. These relations will give the conditions for nonlinear stability. Indeed, if these can be found, then the quadratic 
form

‖δμ‖2
HC

:= ±〈δμ, D2 HC (μe)δμ〉 (9)

comprises a norm on the space of variations δμ ∈ g∗ . The choice of sign is to indicate that the quadratic form is either 
negative definite, or positive definite. One may directly check that this norm is preserved by the linearization of the de-
terministic flow. In finite dimensions, this property of the norm corresponds to the definition of nonlinear stability stated 
before. For infinite dimensions, one needs stronger conditions obtainable from convexity estimates leading to both lower 
and upper bounds, in order to claim nonlinear stability.

3. The stochastic energy-Casimir method

We are now ready to extend the energy-Casimir method to the stochastic systems described in the previous section. We 
begin by describing the finite-dimensional energy-Casimir method in the Euler–Poincaré setting, without advected quanti-
ties. We will treat the latter at the end of this section. First, suppose that there exists an equilibrium solution μe of the 
deterministic dynamical system corresponding to (2). This condition depends on the geometry and the Hamiltonian of the 
system, which is written explicitly as

ad∗
Dh(μe)

μe = 0

For such a fixed point μe to persist in the stochastically perturbed equation we need a particular choice for the noise vector 
fields σi , that is

ad∗
σi

μe = 0, ∀ i

As we will see in the examples, there exist particular choices of the noise fields such that this condition is satisfied at least 
for the rigid body, heavy top and compressible fluids. In particular, this condition holds for the rigid body when the noise 
is aligned with the direction of the fixed point on the angular momentum sphere.

The next step is the same as in the deterministic case. Namely, one seeks conditions on the Casimir such that the first 
variation of the extended Hamiltonian HC := h + C vanishes at the equilibrium solution μe, i.e. D HC (μe) = 0. The third step 
is to check the sign definiteness of the second variation of HC evaluated at μe. This does not depend on the noise but on the 
form of HC and the geometry of the system. We can thus use the results from the deterministic case and assume from now 
on that the point μe is deterministically stable, that is D2 HC (μe) is sign-definite and corresponds to the norm (9). From 
now on, we will use the convention D2 HC := D2 HC (μe) to simplify the notation. The difference with the deterministic case 
enters in the previous step of verifying that the linearized flow conserves the linearized Hamiltonian. This conservation will 
not hold when the stochastic perturbations are present, because of their time dependence. We first compute the linearised 
flow using μ = μe + εδμ for ε � 1 to obtain the stochastic process for δμ

dδμt = ad∗
Dh(μe)

δμt dt + ad∗
D2h(μe)δμt

μe dt +
∑

i

ad∗
σi

δμt ◦ dW i
t (10)

which, when we use the extended Hamiltonian HC instead of h, becomes

dδμt = ad∗
D2 HC δμt

μe dt +
∑

i

ad∗
σi

δμt ◦ dW i
t (11)

It is now clear that in general this flow will not preserve the HC norm (9). Therefore, we need to estimate by how much 
this quantity is not preserved by the flow. For this, we compute the time evolution of HC norm of δμ to find

d‖δμt‖2
HC

= 2〈D2 HC δμt,dδμt〉 =
∑

i

2〈D2 HC δμt,ad∗
σi

δμt〉 ◦ dW i
t

where we used the symmetry of D2 HC under the pairing 〈·, ·〉. Recall now that the notion of stochastic stability is only in 
probability. For dealing with this, we need to introduce a specific type of stochastic derivative for a stochastic process yt ,

Dy f (yt) := lim

t→0

E

(
f (yt+
t) − f (yt)


t

∣∣∣∣Ft

)
(12)

which is also called the infinitesimal generator of the process yt for any function f : g∗ → R, see for example [21]. We use 
the notation Dy as this operation does not contain a partial time derivative, as would have occurred if the definition (12)
were applied on a time-dependent function f (y). Also, Dy f (yt) is also known as the backwards Kolmogorov operator and 
the Fokker–Planck equation for the process y is nothing else than
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∂tP(y, t) = D∗
yP(y, t) (13)

where D∗
y is the formal adjoint of Dy , in the L2 pairing. We refer to [21] for more details about this operator in the context 

of mechanics. Using this derivative now allows us to compute

Dδμ‖δμt‖2
HC

=
∑

i

〈(D2 HC ad∗
σi

δμt + adσi D2 HCδμt) , ad∗
σi

δμt〉 (14)

Remark 2 (Bi-invariant pairings). Notice that for bi-invariant pairings this formula (14) simplifies to

Dδμ‖δμt‖2
HC

=
∑

i

〈D2 HC adσi δμt − adσi D2 HC δμt,adσi δμt〉 (15)

which shows that this term consists of the commutation between adσ and the Hessian of the extended Hamiltonian HC .

We now do the following assumption.

Assumption 3.1. We assume that we can bound (14) as

Dδμ‖δμt‖2
HC

≤ �2‖δμt‖2
HC

(16)

for a given constant � ∈ R.

Finding a good estimate for this constant can only be done case by case, and will provide important information on the 
stability of the fixed point. Notice that if the noise vanishes, i.e. � = 0, then the norm ‖δμ‖2

HC
is conserved. The estimate 

(16) provides a bound of Grönwall type on the time evolution of the expected value of the linearized Hamiltonian, as 
described in the next proposition.

Proposition 3.2. Assuming that (16) holds for some �, we have the following time-dependent bound for the expected value of the HC

norm of δμt

E(‖δμt‖2
HC

) ≤ ‖δμ0‖2
HC

e�2t (17)

Proof. We compute

d

dt
E(‖δμt‖2

HC
) = d

dt

∫
‖δξ‖2

HC
P(ξ, t)dξ

=
∫

‖ξ‖2
HC

d

dt
P(ξ, t)dξ

=
∫

‖ξ‖2
HC

D∗
ξP(ξ, t)dξ

=
∫

Dξ‖ξ‖2
HC

P(ξ, t)dξ

≤ �2
∫

‖ξ‖2
HC

P(ξ, t)dξ

= �2
E(‖δμt‖2

HC
)

where P is the probability density of the process δμ and Dξ its generator (14), which is symmetric in this case as the drift 
term vanishes. Finally, a direct time integration gives (17). Alternatively, we can use Dynkin’s formula and with that we 
have

E(‖δμt‖2
HC

) = ‖δμ0‖2
HC

+
∫

Dξ‖ξ‖2
HC

P(ξ, t)dξ dt

≤ ‖δμ0‖2
HC

+ �2
∫

‖ξ‖2
HC

P(ξ, t)dξ dt

= ‖δμ0‖2
HC

+ �2
∫

E(‖δμt‖2
HC

)dt

then using Picard sequence of successive approximations, we obtain (17). The main advantage of using Dynkin’s formula is 
that we do not have to make any assumption on the sign of the right-hand side of the inequality, which makes it suitable 
when considering systems with geometric dissipation. �
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We can now prove the main result of this paper.

Theorem 3.3. Let μe be an equilibrium state of the stochastic Euler–Poincaré equation (2). Then μe is transiently stable in probability 
if it is nonlinearly stable for the deterministic dynamics.

Proof. Given the constant � estimated before, we apply the standard Markov inequality to the norm ‖δμ‖2
HC

and obtain

P (‖δμt‖2
HC

> ε) ≤ 1

ε
E(‖δμt‖2

HC
)

≤ 1

ε
‖δμ(0)‖2

HC
e�2t

Thus, for all ε > 0 we can find δ = ‖δμ(0)‖2
HC

and σ ≥ 1
ε ‖δμ(0)‖2

HC
e�2t and the stopping time Tmax = 1

�2 ln
(
ε
δ

)
. For infinite 

dimensions, the nonlinear stability condition is obtained via the introduction of a stronger norm which satisfies certain 
convexity estimates, see [5]. This norm is controlled by the extended Hamiltonian for all time. The same argument thus 
applies and the stochastic nonlinear stability condition holds in infinite dimensions. �

The proof of this theorem demonstrates the importance of the constant �, which gives the rate of expansion of the 
subspace of the phase space that contains the expected trajectory of the system.

Remark 3 (Semidirect products). The analysis for the semidirect product case in (4) follows analogously, and it will not be 
written out here. The only difference for the semidirect product case lies in the estimation of the constant �. We will 
estimate � case by case in the example in section 4.

4. Examples

This section applies the stochastic Hamiltonian stability theory to a few illustrative examples. We treat the rigid body in 
section 4.1, the heavy top in section 4.2, and the compressible Euler equation in section 4.3. The incompressible fluid case 
will be obtained as a consequence of the result of the compressible case.

4.1. The stochastic free rigid body

We will not review the derivation of the rigid body from physical principles, as such derivation can be found in [16] and 
[10] for its stochastic deformation. In short, the Lie algebra is g = so(3), which we identify with R3. In this case, the cross 
product is the Lie bracket and the negative coadjoint action. The reduced momentum is denoted by � and the equation for 
the stochastic rigid body is

d� + � × �dt +
∑

i

� × σ i ◦ dW i
t = 0 (18)

where the Hamiltonian is h(�) = 1
2 � · I−1� := 1

2 � · �, with moment of inertia I = diag(I1, I2, I3).
The theory for stochastic stability now follows by assuming that the position �1 is stable. This is the case if we choose 

I1 > I2 > I3. The only noise compatible with this equilibrium position consists of a single Wiener process with ampli-
tude σ = σ e1. The Casimir for this system is C(�) = �( 1

2 ‖�‖2) for an arbitrary function � : R → R, and the extended 
Hamiltonian is

HC (�) = 1

2
� · � + �

(
1

2
‖�‖2

)
(19)

The deterministic condition for stability is that I1 is either a major or minor axis. In the other two cases, there is a function 
� that gives the positive definiteness of ‖δ�‖2

HC
. That is, the quantity

D2 HC (�e)(δ�)2 =
(

1

I2
− 1

I1

)
δ�2

2 +
(

1

I3
− 1

I1

)
δ�2

3 + �′′
(

1

2

)
δ�2

1

is positive definite. By directly computing (15), we obtain the following for the estimation of the constant �

Dδ�‖δ�‖2
HC

= σ 2
(
δ�2

3(I
−1
3 − I

−1
2 ) + δ�2

2(I
−1
2 − I

−1
3 )

)
≤ σ 2

(
δ�2

3(I
−1
3 − I

−1
1 ) + δ�2

2(I
−1
2 − I

−1
1 )

)
≤ σ 2‖δ�‖2

HC
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Fig. 1. This figure illustrates the stochastic stability of the rigid body (left) and heavy top (right). The black solid line is the mean path and the black dashed 
line is the mean of the same simulation, but with an isotropic noise, σi = σ ei . The gray shades in the background represent the probability density of the 
solution �1 and 
3 for the rigid body and the heavy top, respectively. The transition between deterministic stable regimes occurs near �1 = 1 and 
3 = 1, 
respectively, and a uniform distribution illustrates the stopping time for this transition.

where the last inequality is valid in the positive definite case, and the negative definite case just needs an overall minus 
sign. Thus �2 = σ 2 > 0 is directly proportional to the noise amplitude. We can then apply Theorem 3.3 to obtain the 
transient stochastic stability of this equilibrium.

Remark 4 (Kubo oscillator). If I2 = I3, the stability result is stronger, since I2 = I3 implies � = 0. In this case, the system is 
equivalent to the Kubo oscillator, whose dynamics takes place on circles around the e1 direction, see [10].

We illustrate the effect of losing stability for large times via a simple numerical experiment, in which we sampled 
many stochastic rigid bodies with the same initial condition close to the equilibrium � = (1, 0, 0). We display the result in 
Fig. 1(a) with the mean trajectory of the projection of the momentum on the e1 axis of the body. In Fig. 1(a), one observes 
a transition between a regime of stability in probability and an ergodic regime. The timescale for this transition is given by 
the stopping time of stability theory. Notice that the stopping time is only an upper bound, thus we are guaranteed to lose 
stability for larger times.

4.2. The stochastic heavy top

We will follow the example of [5] for the semidirect product and consider the integrable heavy top called the Lagrange 
top, which is the case when I1 = I2. The advected variable is � ∈ R

3 and the Hamiltonian is h(�, �) = 1
2 � · � + m g l χ · �, 

where χ = e3. We refer to [22] for a complete study of the stability of the heavy top in the general case. The stochastic 
heavy top equations follow directly from (3) and read

d� + (�dt +
∑

i

σ i ◦ dW i
t ) × � + mgl(� × χ)dt = 0

d� + (�dt +
∑

i

σ i ◦ dW i
t ) × � = 0

(20)

The deterministic equilibrium position is �e = (0, 0, �3) and 
e = (0, 0, 1), and the stability criterion found from the de-
terministic energy-Casimir method is �2

3 > 4 m g lI1. The compatible noise is σ = σ e3. Notice that this stochastic system is 
integrable, see [10]. As before, we estimate the constant � by a direct computation of (14). For this, we need the adjoint 
and coadjoint actions

ad(�,
)(�
′,
′) = (

� × �′,� × 
′ + 
 × �′)
ad∗

(�,
)(�
′,
′) = − (

� × �′ + 
 × 
′,� × 
′)
By substituting the form of σ , these equations simplify to

ad∗
(σ e3,0)(δ�, δ
) = −σ(e3 × δ�, e3 × δ
)

ad(σ e3,0)(ξ,η) = σ(e3 × ξ, e3 × η)

Remarkably, the coadjoint and adjoint action only differ by a sign, as also occurs for semi-simple Lie algebras. This implies 
that we only need to compute a simplified version of the formula (14), that is
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D(δ�t ,δ
t )‖(δ�t, δ
t)‖2
HC

= σ 2〈−D2 HC ad(e3,0)(δ�t, δ
t)

+ ad(e3,0)D2 HC (δ�t, δ
t), (e3 × �, e3 × 
)〉
= σ 2(δ�2

3 − δ�2
2)

(
1

I3
− 1

I2

)
+ σ 2(δ
2

3 − δ
2
2)

≤ σ 2δ�2
3

1

I3
+ σ 2δ�2

2
1

I2
+ σ 2(δ
2

3 + δ
2
2)

≤ σ 2‖(δ�t, δ
t)‖2
HC

For this computation, we combined the second variation of the extended Hamiltonian with the condition on the Casimir, 
which provides the nonlinear stability results. The complete equation is rather lengthy, so we just refer to [5] for more 
details. The important point is that the last step in this computation uses the positivity of the quadratic form to bound the 
expected time evolution of the norm of the variations by the norm itself. Then, as in the case of the rigid body, we have 
that �2 = σ 2. We can finally apply the Theorem 3.3 to obtain the transient stochastic stability of this equilibrium.

In a similar fashion to the case of the rigid body example, we rely on numerical tests to demonstrate the transient 
stability of the stochastic heavy top. Fig. 1(b) shows the mean of the sample paths of 
3 and their probability density 
function starting from the same initial condition, which is close to the equilibrium solution � = (0, 0, 1). As expected, 
3
exhibits a transition from a stable position to an ergodic position.

We will not further investigate the stability of the stochastic heavy top here, but only remark that �2 does not depend, 
for example, on gravity, but only on the amplitude of the noise. We expect this to hold for the more general heavy top 
with three different moments of inertia, as the restriction on the noise amplitude will remain the same, and only the 
deterministic stability criterion will be different, see [22].

4.3. The stochastic compressible Euler equation

In the previous section, we studied classical finite-dimensional examples and we saw that the constant � is exactly the 
noise amplitude σ . We will now study classical infinite dimensional examples, which are the compressible and incompress-
ible two-dimensional Euler equations. We start with the stochastic compressible Euler equation, which is more general, but 
directly implies the result for incompressible systems. Here we will just apply the previous theory, but we refer the reader 
to [9] for more details about these stochastic fluid equations and how to derive them. For establishing the formal stability 
of deterministic compressible Euler equation, we will only consider the barotropic flow, i.e. the fluid’s density depends on 
pressure only. For the result to hold, we need to make the following assumptions: shocks and cavities do not develop and 
the flow remains in the subsonic regime.

The compressible fluid is a semi-direct product system with the density ρ is an advected variable, and u ∈ X(R2) is a 
velocity field. The equation of motion is a coadjoint motion on the semi-direct product between the diffeomorphism group 
and the space of densities, and the corresponding adjoint and coadjoint actions are

ad(u,ρ)(v,ρ ′) = ((u · ∇)v − (v · ∇)u, u · ∇ρ ′ − v · ∇ρ)

=
∑

j

(u j∂ j vi − v j∂ jui, ui∂iρ
′ − vi∂iρ) (21)

ad∗
(u,ρ)(m, η) = −((u · ∇)m + m · (∇u)ᵀ + m(∇ · u) + η∇ρ,∇ · (ηu))

= −
∑

j

(m j∂iu j + ∂ jmiu j − mi∂ ju j + η∂iρ,∂ j(ηu)) (22)

Meanwhile, the deterministic Hamiltonian is

h(u,ρ) =
∫ (

1

2
ρu2 + ε(ρ)

)
dx dy (23)

where ε(ρ) a function that describes the internal energy of the fluid. The stochastic process for this Lagrangian can be 
directly computed from the coadjoint action and is

du = u · ∇u dt +
∑

k

((u · ∇)σk + σk(∇u)ᵀ) ◦ dW k
t − 1

ρ
∇p dt

dρ = div(ρu)dt +
∑

k

div(ρσk) ◦ dW k
t

(24)

where p := ρ2ε′(ρ) and the divergence-free σi(u) only depends on u.
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In the deterministic case, one of the stable flows for the Euler’s equation is the shear flow solution, which takes the form 
ue = (u(y), 0) and a constant density ρe = 1, can be stable provided that u(y) does not have inflexion points, for example. 
We will consider such an equilibrium solution from now on, and the compatible noise can be seen to be of the form 
σk = (ηk(y), 0)ᵀ for a certain number of functions ηk(y). This renders the adjoint and coadjoint actions of the stochastic 
fields as

ad(σk,0)(v,ρ) = (ηk∂1 viei − v2e1η
′, ηk∂1ρ) (25)

ad∗
(σk,0)(δu, δρ) = −(e2δu1η

′
k + eiηk∂1δui, ηk∂1(δρ)) (26)

where η′
k = ∂2ηk(y) and (e1, e2) is the orthogonal basis of R2. To compute the transient stability, recall that we need to 

evaluate the following quantity

Ah + Bh + AC + BC =
∑

i

〈D2 HC ad∗
σi

δμt + adσi D2 HC δμt,ad∗
σi

δμt〉 (27)

where A and B are the two terms of the right-hand side, and the subscripts indicated whether the Hamiltonian or the 
Casimir is taken for the second variation. We begin with the Hamiltonian terms, i.e. Ah and Bh , but first we compute the 
second variation of the Hamiltonian〈

(δu1, δρ1), D2h (δu2, δρ2)
〉
=

∫
δρ1(δu2 · ue) + δρ2(δu1 · ue) + ε′′(1)δρ1δρ2 + δu1 · δu2 dx dy

where recall that D2h = D2h(μe, ρe) and ρe = 1. In shear flow case, it becomes

〈(δu1, δρ1), D2h (δu2, δρ2)〉 =
∫ (

δρ1δu2,1u + δρ2δu1,1u + ε′′(1)δρ1δρ2 + δu1 · δu2
)

dx dy

where δu1,1 is the first component of δu1. We compute the first term and obtain

Ah = 〈ad∗
(σk,0)(δu, δρ), D2h ad∗

(σk,0)(δu, δρ)〉
=

∫ (
uη2

k ∂1δρ∂1δu1 + ε′′(1)η2
k (∂1δρ)2 + δu2

1η
′ 2
k + η2

k |∂1δu|2 + 2ηkη
′
kδu1∂1δu2

)
dx dy

(28)

where a sum over k is understood throughout these computations. For the second term, we start with

D2h (δu, δρ) = (δρue1 + eiδui, δu1u + ε′′(1)δρ)

with that the adjoint action is

ad(σ ,0)D2h (δu, δρ) = (
e1ηku∂1δρ + eiηk∂1δui − e1δu2η

′
k, ηku∂1δu1 + ηkε

′′(1)∂1δρ
)

We thus obtain

Bh = 〈ad(σ ,0)D2h (δu, δρ),ad∗
(σ ,0)(δu, δρ)〉

= −
∫ (

η′
kηkδu1∂1δu2 − η′

kηk∂1δu1δu2

+ η2
k u∂1δu1∂1δρ + η2

k |∂1δui |2 + η2
k u∂1δρ∂1δu1 + η2

k ε
′′(1)(∂1δρ)2

)
dx dy

(29)

After integrating the second term by parts, we end up with only

Ah + Bh =
∫

δu2
1(η

′
k)

2dx dy ≤ �2
1

∫
||δu||2 (30)

where �1 > 0 ∈ R is the smallest number such that∑
k

(η′
k)

2(y) ≤ �2
1, ∀y (31)

We now need to compute AC and BC . First, recall the Casimir of the compressible 2D Euler equation

C(u,ρ) =
∫

ρ �

(
ω

ρ

)
dx dy (32)

where ω = e3 · ∇ × u is the scalar vorticity and � is an arbitrary function. Following [5] and using the Bernoulli function K , 
the second variation of the Casimir can be written as
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〈(δu, δρ), D2C (δu, δρ)〉 =
∫

1

ωe
K ′(ωe)

(
δ

(
ω

ρ

))2

(33)

and the shear flow we have K ′(ωe) = −u′(y)
u(y)

u′′(y)
. We then use the equivalent form of the stochastic Euler equation for the 

vorticity ω

d

(
ω

ρ

)
= u · ∇

(
ω

ρ

)
+ σi · ∇

(
ω

ρ

)
◦ dW i

t (34)

We then directly compute as AC + BC = D(δu,δρ)((δu, δρ), D2C(δu, δρ) to get

AC + BC =
∑

k

∫ ((
∂1δ

(
ω

ρ

))2

+ ∂2
1 δ

(
ω

ρ

)
δ

(
ω

ρ

))
K ′(ωe)

ωe
η2

k dx dy

= 0

where we used integration by parts due to the fact that ωe and η are independent of x. Finally, upon observing that the 
deterministic norm is positive or negative definite at (ue, 1), we obtain the transient stochastic stability result by applying 
Theorem 3.3. In this case, �2

1 = �2 is proportional to the spatial derivative of the noise amplitude given in (31).
Finally, the incompressible case is a direct consequence of the compressible case as one can directly check that the 

computation follows similarly if ρ = 1 and δρ = 0. In particular, the same result holds with �2
1 in equation (31).

Remark 5. For incompressible 2D Euler flows, the existence of the constant �1 in equation (31) is necessary for the existence 
and uniqueness of the stochastic equation. As shown in [23], the following condition on the fields σk should hold

sup
∑

k

|σk(x)|2 + max

(∑
k

|∇σk(x)|2
)

< +∞

In our case, the second term is bounded by �2
1.

5. Conclusion and open problems

In this work, we have considered the problem of assessing the stability in probability of a certain class of equilibria 
of stochastic Lie–Poisson systems. These equilibria are critical points of the deterministic extended Hamiltonian and are 
equilibria of a stochastic Lie–Poisson dynamical system. We showed that the energy-Casimir method can be extended to the 
stochastic context to investigate the stability properties of these equilibria. An important condition for the method is that the 
equilibrium must remain time-independent upon adding the stochastic perturbation. This compels us to choose a particular 
form of noise compatible with the equilibrium solution to the deterministic system. This choice is rather restrictive, but 
it seems to be required for such a result to hold. By extending the energy-Casimir method, we have obtained additional 
information about the effects of noise on these equilibria. In particular, the stability is only in a probabilistic sense and 
holds for a finite time only. The period of time where the stability in probability holds can be estimated from above and is 
directly related to the strength of the noise. Remarkably, in the fluid example, this time-scale only depends on the spatial 
derivative of the noise fields. This work suggests that further analysis can be done to obtain a general formula for the 
estimation of this time scale, or the constant �. Here, we have only assumed in our Assumption 3.1 that such a constant 
can be found in general and that we can compute it for the examples treated here. The present energy-Casimir approach for 
obtaining probabilistic stability conditions for stochastic Lie–Poisson Hamiltonian systems could possibly be extended to the 
energy-momentum method of [6]. However, we leave this extension for future work. Other research directions may include 
the study of stability when geometric dissipation is used (see [10]), or when feedback control is used, as in [24], to make 
the rigid body’s intermediate axis nonlinearly stable.
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