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The formation of a brine geyser erupting from the wellhead of a large underground salt 
cavern is described. In most cases, the brine outflow from an opened cavern is slow; it 
results from the cavern creep closure and the thermal expansion of the cavern brine. These 
two processes are smooth; however, the brine outflow often is bumpy, as it is modulated 
by atmospheric pressure variations that generate an elastic increase (or decrease) of 
both cavern and brine volumes. In addition, when the flow is fast enough, the brine 
thermodynamic behavior in the wellbore is adiabatic. The cold brine expelled from the 
cavern wellhead is substituted with warm brine entering the borehole bottom, resulting 
in a lighter brine column. The brine outflow increases. In some cases, the flow becomes 
so fast that inertia terms must be taken into account. A geyser forms, coming to an end 
when the pressure in the cavern has dropped sufficiently. A better picture is obtained when 
head losses are considered. A closed-form solution can be reached. This proves that two 
cases must be distinguished, depending on whether the cold brine initially contained in the 
wellbore is expelled fully or not. It can also be shown that geyser formation is a rare event, 
as it requires both that the wellbore be narrow and that the cavern be very compressible. 
This study stemmed from an actual example in which a geyser was observed. However, 
scarce information is available, making any definite interpretation difficult.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

On décrit un modèle de formation d’un geyser de saumure faisant éruption à la tête 
de puits d’une caverne créée par dissolution dans une formation saline. Dans la plupart 
des cas, le débit de saumure sortant d’une caverne ouverte en tête de puits est lent ; il 
résulte de la convergence de la caverne par fluage du sel et de l’expansion thermique 
de la saumure contenue dans la caverne. Ces deux effets sont en principe sans à-coup. 
Cependant, le débit que l’on observe est très irrégulier ; la raison en est qu’il est modulé 
par les variations de la pression atmosphérique, qui engendrent des variations de volume 
de la caverne et de la saumure qu’elle contient. De plus, lorsque le débit est suffisamment 
rapide, le comportement de la saumure dans le puits est adiabatique. La saumure plus 
froide sortant en tête de puits est remplacée par de la saumure plus chaude entrant par 
le fond du puits, de sorte que le poids de la colonne s’allège. Le débit augmente alors. Il 
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peut devenir si rapide que les termes d’inertie et de pertes de charge doivent être pris en 
compte. Un geyser se forme ; il s’arrête lorsque la pression dans la caverne a suffisamment 
chuté. Une solution explicite est possible ; elle montre que deux cas doivent être distingués, 
suivant que le contenu initial du puits est complètement expulsé ou non. Elle montre aussi 
que la formation d’un tel geyser est rare, il faut à la fois que le puits soit étroit et que la 
caverne soit très compressible. Cette étude a pour origine un geyser réellement observé ; 
malheureusement, l’information disponible est trop restreinte pour permettre de l’attribuer 
de façon certaine au mécanisme invoqué.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Natural geysers form when the water temperature in an underground reservoir is significantly larger than 100 ◦C and 
a conduit (typically, vertical fractures) links the reservoir to the ground level. When hot water rises in the conduit, its 
pressure decreases due to depth change and head losses, until it reaches thermodynamic conditions such that vaporization 
is possible. The water density decreases, leading to faster flow and, ultimately, a mixture of water vapor and liquid vapor 
spews at the ground level. “Cold” geysers are generated by underground waters containing a large amount of carbon dioxide. 
When water rises in a conduit, carbon dioxide partially vaporizes, leading to a decrease in mixture density. In this paper, a 
different case of a geyser is described. A large (hence, very compressible) salt cavern is linked to the ground level by a cased 
and cemented wellbore. The wellhead is opened, and a brine outflow is observed. In principle, this flow should be smooth, 
as it originates in cavern creep closure and brine thermal expansion. However, it is modulated by atmospheric pressure 
changes, which lead to an elastic change in the cavern’s volume. In addition, when the outflow is fast enough, the brine 
evolution in the wellbore is adiabatic, and the wellbore brine is substituted with warmer and lighter brine from the cavern, 
leading to a decrease in brine column weight, still faster flow and, ultimately, the formation of a brine geyser. The geyser is 
dozens of meters high when the cavern is very compressible and the wellbore is narrow – at least at the brine outlet.

2. Brine outflow test

In salt caverns, a brine outflow test consists in measuring the flow rate of brine expelled from the cavern when the 
wellhead is opened, and the cavern and the wellbore are filled with saturated brine (Fig. 1). Examples are reported in 
various works [1–4]. This outflow results from two main phenomena: cavern creep closure, and thermal expansion (or 
contraction) of cavern brine.

2.1. Cavern creep closure

Creep closure originates in the gap between the geostatic pressure (P∞ = ρR g H , where H is the cavern depth, ρR =
2200 kg/m3 is rock density, and g is the gravity acceleration) and the cavern pressure (Pc = ρb g H , where ρb = 1200 kg/m3

is the brine density). The creep closure rate can be noted as ε̇cr V > 0; it is a highly non-linear function of depth: ε̇cr =
10−5/yr when H = 250 m and ε̇cr = 3 × 10−4/yr when H = 1000 m are typical.

2.2. Thermal expansion

Brine thermal expansion (or contraction) results from cavern brine warming (or cooling). Most often, caverns are leached 
out using water from a lake or a shallow aquifer; this water is colder than the rock temperature at the cavern’s depth; 
when leaching is completed, cavern brine is still colder than the rock mass. Warming takes place, and the temperature 
gap decreases until it vanishes completely. It is a slow process, still slower when cavern is larger [5]. Let t1/4 be the time 

Fig. 1. Brine outflow test.
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Fig. 2. Brine outflow rate between 14 October and 17 October 2008.

after which the initial temperature gap is divided by 4. In an idealized spherical cavern, t1/4 = V 2/3/4ksalt, where V is the 
cavern’s volume and ksalt = 100 m2/yr is the thermal diffusivity of salt – for instance, V = 340 000 m3 and t1/4 = 12 yr. 
Brine warming results in brine expansion, as the brine equation of state can be written as ρ̇b = ρb(βb Ṗ − αb Ṫ ), where 
αb = 4.4 × 10−4/◦C is the thermal expansion coefficient of brine, and βb = 2.7 × 10−4/MPa is the compressibility coefficient 
of brine.

2.3. Brine outflow rate

A simple analysis suggests that the brine outflow rate is the sum of brine volumetric expansion and cavern closure rate:

Sḣ = ε̇cr V + αb Ṫc V (1)

where S is the wellbore cross-sectional area, and ḣ is the brine rate in the wellbore. It could be expected that changes in 
the outflow rate are slow, as the two mechanisms responsible for brine expulsion are smooth. In fact, especially when the 
outflow is small (i.e. when the cavern is small, shallow, and old), it experiences abrupt changes that must be explained.

An example of this is a brine outflow test performed in the SG4-5 cavern operated by the “Compagnie des salins du 
Midi” at Gellenoncourt, France. This cavern is H = 250 m in depth and its volume is V = 240 000 m3. The cavern had been 
kept idle for 30 years before the test, and thermal equilibrium was almost reached. Brine was collected at the ground level 
and weighed every two minutes [4]. It can be concluded from Fig. 2 that the brine flow rate often vanishes and that no-flow 
phases are followed by brine spews that last for a couple of hours. Atmospheric pressure changes must be considered.

3. Atmospheric pressure

More precise conditions are written than are used in Eq. (1). The mass conservation and equilibrium condition can be 
written as:

ρb[H, t]Sḣ = − d

dt

(
ρb[0, t]V

) − d

dt

H∫
0

ρb[z, t]S dz (2)

Pc = Patm +
H∫

0

ρb[z, t]g dz (3)

where Patm is the atmospheric pressure; z = 0 at the cavern roof, and z = H at the ground level (Fig. 1). The brine density 
ρb[z < 0, t] is uniform in the cavern – brine is stirred by thermal convection. The mass changes in the wellbore (the integral 
in Eq. (2)) will be neglected (the wellbore volume is exceedingly small when compared to the cavern volume).

In this section, the changes in the atmospheric pressure are considered. A cavern pressure increase generates brine con-
traction and cavern expansion. An atmospheric pressure increase generates stress changes in the rock mass and contraction 
of the cavern. The mass conservation of changes in the cavern brine mass can be written as:

d (
ρb[0, t]V

) = ρb(βb Ṗc − αb Ṫc)V − ρb V (ε̇cr − βc Ṗc + β∞ Ṗatm) (4)

dt
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The coefficient of compressibility of the “hole” (βc) reflects the elasticity of the rock mass; it depends on the elastic proper-
ties of the rock mass and the shape of the cavern, βc = βc(E, v, ∂Ω). In an idealized spherical cavern, βc = 3(1 + v)/2E; in 
an actual cavern, βc = 1.3 × 10−4/MPa is typical. However, larger values are met sometimes – for example, when the cavern 
is somewhat flat [6] or when the cavern contains gas pockets, as discussed in Section 6. It is convenient to set β = βc + βb, 
as β is a quantity that is easy to measure in an actual cavern by shutting in the cavern, injecting some brine, and measuring 
the resulting pressure increase [6].

The effect of atmospheric pressure changes, which are transmitted through the rock mass (rather than through the 
brine-filled wellbore) is characterized by β∞ = β∞(E, v, ∂Ω). When atmospheric pressure changes by Ṗatm, the state of 
stresses in the rock mass changes accordingly. The dimensions of the horizontal domain, at the ground level, in which 
atmospheric pressure changes are almost uniform, is much larger than the cavern depth: in the rock mass underneath 
this domain, stress changes, σ̇∞ are uniform and can be considered as “oedometric” – i.e. σ̇∞

zz = − Ṗatm, and σ̇∞
xx = σ̇∞

yy =
−ν Ṗatm/(1 − ν). These stresses generate cavern shrinkage (when Ṗatm > 0) by V̇ = −β∞V Ṗatm. In an idealized spherical 
cavern, β∞ = 3(1 + v)/2E . During the Gellenoncourt test described above, it was observed that β∞/β = 0.54.

In this section, brine density changes in the wellbore are neglected, and Ṗc = Ṗatm: atmospheric pressure changes are 
transmitted to the cavern both through the rock mass and through the wellbore brine column. Equations (2) and (4) can be 
simplified as

Sḣ/V = −(β − β∞) Ṗatm + αb Ṫc + ε̇cr when ḣ > 0 (5)

Note that this formula holds when ḣ > 0. When the brine/air interface drops in the wellbore (Fig. 1, right), ḣ < 0, Ṗc =
Ṗatm + ρb gḣ, and

(S + ρb gβV )ḣ/V = −(β − β∞) Ṗatm + αb Ṫc + ε̇cr when ḣ < 0 (6)

In the case of the Gellenoncourt cavern, the rate of creep closure was slow, ε̇cr = 3 × 10−9/day, β − β∞ = 2.5 × 10−4/MPa, 
and an atmospheric pressure increase of a few hPa was able to interrupt the brine outflow (Fig. 2).

4. Brine temperature changes in the borehole

It was assumed in the previous section that Ṗc = Ṗatm: at any depth, brine density in the wellbore remained constant 
during brine outflow. In fact, temperature changes must be considered in Eq. (3). In the following, it is assumed that the 
cavern brine temperature (Tc) has reached equilibrium with the rock mass. In the rock mass, the geothermal temperature 
is an increasing function of depth, with T∞(z) = Tc − Γ z (Γ = 3 × 10−2/m being typical). It was also assumed in previous 
sections that heat exchanges between the rock mass and the wellbore were so fast that thermal equilibrium was reached 
immediately: T (z, t) = T∞(z). However, this assumption is incorrect, especially when the brine rate in the wellbore is fast 
enough, as explained below. It is assumed that at t = 0, brine begins rising in the wellbore with a constant rate of ḣ = h/t . 
A simple model consists in assuming that, at a given depth, the heat flux between the rock mass and the wellbore is 
proportional to the difference between the geothermal temperature and the brine temperature:

dT (z, t)

dt
= ∂T (z, t)

∂t
+ ḣ

∂T (z, t)

∂z
= − T (z, t) − T∞(z, t)

tc
; T (z,0) = T∞(z); T (0, t) = Tc (7)

When a is the wellbore radius, tc is a characteristic time, tc = a2/ksalt equals 1–2 hours, a value confirmed by experience. 
The solution to this partial derivative equation can be written:{

T (z, t) = Tc − Γ z + Γ ḣtc
[
1 − exp(−t/tc)

]
when z − ḣt > 0

T (z, t) = Tc − Γ z + Γ ḣtc
[
1 − exp(−z/ḣtc)

]
when z − ḣt < 0

(8)

Heat exchange is fast when the brine rate is slow: ḣtc � H , and T (z, t) � T∞(z). It is slow (the behavior of brine in the 
wellbore is adiabatic) when ḣtc � H . For example, H = 300 m, tc = 1 h, S = 10−2 m2, and the flow rate is adiabatic when 
it is significantly faster than S H/tc = 3 m3/h.

The derivative of the equilibrium equation (∂ P/∂z = ρb g) with respect to time can be written as:

∂2 P (z, t)

∂z∂t
= ρb g

[
−αb

∂T (z, t)

∂t
+ βb

∂ P (z, t)

∂t

]
(9)

Equation (9) can be integrated with respect to z in the following form:

e−ρb gβb H Ṗatm(t) − Ṗc(t) = αbρb gΓ ḣ exp(−t/tc)
1 − e−ρbβb g H

ρb gβb
(10)

Brine movement is so swift that atmospheric pressure can be considered as constant, Ṗatm(t) = 0: the right-hand side of 
Eq. (10) is maximum when t = 0, h = 0 and Ṗc(t) ≈ −ρbαb gΓ ḣH . From Eqs. (5) and (10), it can be inferred (only creep 
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Fig. 3. Temperature distribution in the wellbore during and after the onset of a blowout.

closure is taken into account) that ḣ(1 − βV ρb gαbΓ H/S) = ε̇cr V /S , and flow rate Sḣ can be accelerated considerably by 
thermal effects when (1 − βV ρb gαbΓ H/S) is much smaller than 1. In such a case, ḣ increases rapidly, and inertia terms 
and head losses must be considered, as discussed in the next section.

5. Geyser

In this section, the onset of a brine geyser is discussed. Because the creep-closure rate and the atmospheric pressure rate 
are slow, these two phenomena can be neglected; the brine behavior in the borehole will be considered as adiabatic and, 
when flowing upward in the borehole, brine experiences only minute temperature changes. Warm brine enters the wellbore 
through the casing shoe. The cavern brine pressure decreases. At the same time, cold brine is expelled from the wellhead. 
The average temperature of the brine column increases. Its weight decreases accordingly, leading to still faster brine outflow 
– at least when the cavern pressure drop is not too fast, i.e. when the cavern is very compressible – and inertia terms must 
be considered together with head losses in the wellbore.

5.1. Newton’s equation of motion

The onset of the geyser is at t = 0. Let Sh(t) be the volume of brine expelled from the cavern after t = 0. When h < H , h
is the height of the warm brine/cold brine interface in the wellbore (Fig. 3). Brine outflow results in a cavern-pressure drop 
of −Sh/βV . The weight of the brine column, which was ρb g S H before the geyser starts, decreases by −ρb g SαbΓ (2Hh −
h2)/2H as long as h > H ; when h > H , this weight has decreased by (−ρb g SαbΓ H/2) and remains constant. At the 
wellhead, the brine pressure equals the atmospheric pressure. Newton’s first law of motion applies to the brine column in 
the wellbore. Its mass is μ = ρb H S[1 − αbΓ (2Hh − h2)/2] ≈ ρb H S , and its acceleration is ḧ. It is pushed upward by the 
changes in the brine column weight, but it is slowed by the cavern pressure decrease. Head losses also must be considered. 
As the flow becomes turbulent rapidly, it is assumed that they are proportional to the square of the outflow rate:

ρb S Hḧ = − S2

βV
h + ρb gαbΓ

(
2Hh − h2

2

)
S − F (S)ḣ2; 0 < h < H, ḣ > 0 (11)

This equation holds until ḣ = 0 or until h = H . In some cases, the geyser is so intense that, after some time, warm brine 
fills the wellbore (h > H), and Eq. (11) must be rewritten as:

ρb S Hḧ = − S2

βV
h + ρb gαbΓ

H

2
S − F (S)ḣ2; h > H, ḣ > 0 (12)

To discuss these equations, it is convenient to set x = h/H, ω2 = S/ρbβV H , γ 2 = gαbΓ/2, and f = F (S)/ρb S H ; then, the 
momentum equations can be rewritten:

ẍ + ω2x − γ 2(2x − x2) + f ẋ2 = 0 0 < x < 1, ẋ > 0 (13)

ẍ + ω2x − γ 2 + f ẋ2 = 0 x > 1, ẋ > 0 (14)
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Fig. 4. The domain such that the interface remains in the borehole (hM = xM/H < H).

5.2. Integration of the momentum equation

Consider, first, Eq. (13) – the cold brine/warm brine interface is in the borehole (x = h/H < 1). This equation can be 
integrated with respect to time: ẋ2/2 + w(x) = e−2 f xẋ2

0/2, where ẋ0 = ẋ(0) and

w(x) = γ 2

2 f
x2 + ω2 − 2γ 2 − γ 2/ f

2 f

(
x − 1

2 f
+ e−2 f x

2 f

)
(15)

This equation is valid as long as ẋ > 0 and x < 1. It is assumed that ẋ2
0 is exceedingly small; w(x) is somewhat similar 

to a “potential” in a conservative mechanical system. The equilibrium position x = 0 is unstable when w ′′(0) < 0 – i.e. 
when ω2/γ 2 < 2. In such a case, the second derivative, w ′′(x) = γ 2/ f + (ω2 − 2γ 2 −γ 2/ f )e−2 f x , is monotonous, such that 
w ′′(0) = ω2 − 2γ 2 < 0, and w ′′(∞) > 0; in the ]0, ∞[ domain, it vanishes to zero once, when xi = ln[1 + f (2 −ω2/γ 2)]/2 f , 
and xi belongs to the ]0, 1] domain. The first derivative, w ′(x) = γ 2x/ f + (ω2 − 2γ 2 − γ 2/ f )(1 − e−2 f x)/2 f , is negative for 
small values of x (as ω2 − 2γ 2 < 0) and positive for high values of x. It can vanish only once in the ]xi, ∞] domain, when 
x = xg, w ′(xg) = 0. As w(0) = 0 and w(∞) = ∞, w(x) also vanishes once in the ]xg, ∞] domain when x = xM, w(xM) = 0. 
As Eq. (14) holds only when x = h/H < 1, the zero of w(x), or w(xM) = 0, must be compared to 1. The curve w(1) = 0 cuts 
the (ω2/γ 2, f )-plane in two domains (see Fig. 4). Equation (15) holds in the sub-domain hM = HxM ≤ H .

When xM > 1, Eq. (14) must be considered in the ]1, xM] domain. It can be integrated with respect to time. When x = 1, 
the brine rate must be continuous; the solution can be written as ẋ2/2 + w̄(x) = ẋ2

0e− f (x−1)/2, w(1) = w̄(1), and

w̄(x) = ω2x

2 f
− γ 2

2 f
− ω2

4 f 2
+ γ 2

4 f 3
e2 f (1−x) + ω2 − 2γ 2 − γ 2/ f

4 f 2
e−2 f x (16)

The maximum value of x is reached when w̄(xM) = 0 (as w̄(1) < 0 and w̄(+∞) = +∞ – hence, xM > 1). After this maxi-
mum is reached, the air/brine interface drops into the wellbore; after some oscillations, the system becomes quiet again.

The two cases (xM < 1 and xM > 1) are represented in Fig. 5 in the special case when f = 0 and ω2/γ 2 = 2/3 or 4/3, 
and in Fig. 6 for several values of f when ω2/γ 2 = 2/3. Note that xM such that w(xM) = 0 does not depend much on the 
value of f , as expected from Eq. (16).

5.3. The no-head-loss case

When head loss is neglected, f = 0, the momentum equations [Eqs. (13) and (14)] can be integrated with respect to 
time:

ẋ2

2
+ w(x) = ẋ2

0

2
w(x) = ω2 − 2γ 2

2
x2 + γ 2 x3

3
ẋ > 0, 0 < x < 1 (17)

ẋ2

2
+ w̄(x) = ẋ2

0

2
w̄(x) = ω2

2
x2 − γ 2x + γ 2

3
ẋ > 0, x > 1 (18)

Here again, two cases must be distinguished:
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Fig. 5. “Potential” energy as a function of x = h/H ; f = 0, ω2/γ 2 = 2/3 or 4/3.

Fig. 6. “Potential” energy as a function of x = h/H when ω2/γ 2 = 2/3, f = 25, 50, 75, and 100.

(1) when 2 > ω2/γ 2 > 4/3, then w(x) (and ẋ) vanishes to zero when 3(1 − ω2/2γ 2) = xM < 1. The warm/cold interface 
does not reach the wellhead. A maximum of ẋ2/2 is reached when w ′(xg) = 0 or xg = 2 − ω2/γ 2;

(2) when ω2/γ 2 < 4/3, the above solution still holds as long as x ≤ 1; however, the geyser is still active when x = 1, 
and xM > 1 (the cold/warm interface reaches the wellhead), as w(1) < 0. When x > 1, the well is filled with warm 
brine, and Eq. (18) must be used: w̄(x) (and ẋ) vanishes to zero when w(xM) = ω2x2

M/2 − γ 2xM + γ 2/3 = 0, and the 
maximum of ẋ2/2 is reached when w ′(xg) = 0 or xg = γ 2/ω2.

The different cases are represented in Fig. 7. When ω2/γ 2 is small, the geyser (of height Hxg) can be quite high. 
However, this case is unrealistic, as, from a practical point of view, it implies that the cross-sectional area of the borehole 
(S) is small, as ω2 = S/ρbβV H . Head losses must be considered.

5.4. Height of the geyser

In principle, the height of the geyser is given by η(t) = ẋ2(t)/2g . The highest geyser is reached when the brine rate is 
maximum – i.e. when w ′(xg) = 0 or w̄ ′(xg) = 0. However, wellheads often are equipped with a choke that increases both 
head losses and brine rate when the brine reaches the ground level. In such a case, the geyser can be higher than predicted 
by Eqs. (15) and (16).
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Fig. 7. xM and xg as a function of ω2/γ 2 in the no head-loss case.

6. Discussion

It was proved that a geyser can appear when w(0) = ω2 − 2γ 2 < 0, or

ω2 = S/ρbβV H < αbΓ g = 2γ 2 (19)

The right-hand side of this inequality does not depend on the characteristics of the cavern and does not vary much from 
one site to the other; αbΓ g = 1.32 × 10−4 s−2 is typical.

A geyser can appear in a large (V is large), deep (H is large) and compressible (β is large) cavern when the borehole 
cross-sectional area (S) is small enough. For instance, assuming V = 400 000 m3, β = 5 × 10−4/MPa and H = 500 m leads 
to ρbβV H = 120 m2 · s2, and the cross-sectional area must be smaller than S < αbΓ gρbβV H = 1.5 × 10−2 m2. Conversely, 
in the case of the Gellenoncourt cavern discussed above, βV = 129.5 m3/MPa, H = 250 m, S = 2.1 × 10−2 m2, S/βV ρb H =
5.4 × 10−4 s−2 > gαbΓ , and no geyser can appear.

Head losses are difficult to assess, as factors such as rugosity play a significant role. It often is accepted that head losses 
can be written: �P = f̄ ρH V 2/2D , where f̄ = 0.015 is typical in the turbulent domain. In this paper, head losses are defined 
as �P = F (S)ḣ2/S; hence, f = F (S)/ρb S = f̄ H/2D and f = 50. Intensity of the geyser can be attenuated significantly by 
head losses, as proved by Fig. 6.

The conditions for the onset of a geyser are not often met, as a large cavern and a narrow wellbore are needed. However, 
several circumstances can be favorable. During an outflow test, crystallization often takes place in the wellbore (as the rock 
temperature at shallower depth is colder than the cavern-brine temperature), progressively leading to a smaller wellbore 
diameter. When leaching a salt cavern for brine production, air is often used as a “blanket”: air is injected below the 
casing shoe to prevent any rise of the cavern roof. When leaching is completed, the cavern may contain pockets in which 
pressurized air remains trapped. In such a case, cavern compressibility increases drastically. For instance, when the cavern 
pressure is Pc, and ε is the fraction of the cavern volume that is occupied by gas, the cavern compressibility is β + ε/Pc; 
when ε = 1%, H = 500 m, Pc = 6 MPa, ε/Pc = 16 × 10−4/MPa, and the cavern compressibility (β = 4 × 10−4/MPa when 
the cavern contains no gas) is multiplied by a factor of 5.

However, in such a case, the “thermal” geyser described in this paper – during which air remains trapped in pockets at 
the cavern roof – should not be confused with a blow-out resulting from a release of air from a trap, generated, for instance, 
by an atmospheric pressure drop, a phenomenon sometimes observed. An example of this may be provided by Fig. 8. In 
a brine cavern field in Switzerland [7], a dozen of caverns were at rest; they were left open, and the brine outflow was 
collected at the ground level. From one of these caverns, a 25-m-high geyser appeared unexpectedly and remained active 
over two and a half weeks. After some time, the geyser became intermittent. Air had been used as a blanket medium. Little 
information is available; whether this geyser is “tepid” or results from trapped air release rising in the wellbore is unclear 
at this time.
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Fig. 8. A geyser above an underground cavern [7].
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