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The interaction of a conductive crack and an electrode at a piezoelectric bi-material 
interface is studied. The bimaterial is subjected to an in-plane electrical field parallel to the 
interface and an anti-plane mechanical loading. The problem is formulated and reduced, via 
the application of sectionally analytic vector functions, to a combined Dirichlet–Riemann 
boundary value problem. Simple analytical expressions for the stress, the electric field, and 
their intensity factors as well as for the crack faces’ displacement jump are derived. Our 
numerical results illustrate the proposed approach and permit to draw some conclusions 
on the crack–electrode interaction.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Interface cracks in multi-layered piezoelectric systems have attracted substantial interest from researchers since they 
can significantly reduce device functionality. A comprehensive review of crack problems arising in piezoelectric bimaterials 
is presented, e.g., in Govorukha et al. [1] including in-plane, anti-plane cracks and other problems. Without pretending 
to be exhaustive, we may note some important works related to the anti-plane interface crack problem in piezoelectric 
bimaterials.

Based on the integral equation approach, the anti-plane problems of a crack situated at the interface between piezo-
electric layers or between a piezoelectric layer and an elastic layer were considered in works by Narita and Shindo [2], 
Soh et al. [3], Kwon and Lee [4], Li and Tang [5], Wang and Sun [6], Feng et al. [7] for both electrically permeable and 
electrically impermeable assumptions on the crack faces. The papers by Fil’shtinskii and Fil’shtinskii [8], Hou and Mei [9], 
Gao and Wang [10] are devoted to the consideration of anti-plane interface crack problems for a piezoelectric compound 
subjected to piecewise uniform out-of-plane mechanical loading combined with in-plane electric loading at infinity, and 
also line loading at an arbitrary point.

The anti-plane problem of three collinear interface cracks between dissimilar transversely isotropic piezoelectric materi-
als subjected to electromechanical loading was analyzed by Choi and Shin [11] and Choi and Chung [12]. The problem of 
a three-layer structure constructed of a piezoelectric and two elastic strips cracked at the interface was analyzed by Narita 
and Shindo [13], Kwon and Lee [14].

* Corresponding author.
E-mail addresses: onopriienko .oleg @gmail .com (O. Onopriienko), loboda @mail .dsu .dp .ua (V. Loboda), Shevelevaae @dnu .dp .ua (A. Sheveleva), 

lapusta @sigma -clermont .fr (Y. Lapusta).
https://doi.org/10.1016/j.crme.2018.04.001
1631-0721/© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

https://doi.org/10.1016/j.crme.2018.04.001
http://www.ScienceDirect.com/
http://www.sciencedirect.com
mailto:onopriienko.oleg@gmail.com
mailto:loboda@mail.dsu.dp.ua
mailto:Shevelevaae@dnu.dp.ua
mailto:lapusta@sigma-clermont.fr
https://doi.org/10.1016/j.crme.2018.04.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.crme.2018.04.001&domain=pdf


450 O. Onopriienko et al. / C. R. Mecanique 346 (2018) 449–459
Fig. 1. Electrically conductive crack c ≤ x1 ≤ a approaching an electrode a < x1 < b at the interface x2 = 0 between two piezoelectric materials. u±
3 are 

unknown values of the crack faces’ displacement.

The electroelastic interaction between a screw dislocation and a semi-infinite interface crack embedded in a two-phase 
piezoelectric medium has been investigated in the paper by Soh et al. [15]. Solutions for a screw dislocation interacting with 
a semi-infinite crack, finite crack, and edge crack between two bonded dissimilar piezoelectric materials were obtained in 
closed form by Wu et al. [16]. Many investigations were devoted to the anti-plane case of cracks moving along the interface 
of piezoelectric materials. The comprehensive review of such investigations is given in the recent paper by Nourazar and 
Ayatollahi [17].

In many cases, conducting interface cracks arise (Ru [18]). Such cracks were analyzed, e.g., by Beom and Atluri [19] and 
Loboda et al. [20] for “open” and contact zone crack models, respectively. Wang and Zhong [21] and also Wang et al. [22]
studied a moving conducting crack at the interface of two dissimilar piezoelectric materials for an out-of-plane mechanical 
loading case. Lapusta et al. [23] analyzed a crack with mixed conditions at the crack faces. Although these cracks can interact 
with electrodes, to the best of our knowledge, this interaction has not been studied before. The present paper addresses 
this interesting and practically important case.

2. Problem formulation

Consider an electrically conductive crack c ≤ x1 ≤ a approaching an electrode a < x1 < b at the interface x2 = 0 of a 
piezoelectric bimaterial (Fig. 1). The upper and lower components of the bimaterial are piezoceramics with poling direc-
tion x3 and properties ci jks , esi j , αis , where the mentioned values are stiffness, piezoelectric, and dielectric components, 
respectively.

We assume that a vector P ∞ = [σ∞
23 , E∞

1 ]ᵀ is prescribed at infinity. We also assume the absence of stresses and electric 
field in the crack, the absence of the electric field as well as of stress and displacement jumps in the electrode zone and 
continuity conditions on the remaining part of the bimaterial interface. Thus, the boundary conditions at different parts of 
the interface have the form

σ
(1)
23 = σ

(2)
23 = 0, E(1)

1 = E(2)
1 = 0 for c < x1 < a (1)

E(1)
1 = E(2)

1 = 0, 〈ε31〉 = 0, 〈σ23〉 = 0 for a < x1 < b (2)

〈σ23〉 = 0, 〈D2〉 = 0, 〈ε31〉 = 0, 〈E1〉 = 0 for x1 /∈ (c,b) (3)

Here and in the following, σi j , εi j , Di , Ei denote stresses, strains, electric induction, and electric field, respectively. Recall 
that some basic piezoelectricity relations have the following form:

σi j = ci jksεks − esi j Es, Di = eiksεks + αis Es (4)

Strains and electric field can be expressed using displacements ui and electric potential ϕ in the form

εi j = 1

2
(ui, j + u j,i), Ei = −ϕ,i (5)

The equilibrium equations are:

σi j, j = 0, Di,i = 0 (6)
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If an out-of-plane mechanical and in-plane electric loading is applied, we get a 2D problem with

u1 = u2 = 0, u3 = u3(x1, x2), ϕ = ϕ(x1, x2).

Using the conventional two-index notation for coefficients in (4) these relations take the form:{
σ3i

Di

}
= R

{
u3,i

ϕ,i

}
(7)

with i = 1, 2 and R = [ c44 e15
e15 −α11

]
.

Vectors

K = [σ31, D1]ᵀ, u = [u3,ϕ]ᵀ, t = [σ23, D2]ᵀ (8)

are bound by the following relations:

K = Ru,1, t = Ru,2 (9)

As u3 and ϕ are harmonic, they can be presented as a real part of an analytic function �(z) = [�1(z), �̄2(z)]ᵀ of complex 
variable z = x1 + ix2

u = 2 Re�(z) = �(z) + �̄(z̄) (10)

We use the previous equations and derive:

t = Q�′(z) + Q̄�̄′(z̄), K = −iQ�′(z) + iQ̄�̄′(z̄) (11)

where Q = iR.
We also obtain:

v′ = A�′(z) + Ā�̄′(z̄) (12)

P = B�′(z) + B̄�̄′(z̄) (13)

where

A =
[

1 0

Q 21 Q 22

]
, B =

[
Q 11 Q 12

0 1

]
,

and

v′ = [u′
3, D2]ᵀ, P = [σ23,−E1]ᵀ (14)

Consider now a piezoelectric bi-material composed of two half-planes with an interface x2 = 0 and apply Eqs. (12) and 
(13) to both components of the bimaterial.

v(m) = A(m)�(m)(z) + Ā(m)�̄(m)(z̄), P (m) = B(m)�′ (m)(z) + B̄(m)�̄′ (m)(z̄) (m = 1,2) (15)

where �(m)(z) are arbitrary functions analytic in the regions 1 and 2, respectively.
According to continuity conditions P (1) = P (2) through the interface x2 = 0, we get:

B(1)�′ (1)(x1 + i0) − B̄(2)�̄′ (2)(x1 + i0) = B(2)�′ (2)(x1 − i0) − B̄(1)�̄′ (1)(x1 − i0) (16)

The left- and right-hand sides of the last equation can be considered as the limit values of

B(1)�′ (1)(z) − B̄(2)�̄′ (2)(z) and B(2)�′ (2)(z) − B̄(1)�̄′ (1)(z) (17)

which are analytic functions in the upper and lower planes, respectively.
We further obtain that functions (17) are equal to zero for any z from the corresponding half-plane,

�̄′ (2)(z) = (
B̄(2)

)−1
B(1)�′ (1)(z) for x2 > 0 (18)

�̄′ (1)(z) = (
B̄(1)

)−1
B(2)�′ (2)(z) for x2 < 0 (19)

and get the jump〈
v′(x1)

〉 = v′ (1)(x1 + i0) − v′ (2)(x1 − i0) (20)
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of the vector function v′(x1) over the interface. Using (15)

v′ (m)(x1 ± i0) = A(m)�′ (m)(x1 ± i0) + Ā(m)�′ (m)(x1 ∓ i0),

and substituting in (20), one gets:〈
v′(x1)

〉 = A(1)�′ (1)(x1 + i0) + Ā(1)�̄′ (1)(x1 − i0) − A(2)�′ (2)(x1 − i0) − Ā(2)�̄′ (2)(x1 + i0).

Finding further �′ (2)(x1 − i0) = (B(2))−1B̄(1)�̄′ (1)(x1 − i0) from (19) and substituting this expression together with (12)
at x2 → +0 in the latest formula, leads to:〈

v′(x1)
〉 = D�′ (1)(x1 + i0) + D̄�̄′ (1)(x1 − i0),

where D = A(1) − Ā(2)(B(2))−1B(1) . Introducing a new vector function,

W (z) =
{

D�′ (1)(z), x2 > 0,

−D�′ (1)(z), x2 < 0,
(21)

the last relation can be written as〈
v′(x1)

〉 = W +(x1) − W −(x1) (22)

From the second relations (15), we have:

P (1)(x1,0) = B(1)�′ (1)(x1 + i0) + B̄(1)�̄′ (1)(x1 − i0) (23)

Considering the fact that, on the base of (21),

�′ (1)(x1 + i0) = D−1W (x1 + i0),

�̄′ (1)(x1 − i0) = −(
D̄−1)−1

W (x1 − i0),

and substituting these relations in (23) leads to

P (1)(x1,0) = S W +(x1) − S̄ W −(x1) (24)

where S = B(1)D−1. Simple calculations show that

S = [
A(1)

(
B(1)

)−1 − Ā
(2)(

B̄(2)
)−1]−1

(25)

It is worth to be mentioned that, for a case of a homogeneous material, this matrix becomes

S = ic44

2

[
1 0

0 (e2
15 + c44α11)

−1

]

and, in this particular case, completely coincides with the matrix iH−1 obtained by method of Suo et al. [24]. For the case 
of a piezoceramics bimaterial studied here, we get that the matrix S has the following structure

S =
[

is11 s12

s21 is22

]
(26)

where all skl (k, l = 1, 2) are real.

3. Satisfied boundary conditions

Consider (24) in the following expanded form

σ
(1)
23 (x1,0) = is11W +

1 (x1) + s12W +
2 (x1) + is11W −

1 (x1) − s12W −
2 (x1),

−E(1)
1 (x1,0) = s21W +

1 (x1) + is22W +
2 (x1) − s21W −

1 (x1) + is22W −
2 (x1) (27)

in which (26) was taken into account. Combining the equations (27) one arrives at the presentations

σ
(1)
23 (x1,0) − im j E(1)

1 (x1,0) = t j
[

F +
j (x1) + γ j F −

j (x1)
]

(28)

where

F j(z) = W2(z) + is j W1(z) (29)
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and t j = s12 − m j s22, γ j = −(s12 + m j s22)/t j , s j = (s11 + m j s21)/t j , m1,2 = ∓
√

− s11s12
s21s22

.

It follows from the last equations that s1,2 = −m1,2, γ2 = 1/γ1, and the values m1,2 are real.
Because, according to (26), F +

j (x1) − F −
j (x1) = W +

2 (x1) − W −
2 (x1) + is j[W +

1 (x1) − W −
1 (x1)], then using (22), one gets〈

D2(x1,0)
〉 + is j

〈
u′

3(x1,0)
〉 = F +

j (x1) − F −
j (x1) (30)

It is sufficient to apply relations (28), (30) in the following analysis only for j = 1; therefore, assuming j = 1, the Eqs. (28)
and (30) can be presented in the form:

σ
(1)
23 (x1,0) − im1 E(1)

1 (x1,0) = t1
[

F +
1 (x1) + γ1 F −

1 (x1)
]

(31)〈
D2(x1,0)

〉 + is1
〈
u′

3(x1,0)
〉 = F +

1 (x1) − F −
1 (x1) (32)

where m1 = −
√

− s11s12
s21s22

, s1 = −m1.

Presentations (31) and (32) are very convenient for the formulation and the resolution of the problems of linear rela-
tionship for piezoelectric bimaterials within a wide range of mixed interface conditions. One of such conditions is analyzed 
in this work.

Relations (22), (24) and, consequently, (31), (32) ensure satisfying equation P (1)(x1, 0) = P (2)(x1, 0) for the whole in-
terface and, accordingly, satisfying the first and fourth interface conditions (3). Further satisfaction of second and third 
conditions (3) provides the analyticity of the function F1(z) for the whole plane with a cut along the segment (c, b) of 
the interface. Satisfying the remaining boundary conditions (1) and (2) with use of (31) and (32), one gets the following 
equations

F +
1 (x1) + γ1 F −

1 (x1) = 0 for c < x1 < a (33)

Im
[

F +
1 (x1) + γ1 F −

1 (x1)
] = 0, Im

[
F +

1 (x1) − F −
1 (x1)

] = 0 for a < x1 < b.

The last two relations lead to the equation

Im F ±
1 (x1) = 0 for a < x1 < b (34)

Taking into account that for x1 /∈ (c, b) the relationships F +
1 (x1) = F −

1 (x1) = F1(x1) are valid, it follows from Eq. (31)

(1 + γ1)t1 F1(x1) = σ
(1)
23 (x1,0) − im1 E(1)

1 (x1,0) for x1 → ∞.

Using the fact that the functions F1(z) are analytic in the whole plane cut along (c, b) and applying the conditions at 
infinity, one gets, from the last equation:

F1(z)|z→∞ = σ̃23 − iẼ1 (35)

where σ̃23 = σ∞
23
r1

, Ẽ1 = m1 E∞
1

r1
, r1 = (1 + γ1)t1.

Relations (33) and (34) present the combined Dirichlet–Riemann boundary value problem. The solution to such a problem 
was found and applied to the analysis of a rigid stamp by Nahnein and Nuller [25]. Concerning the problem of an in-plane 
interface crack, this solution was developed by Loboda [26]. Using these results, an exact solution to the problems (33) and 
(34), satisfying the condition at infinity (35) as well as the condition of the displacement uniqueness and the absence of an 
electric charge in the crack region (Knish et al. [27]), can be written in the form

F1(z) = P (z)X1(z) + Q (z)X2(z) (36)

here

P (z) = C1z + C2, Q (z) = D1z + D2,

X1(z) = ieiχ(z)/
√

(z − c)(z − b), X2(z) = eiχ(z)/
√

(z − c)(z − a),

χ(z) = 2ε ln

√
(b − a)(z − c)√

l(z − a) + √
(a − c)(z − b)

, ε = 1

2π
lnγ1, l = b − c,

C1 = −Ẽ1 cosβ − σ̃23 sinβ, D1 = σ̃23 cosβ − Ẽ1 sinβ,

C2 = − c + b

2
C1 − β1 D1, D2 = β1C1 − c + a

2
D1,

with

β = ε ln
1 − √

1 − λ√ , β1 = ε
√

(a − c)(b − c), λ = b − a
.

1 + 1 − λ l
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Using the solution (36) together with formula (31), one gets

σ
(1)
23 (x1,0) − im1 E(1)

1 (x1,0) =
[

Q (x1)√
x1 − a

+ iP (x1)√
x1 − b

]
r1 exp[iχ(x1)]√

x1 − c
for x1 > b (37)

σ
(1)
23 (x1,0) = t1 P (x1)√

(x1 − c)(b − x1)

[
(1 − γ1) coshϕ0(x1) + (1 + γ1) sinhϕ0(x1)

]
+ t1 Q (x1)√

(x1 − c)(x1 − a)

[
(1 + γ1) coshϕ0(x1) + (1 − γ1) sinhϕ0(x1)

]
for a < x1 < b (38)

where ϕ0(x1) = 2ε tan−1
√

(a−c)(b−x1)
(b−c)(x1−a)

.

Substituting the solution (36) into (32) gives the following formulas:

〈
D2(x1,0)

〉 + is1
〈
u′

3(x1,0)
〉 = 2

√
α

[
P (x1)√
b − x1

− i
Q (x1)√
a − x1

]
exp[iϕ∗(x1)]√

x1 − c
for c < x1 < a (39)

〈
D2(x1,0)

〉 = 2√
x1 − c

[
P (x1)√
b − x1

coshϕ0(x1) + Q (x1)√
x1 − a

sinhϕ0(x1)

]
for a < x1 < b (40)

where ϕ∗(x1) = 2ε ln
√

(b−a)(x1−c)√
l(a−x1)+√

(a−c)(b−x1)
, α = (γ1+1)2

4γ1
.

It is worth to be mentioned that the obtained solution has an oscillating square root singularity at the left crack tip. 
However, it is very important that this solution is not oscillating at the right crack tip and, therefore, commonly used 
intensity factors can be introduced. Thus, we introduce further the following mechanical stress and electrical field intensity 
factors (IFs):

K3 = lim
x1→a+0

√
2π(x1 − a)σ

(1)
23 (x1,0),

K E = lim
x1→b+0

√
2π(x1 − b)E(1)

1 (x1,0) (41)

Using Eq. (38) and taking into account that ϕ0(a) = ln
√

γ1, one can find:

K3 = r1 Q (a)√
a − c

√
2π
α

(42)

The intensity factor K E can be inferred from the formula (37) and can be written in the form

K E = − r1

m1

√
2π
l

P (b) (43)

It follows from Eq. (37) that the stress σ (1)
23 (x1, 0) in the right neighborhood of the point b is finite, but Eq. (38) shows 

that in the left neighborhood of this point it is singular and the corresponding stress intensity factor (SIF)

K3b = lim
x1→b−0

√
2π(b − x1)σ

(1)
23 (x1,0)

is equal to

K3b = r1γ0

√
2π
l

P (b) = −m1γ0 K E (44)

where γ0 = 1−γ1
1+γ1

. Thus, we have only two independent IFs at the points a and b. These IFs can be presented in the form:

K3 =
√

πl

2α

[√
1 − λ

(
σ∞

23 cosβ − m1 E∞
1 sinβ

) − 2ε
(
σ∞

23 sinβ + m1 E∞
1 cosβ

)]
(45)

K E = 1

m1

√
πl

2

[(
σ∞

23 sinβ + m1 E∞
1 cosβ

) + 2ε
√

1 − λ
(
σ∞

23 cosβ − m1 E∞
1 sinβ

)]
(46)

It is worth to be mentioned that the identity

αK 2
3 + m2

1 K 2
E = πl

2

(1 − λ)(1 + 4ε2)2

1 + 4ε2 − λ

[(
σ∞

23

)2 + m2
1

(
E∞

1

)2]
(47)

is valid.
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Fig. 2. Tangential displacement jump along the conductive crack for E∞
1 = 2 · 104 V/m.

Using of equation (39) for x1 → a − 0 permits to obtain the following expressions of 〈u′
3〉 via the SIF K3:

〈
u′

3(x1,0)
〉 = − 2α

r1s1

K3√
2π(a − x1)

for x1 → a − 0 (48)

According to (48), the derivative of the displacement jump at the crack tip a is proportional to the SIF K3. To confirm the 
validity of the obtained solution, let us suppose that the electrode is absent and the only interface crack is situated along 
c < x1 < a. In this case, the problem of the linear relationship

F +
1 (x1) + γ1 F −

1 (x1) = 0 for c < x1 < a (49)

follows from (1), (31) and the conditions at infinity (35) are valid.
This problem is relatively simple and its solution can be easily found with use of Muskhelishvili [28] in the form

F (z) = (σ̃23 − iẼ1)
z − (a + c)/2 − iεl√

(z − c)(z − a)

(
z − c

z − a

)iε

(50)

The stress and electric field at the interface are obtained with use of (31) as follows

σ
(1)
23 (x1,0) − im1 E(1)

1 (x1,0) = (
σ∞

23 − im1 E∞
1

) x1 − (a + c)/2 − iεl√
(x1 − c)(x1 − a)

(
x1 − c

x1 − a

)iε

for x1 > a (51)

Consider for comparison the formula (37) for b → a, i.e. for the limiting case of electrode length tending to 0. Taking 
into account that, for b → a,

Q (x1)√
x1 − a

+ iP (x1)√
x1 − b

= x1 − (a + c)/2 − iεl√
x1 − a

(D1 + iC1),

D1 + iC1 = (
σ∞

23 − im1 E∞
1

)
exp(−iβ)/r1

and

exp
[
iχ(x1) − β

] =
(

x1 − c

x1 − a

)iε

,

we arrive exactly at Equation (51). This fact confirms the correctness of the solution (36) for the combination of a crack and 
an electrode at it continuation. Moreover, it shows that the presence of the electrode transforms the oscillating singularity 
at the tip a of an individual interface crack into two square root singularities at the points a and b.

4. Numerical results and discussion

We performed calculations for a bimaterial with the following characteristics (Wang et al. [22]): c(1)
44 = 35.3 · 109 Pa, 

e(1)
15 = 17 C

m2 , α(1)
11 = 15.1 · 10−9 C

V ·m , c(2)
44 = 42.47 · 109 Pa, e(2)

15 = −0.48 C
m2 , α(2)

11 = 0.0757 · 10−9 C
V ·m . The calculated tangential 

crack opening 〈u3(x1, 0)〉 for c = −10 mm, a = 10 mm, σ∞
23 = 1 MPa is displayed in Figs. 2 and 3 for E∞

1 = 2 · 104 V/m and 
E∞

1 = 175781.47 V/m, respectively. Figs. 4 and 5 show results for stresses σ (1)
23 (x1, 0) in the electrode zone for the same 

electric loads. Stresses σ (1)
23 (x1, 0) on the electrode continuation for the same electric loads are shown in Figs. 6 and 7. In 

all these figures, lines I, II and III correspond, respectively, to b = 12 mm, 16 mm, and 20 mm.
It can be seen from Figs. 2, 4 and 6 that, for a relatively small value of E∞

1 = 2 · 104 V/m, the dependence of the crack 
opening and stresses on the electrode length is rather small. By the way, for E∞ = 0, this dependence is almost absent. 
1
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Fig. 3. Tangential displacement jump along the conductive crack for E∞
1 = 175781.47 V/m.

Fig. 4. Shear stress variation along the electrode zone for E∞
1 = 2 · 104 V/m.

Fig. 5. Shear stress variation along the electrode zone for E∞
1 = 175781.47 V/m.

Fig. 6. Behavior of the shear stress at the electrode continuation for E∞
1 = 2 · 104 V/m.
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Fig. 7. Behavior of the shear stress at the electrode continuation for E∞
1 = 175781.47 V/m.

Table 1
Stress and electric field intensity factors for different electrode lengths and the intensity of electric field.

b(m) K3(Pa · √m) K E (V /
√

m)

E∞
1 = 2 · 104 E∞

1 = 175781.47 E∞
1 = 2 · 104 E∞

1 = 175781.47

0.012 153,331 ≈ 0 2476.4 33,595.2
0.016 146,772 101,991 1337.0 33,213.2
0.020 138,234 142,244 912.35 32,850.1

Table 2
The variation of stress and electric field intensity factors for 
b = 0.016 m, σ∞

23 = 1 MPa and different intensities of the 
electric field.

E∞
1 (V/m) K3 (Pa · √m) K E (V /

√
m)

−7372.95 151,891 ≈ 0
−3 · 103 147,536 793
0 146,772 1337
1 · 105 121,297 19,471
2.5 · 105 83,083.3 46,671.9
576,131 ≈ 0 105,812

For all cases presented in the Figures, except for lines I of Figs. 3, 5 and 7, the intensity factors K3 and K E differ from 0. 
This means that 〈u′

3(x1, 0)〉 is singular for x1 → a − 0 and that σ (1)
23 (x1, 0) is singular at both internal ends of [a, b] for all 

mentioned cases. The lines I of Figs. 3, 5 and 7 correspond to the case where K3 = 0. In this case, the crack closes smoothly 
at the point a (Fig. 3) and the stress σ (1)

23 (x1, 0) tends to zero at this point. It is worth also noting that the stress σ (1)
23 (x1, 0)

is always finite for x1 → b + 0 (Figs. 6, 7).
The intensity factors for the cases presented in Figs. 2–5 are given in Table 1. It can be seen from this Table that the 

stress intensity factor K3 slightly decreases with growing the electrode length for E∞
1 = 2 · 104 V/m, whilst it increases 

fast from zero to a rather large value for E∞
1 = 175781.47 V/m. On the other hand, the electric intensity factor K E varies 

insignificantly with growing values of λ for both mentioned values of E∞
1 .

The dependence of stress and electrical intensity factors on E∞
1 are shown in Table 2 for b = 0.016 m and σ∞

23 =
1 MPa. It can be seen that the variations of both K3 and K E on the electric field are rather essential. Moreover, the 
values of E∞

1 for which K3 or K E became equal to zero are found and presented in the last and second lines of the table, 
respectively.

It follows from the obtained results displayed in Figs. 2–7, in Table 1, and especially in Table 2 that the electric field 
essentially influences the stress and displacement magnitudes as well as the stress and electric intensity factors. Particularly, 
due to the variation of E∞

1 , the SIF K3 can be significantly decreased and even reduced to zero. On the other hand, very 
small negative values of E∞

1 reduce to zero the IF of the electric field K E .
Note finally that the SIF K3 plays the most important role in this study. It defines the possibility of crack propagation. 

The variation of this SIF with respect to the position of the point b, defining the electrode length, is shown in Fig. 8 for the 
same material as in Figs. 2–7 and c = −10 mm, a = 10 mm. Lines I, II and III are drawn for E∞

1 equal to 0, 1.0 × 105 V/m, 
and 2.0 × 105 V/m, respectively. It can be seen from this Figure that, for E∞

1 = 0, the SIF K3 is almost independent of the 
electrode length and, only for very small electrode lengths, some deviation from an almost straight line can be observed. 
This deviation can be explained by the transformation of the square root singularity at the point a into the oscillating 
singularity for b → a (see formulas (49), (51)). However, for a non-zero E∞

1 (lines II and III), the dependence of K3 from 
the electrode length becomes rather essential, especially for small values of b. It should be also noted that, for each of 
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Fig. 8. Variation of the SIF K3 with respect to the electrode length and the intensity of the external electric field.

the mentioned E∞
1 , there exists an electrode length for which the SIF K3 transforms into zero and the danger of the crack 

development for such magnitudes of b vanishes.

5. Conclusion

The formulation of the problem of a conductive crack interacting with an electrode under an in-plane electrical field 
parallel to the crack faces and under out-of-plane mechanical load is analyzed. Presentations (31), (32) of the required 
electromechanical characteristics via sectionally analytic vector functions are constructed. Based upon these presentations, a 
combined Dirichlet–Riemann boundary value problem (33), (34) is formulated. An exact analytical solution to this problem 
is given for any crack and electrode length. Some analytical expressions (34)–(37) for stress, electric field, and their intensity 
factors as well as for the mechanical and electrical displacement jumps of the crack faces are presented. The correctness of 
the obtained solution is confirmed by its comparison in the limiting case with the well-known solution for a single interface 
crack.

In Figs. 2–7, the variations of the mentioned quantities along the appropriate parts of the material interface are illustrated 
for certain materials combination and for different relations between the crack and electrode lengths. The stress and electric 
field intensity factors corresponding to the results of Figs. 2–7 are given in Table 1. The dependence of the stress and 
electrical intensity factors on the magnitude of the electric field at infinity are shown in Table 2 for certain values of the 
external mechanical loading and of the coefficient between the crack and the electrode lengths. In particular, the values 
of the applied electric field inducing zero mechanical or electric intensity factors are distinguished in this Table. Special 
attention is devoted to the stress intensity factor K3, which defines the possibility of crack propagation. Its variation with 
respect to the electrode length and the intensity of the electric field is demonstrated in Fig. 8. It particularly follows from 
this Figure that K3 is almost independent of the electrode length for zero external electric field, but changing this field calls 
the dependence of K3 on the mentioned length.

The analytical analysis and their numerical illustration induces some qualitative conclusions between which the most 
important are the following:

– due to the presence of an electrode at the crack continuation, the square root oscillating singularity at the tip of an 
individual interface crack transforms into two conventional square root singularities at the electrode ends;

– the influence of the electrode on the electromechanical characteristics of an interface crack is almost insensitive for zero 
external electric field, but it becomes rather susceptible in the opposite case.
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