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The Taylor Meshless Method (TMM) is a true meshless integration-free numerical method 
for solving elliptic Partial Differential Equations (PDEs). The basic idea of this method is to 
use high-order polynomial shape functions that are approximated solutions to the PDE and 
are computed by the technique of Taylor series. Currently, this new method has proved 
robust and efficient, and it has the property of exponential convergence with the degree, 
when solving problems with smooth solutions. This exponential convergence is no longer 
obtained for problems involving cracks, corners or notches. On the basis of numerical tests, 
this paper establishes that the presence of a singularity leads to a worsened convergence 
of the Taylor series, but highly accurate solutions can be recovered by including a few 
singular solutions in the basis of shape functions.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

This paper deals with the numerical resolution of elliptic Partial Differential Equations (PDEs) by using Taylor series. 
The main interest of a Taylor series is the property of exponential convergence with the degree, which leads to strong 
reductions of the number of degrees of freedom (DOFs) as compared, for instance, with the finite element method [1,2]. 
Nevertheless the radius of convergence of a Taylor series is limited by the nearest singularity and singularities are common 
in engineering mechanics because of corners, cracks, or pointwise forces. So it is expected that such singularities will slow 
the convergence. In this paper, the relation between singular solutions and convergence of Taylor series is addressed.

Polynomial solutions to some PDEs have been used since a long time to build large finite elements, for instance in plane 
elasticity [3] or for plate bending [4], even with relatively large degrees. When associated with a specific treatment of 
boundary and interface conditions, this method has been called hybrid-Trefftz method, but there are also many other ways 
to account for these boundary-interfaces conditions [5]. Trefftz methods reduce dramatically the number of DOFs because 
only the boundary and interfaces have to be discretized, but it does not work as well for non-homogeneous and non-linear 
problems, in which cases exact solutions are not known. To extend the method into the non-linear range, it has been 
proposed to compute approximate solutions in the sense of Taylor series [6] and the latter procedure is efficient for a large 
class of PDEs, even in non-linear cases [7]. When coupled with appropriate collocation-based subdomain methods [2,8], 
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Fig. 1. Relative error versus conditioning for a degree varying from p = 5 up to p = 60. One tries to recover fundamental solutions within 3D linear elasticity. 
Three cases were considered. From [2].

it leads always to exponential convergence results. In this form, it has been called Taylor Meshless Method (TMM). These 
excellent convergence properties are illustrated in Fig. 1, where three problems are studied, one with a very flat response 
and two others with larger gradients. In the flat case, the convergence is very rapid and a small degree is sufficient to get 
a high precision (� 10−14) that is close to the limit for a real number in double-precision floating-point format. In the two 
other cases, there are two types of response. For a small degree, the response is governed by the exponential convergence 
of Taylor series, even for large domains. For larger degrees, the accuracy deteriorates slightly due to the propagation of 
round-off errors, which is favored by matrix ill-conditioning. The accuracy reversal observed in Fig. 1 is obtained for degrees 
p = 25 and p = 45, which means that TMM works well with large degrees. How to keep these excellent convergence 
properties when the solution is not analytic?

The treatment of singular solutions is a key issue in computational fracture mechanics. The bibliography on the topics 
is huge and we just refer, for instance, to [9] or [10]. Standard finite elements, which ignore the singular fields, could be 
used to analyze elastic cracked bodies, but this “should require extremely fine meshes” [9], so that various specific elements 
were introduced to better capture the singular behavior near the crack tip. The first one [11] simply consists in including 
the analytic singular functions and minimizing with respect to the stress intensity factors, but there are many variants in 
the literature of the seventies, see for instance [12] or [13]. The modern approaches, called extended finite element method 
or generalized finite element method, are based on the partition of unity [14] and can include analytic singular fields 
and discontinuities of the displacement [15]. Note that some problems with singular solutions were solved in a meshless 
framework by using a full basis of singular solutions [16,17].

The convergence properties of Taylor Meshless Method in the presence of singularities are addressed in this paper, es-
pecially for domains with corners and for classical crack problems. As expected, it is not possible to recover exponential 
convergence up to a high accuracy, in the same way as in Fig. 1. Building on the significant achievements within fracture 
mechanics, we shall combine the high-degree polynomials computed by Taylor series with analytically known singular solu-
tions. Indeed the ability to solve problems with singular solutions is an important issue in the development of Taylor-based 
numerical methods.

2. Combining Taylor series and singular solution in a meshless framework

The issue of the present paper is the behavior of Taylor methods for elliptic systems having a singular solution. In this 
part 2, it will be shown that the convergence of Taylor methods, as illustrated in Fig. 1, deteriorates for corner-domains 
(Section 2.3). Next, a variant of the Taylor Meshless Method is proposed simply by including few singular solutions in the 
basis of shape functions (Section 2.4). For completeness, two main features of TMM are recalled: first the algorithm to 
compute polynomial approximate solutions to the PDE by the method of Taylor series (Section 2.1), next a procedure to 
build the global problem by a boundary least-square collocation method (Section 2.2).

2.1. Compute shape functions from Taylor series

The Taylor Meshless Method can be split in two parts. First the differential equation is solved in a quasi-exact manner 
by using the concept of Taylor series, next the boundary and interface conditions are accounted for by a collocation-based 
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technique. Let us begin by the solving inside the domain and describe the method for a simple two-dimensional linear PDE 
with mixed boundary conditions:⎧⎪⎨⎪⎩

−�u(x) + g(x)u(x) = f (x) x ∈ �

u(x) = ud x ∈ �d

Tu(x) = tn x ∈ �n

(1)

where the function u(x) is unknown, while g(x) and f (x) are given analytical functions, and T is a linear differential 
operator. Firstly, one expands u(x), g(x), and f (x) by using truncated Taylor series with a development point xc = [xc, yc]. 
For convenience, the vector x − xc is denoted by [ξ, η].

u(x, y) =
p∑

j=0

j∑
i=0

ũ(i, j − i)ξ iη j−i (2)

g(x, y) =
p−2∑
j=0

j∑
i=0

g̃(i, j − i)ξ iη j−i (3)

f (x, y) =
p−2∑
j=0

j∑
i=0

f̃ (i, j − i)ξ iη j−i (4)

where ũ( , ), g̃( , ) and f̃ ( , ) represent the coefficients of the Taylor series of u(x), g(x) and f (x), respectively. Note that 
only the coefficients ̃u( , ) are unknown.

The principle of the TMM is to vanish the residual R(x) of the PDE up to the order (p − 2). Substituting Eqs. (2)–(4) into 
the PDE in Eq. (1), one can express R(x) in the form of Taylor series:

R(x) =�u(x) − g(x)u(x) + f (x)

≈
p−2∑
m=0

m∑
n=0

R̃(m,n)ξmηn
(5)

where R̃(m, n) represents the coefficients of the Taylor series of the residual R(x). The principle is to vanish these Taylor 
coefficients of the residual:

R̃(m,n) =(m + 2)(m + 1)̃u(m + 2,n) + (n + 2)(n + 1)̃u(m,n + 2)

−
m∑

i=0

n∑
j=0

g̃(i, j)̃u(m − i,n − j) + f̃ (m,n) = 0
(6)

The resulting equations can be considered as recurrence formulae permitting to compute a family of polynomials that are 
quasi-exact solutions to the PDE. In this way, one reduces the number of unknowns from (p + 1)(p + 2)/2 to 2p + 1. The 
latter independent unknowns are collected in a vector {v}. Then the reduced expression up containing 2p + 1 unknowns 
writes:

up =P0(x, y, z) +
2p+1∑
i=1

Pi(x, y, z)vi

=P0(x, y, z) + 〈P 〉{v}
(7)

where the first polynomial P0(x, y, z) balances the right-hand side f (x) of Eq. (1), and 〈P 〉 collects the complete family of 
solutions to the associated homogeneous problems, see [2,6] for more details. As compared with Trefftz methods [5], the 
application to non-homogeneous and non-linear equations is straightforward.

2.2. Boundary least-square collocation

The polynomials P0 and Pi in Eq. (7) are quasi-exact solutions to the PDE, in such a way that the discretization concerns 
only the boundary. As proposed in [6,18,19], a collocation technique combined with the least-square method can be used to 
account for boundary conditions. Two sets of nodes xi , x j are chosen on �d and �n respectively (see Fig. 2). Then searching 
the variables {v} is equivalent to minimize the following function:

T (v) = 1

2

∑
x ∈�

∣∣∣up(xi) − ud(xi)

∣∣∣2 + ω · 1

2

∑
x ∈�

∣∣Tup(x j) − tn(x j)
∣∣2 (8)
i d j n
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Fig. 2. Sketch for the boundary collocation method.

Fig. 3. A two-dimensional elasticity problem.

where ω permits to balance the two kinds of boundary conditions. In our tests, choosing different weight coefficients 
has little influence on the accuracy. Throughout this paper, the weight coefficient is set to be ω = 1 for the numerical 
applications.

This minimization leads to a linear system [K ]{v} = {b} where [K ] is an invertible matrix. Solving this system gives the 
vector {v} and therefore the approximate solution to the problem of Eq. (1). The detailed expressions in the matrix [K ] and 
the vector {b} write:

[K ]αβ =
Md∑
i=1

Pα(xi) · Pβ(xi) + ω ·
Mn∑
j=1

TPα(x j) · TPβ(x j), α,β ∈ [1,2p + 1] (9)

{b}α =
Md∑
i=1

Pα(xi)(ud(xi) − P0(xi)) + ω ·
Mn∑
j=1

TPα(x j)(t
n(x j) − TP0(x j)) (10)

where Md and Mn represent the number of collocation points on the Dirichlet boundary �d and the Neumann boundary 
�n , respectively. This simple least-square collocation procedure will be applied in this paper, a single polynomial solution 
Eq. (7) being valid in the whole domain. Nevertheless, the same collocation method works well also to discretize interface 
conditions in a multi-domain approach [2] and alternative techniques are available for the discretization of the interface [8]. 
There are also finite element-based alternatives within the Trefftz community [3,5].

2.3. Convergence when the domain has a corner

What is the behavior of the latter method when the boundary is not smooth? Let us consider a problem of plane stress 
isotropic elasticity in a square domain with Dirichlet–Neumann boundary conditions as pictured in Fig. 3. The parameters 
are as follows: L = B = 10 mm, E = 1000 MPa (Young’s modulus), ν = 0.3 (Poisson’s ratio) and q = 100 MPa. This problem 
has no analytical solution and we tried to define a reference solution by the finite element method. We consider that a 
500 × 500 mesh with Q 4 elements leads to a sort of reference solution. Indeed, with respect to a 250 × 250 mesh with Q 4
elements or a 100 ×100 mesh with Q 8 elements, the difference is less than 10−3.17. Throughout this paper, the effectiveness 
of the proposed technique will be evaluated by the maximum relative error between the approximated solution up and the 
reference solution uref, which is defined by:

ε = max
∣∣up(x) − uref(x)

∣∣
max |uref(x)| (11)

This elasticity problem has been solved by the Taylor method presented in the previous sections. In this case, it was not 
possible to get a TMM-solution as accurate as in Fig. 1. The error decreases less quickly and there is a plateau of accuracy 
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Fig. 4. Laplace equation in a circular sector with apex angle ϕ and Neumann–Dirichlet boundary conditions.

at about 1%, which is much larger than with problems having smooth solutions and larger than the difference between the 
two best FEM-results. More precisely, the maximal error is about 4% for a degree p = 10, 1.5% for p = 30 and only 1% for 
p = 50. Note also that the accuracy is better in the center of the domain (� 0.03%). Clearly, the worse convergence is due 
to the presence of the corners and this will be confirmed by forthcoming results.

2.4. A new TMM-procedure including singular shape functions

From the numerical test of Section 2.3, one sees the difficulty to recover the property of exponential convergence when 
the boundary is not smooth. To establish undoubtedly the connection between presence of corner and poor convergence, 
the Taylor series method of Sections 2.1 and 2.2 will be modified by including some singular shape functions. Indeed, it has 
been mathematically proved a long time ago [20,21] that the solution to an elliptic PDE in a domain with angular points 
can be split in two parts: a first part combining singular functions and a second part lying in a vectorial space of smoother 
functions. Thus it seems consistent to approximate this second part by a truncated Taylor series.

As it is well known, the family of singular solutions near a corner can be calculated analytically in many cases. For 
instance let us consider the Laplace equation �u = 0 with Dirichlet–Neumann boundary conditions u(r, 0) = 0, ∂u(r,ϕ)

∂θ
= 0, 

cf. Fig. 4. The general solution to �u = 0 is in the form u = Re [φ(z)], where z = x + iy = r eiθ and φ(z) is a holomorphic 
function. Hence, the singular solutions are in the form φ(z) = zα or u(r, θ) = rαsin(αθ), taking into account the Dirichlet 
boundary condition (this solution is not smooth if α is not an integer). If one now introduces the Neumann boundary 
condition

∂u(r, θ)

∂θ

∣∣∣∣
θ=ϕ

= αrαcos(αϕ) = 0, (12)

one gets a countable family of possible exponents α:

α jϕ = π
2

+ ( j − 1)π, j = 1,2,3, · · · (13)

and the expressions of corresponding singular functions as follows

Q j(r, θ) = rα j sin(α jθ) (14)

Such singular solutions can be built analytically for a number of PDEs, and we refer to Appendix A in the case of 2D 
elasticity. Next the simple way to take them into account is to combine linearly the non-singular solutions in Eq. (7) and 
the singular ones in Eq. (14). In the case of a homogeneous problem, this leads to the following ansatz:

up,n(x) =
2p+1∑
i=1

vi P i(x) +
n∑

j=1

v2p+1+ j Q j(r, θ) (15)

Next we have to determine the 2p + 1 + n unknown coefficients vi from the boundary conditions, what will be achieved by 
the same least-square collocation method described in Section 2.2. Transmission conditions could be accounted for in the 
same way in the case of multi-domain discretization, and there are alternative methods based on Lagrange multipliers [2,8]. 
Note that the coefficients {v j, j ≥ 2p + 2} are often considered as quantities of interest. In fracture mechanics, the stress 
intensity factors belong to this set of coefficients.

3. Numerical applications

The modified Taylor method described in Section 2.4 is now analyzed by considering four numerical benchmarks related 
to the Laplace equation and 2D elasticity. Two of them have exact solutions, which permits to discuss the convergence up to 
a very high accuracy. These latter tests correspond to basic solutions in fracture mechanics. The two other cases are simple, 
but more generic, examples without exact solutions, which avoids some bias due to a too specific choice of the example. For 
these four simple cases, a multi-domain method is not necessary: the approximation in Eq. (15) holds in the whole domain.
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Fig. 5. Laplace equation in a circular segment. The solution is singular at the left corner.

Fig. 6. Three meshes of the finite element models for the Laplace problem described in Fig. 5.

Fig. 7. The influence of the number of collocation points for the Laplace problem in Fig. 5, according to the degree p and the number n of singular shape 
functions.

3.1. Laplace equation with singularity

Here, we consider the Laplace equation in a domain that is a circular segment, as shown in Fig. 5. The left corner 
induces a rather weak singularity without infinite gradient at the corner (α1 = 3/2). The geometric parameters are as 
follows: Lx = √

3, L y = 1, c = [√3, −1] and ϕ = π/3.
No analytical solution is available. A reference solution has been defined numerically by using the efficient open source 

code FreeFem++ [22]. Three different meshes with 6-node triangular elements were used as shown in Fig. 6. The finite ele-
ment solution obtained by the most dense mesh (mesh three with 20576 P2 elements) is identified as a reference solution. 
Comparing mesh one (with 3810 P2 elements) and mesh two (with 6078 P2 elements) with mesh three respectively, one 
obtains an error equal to 10−4.7 and 10−4.62, respectively.

The optimal number of collocation points has been carefully discussed in previous papers [2,8]. Without singular func-
tions, the number of degrees of freedom is 2p + 1 in 2D and (p + 1)2 in 3D and generally, the recommended number of 
collocation points is about the double. The influence of the number of collocation points is rediscussed here in the presence 
of singular shape functions, and this is illustrated in Fig. 7. It appears that the error remains always stable from a critical 
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Table 1
Convergence with the number of singular shape functions and the de-
gree of non-singular polynomial shape functions for the Laplace problem 
defined in Fig. 5.

log10(ε) p = 10 p = 20 p = 30 p = 40 p = 50

n = 0 −2.3498 −3.0184 −3.4256 −3.6733 −3.8487
n = 1 −3.8493 −4.7543 −5.0174 −5.0227 −5.0246
n = 3 −4.4218 −4.6921 −5.0171 −5.0225 −5.0217
n = 5 −4.6823 −4.7546 −5.0174 −5.0221 −5.0196

number of collocation points, which is a little higher than 4(p + n). In the following, we choose 6(p + n) collocation points 
to ensure the convergence.

When enough collocation points are adopted, the accuracy is mainly dominated by the degree of polynomial shape 
functions p and the number of singular shape functions n. The convergence with p and n is presented in Table 1. Without 
singular shape functions (n = 0), one converges slowly and reaches an accuracy of 10−3.8 for a large degree p = 50. Just one 
or two singular shape functions permit to gain two orders of magnitude: for instance an accuracy of 10−4 require 101 DOFs 
without singular functions (n = 0, p = 50) while only 22 are sufficient with one singular shape function (n = 1, p = 10). 
Of course such results are consistent with the state of art within fracture mechanics [9] or with alternative results in a 
meshfree framework [16].

3.2. Two examples from linear elastic fracture mechanics

The two next examples are basic benchmarks of fracture mechanics. The behavior near a crack tip is more singular than 
in the example of Section 3.1, which means that the exponent α is smaller (α1 = α2 = 1/2), and the stress is infinite at the 
crack tip (σ ∼ r−1/2). The two first coefficients in the singular part, called stress intensity factors (SIFs), are very important 
in fracture mechanics, and the accuracy with which these coefficients are obtained will be discussed. There is an ample 
literature about the computation of SIFs, but also of the full set of singular coefficients, see for instance [23]. In this paper, 
we are focused on the connection between singular shape functions and convergence of Taylor series, but the accuracy 
of the SIFs will be also shortly analyzed. Some information about the analytical calculation of the singular functions are 
recalled in Appendix A for completeness.

In this section, two fracture mechanics problems are considered. They are designed to have an analytical solution, which 
permits to measure very high accuracies. The solution to the first one is nothing but the famous mode I (or crack-opening 
mode) and it is one of the singular shape functions. As for the solution to the second problem, it comes from the problem 
of a cracked infinite plate under uniaxial tension. Note that the maximal error in Eq. (11) remains consistent for the dis-
placement field that is continuous, but not for the stress that is not bounded at the crack tip. Nevertheless, this maximal 
error will be applied on a cloud of 50 × 50 points uniformly distributed on the domain except at the crack tip, where the 
control point has been moved of 0.001 (typically from x = 0.2 to x = 0.201).

3.2.1. A test to recover the crack opening model
The physical model is two-dimensional plane strain elasticity. The famous mode I of fracture mechanics corresponds to 

the following stress field:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
σx = K I√

2πr
cos(θ/2) · [1 − sin(θ/2)sin(3/2 · θ)]

σy = K I√
2πr

cos(θ/2) · [1 + sin(θ/2)sin(3/2 · θ)]

τxy = K I√
2πr

cos(θ/2) · sin(θ/2) · cos(3/2 · θ)

(16)

where r = √
x2 + y2, θ = arctan(

y
x ). The number K I is the first stress intensity factor. The corresponding displacement field 

is: ⎧⎪⎨⎪⎩
u = K I

2μ
(

r

2π
)1/2 [κ − cos(θ)] cos(θ/2)

v = K I

2μ
(

r

2π
)1/2 [κ − cos(θ)] sin(θ/2)

(17)

where κ = 3 − 4ν , ν is the Poisson ratio and μ = E/[2(1 + ν)]. A mixed boundary value problem has been designed, see 
Fig. 8, whose solution is exactly given by Eqs. (16) and (17). The numerical value of the Poisson ratio is ν = 0.3 and the 
crack length is a = 0.2 mm.

The Taylor method of Section 2.4 has been applied to this problem, without and with singular shape functions. As 
expected, it is not possible to get accurate solutions without singular solutions, the errors in displacement being always 
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Fig. 8. A boundary value problem to recover the crack opening mode.

Table 2
Convergence with the degree p and the number of singular functions 
n for the mode I problem described in Fig. 8.

n p NDOFs Error in displacement 
log10(ε)

Error in stress 
log10(ε)

n = 2 1 8 −15.1204 −15.2682
10 44 −12.8060 −12.6139
20 84 −11.2045 −10.1424

n = 6 1 12 −15.1804 −15.3474
10 48 −12.5630 −12.2353
20 88 −10.8113 −10.0309

larger than 50%, even for large degrees p = 30 and p = 50: hence, it seems difficult to use only polynomial shape functions 
to recover a singular solution. Some results with singular shape functions are presented in Table 2. When two singular 
shape functions (α1 = α2 = 1/2) and three polynomial shape functions (i.e. a degree p = 1) are used, the maximum relative 
errors on displacements and stresses are very small: 10−15.1 and 10−15.3, respectively. Such an error is very close to the 
unit round-off error 2−52 ≈ 2.22 × 10−16 for a single real number within the double-precision floating-point format [24,25]. 
If one increases the degree, the accuracy deteriorates slightly, because of the propagation of round-off errors. The same very 
specific scheme was also observed if one tries to get a polynomial solution by the pure Taylor method of Section 2.1. This 
behavior is typical of problems where the exact solution lies in the vectorial space generated by the shape functions [2].

3.2.2. The infinite plate with a central crack under tensile stress
The second fracture benchmark emanates from the problem of an infinite medium with a horizontal central crack of 

length 2a and submitted to a uniaxial stress σ∞ey ⊗ ey at infinity, see Fig. 9a. The analytical solution is well known [26,
27]: ⎧⎨⎩u = σ∞

2μ

[
(κ−1)

2 (r1/2
2 cos(θ2/2) − 1

2 r1cos(θ1)) − y · r1·r−1/2
2 sin(θ1 + θ2/2) − x

2

]
v = σ∞

2μ

[−(κ+1)
2 (r1/2

2 sin(θ2/2) + 1
2 r1sin(θ1)) − y · r1·r−1/2

2 cos(θ1 + θ2/2) + y
] (18)

⎧⎪⎨⎪⎩
σx = σ∞ · r1·r−1/2

2

[
cos(θ1 + θ2/2) + a2 · r2

−1 · sin(θ1)sin(3/2 · θ2)
] − σ∞

σy = σ∞ · r1·r−1/2
2

[
cos(θ1 + θ2/2) − a2 · r2

−1 · sin(θ1)sin(3/2 · θ2)
]

τxy = σ∞ · a2 · r1·r−1/2
2 · sin(θ1) · cos(3/2 · θ2)

(19)

where the r1, θ1 and r2, θ2 are defined as follows:⎧⎪⎨⎪⎩
r1 = √

x2 + y2; θ1 = arctan(
y

x
).

r2 = √
(x2 − y2 − a2)2 + (−2xy)2; θ2 = arctan(

−2xy

x2 − y2 − a2
)

(20)

The chosen parameters are as follows: a = 0.2 mm, σ∞ = 100 MPa, ν = 0.3, κ = 3 − 4ν , E = 1000 MPa (Young’s modulus), 
and μ = E/[2(1 + ν)]. A square domain has been cut in the infinite domain (see Fig. 9a), and a corresponding boundary 
value problem has been posed in Fig. 9b so as to keep the same solution, Eqs. (18) and (19).
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Fig. 9. (a) The infinite plate with a central crack and submitted to a uniaxial stress at infinity; (b) A boundary value problem in a finite domain whose 
solution is the same as for the infinite plate of Fig. 9a.

Table 3
Convergence with the degree p and the number of singular functions n for the 
cracked plate problem described in Fig. 10.

n p Error in displacements 
log10(ε)

Error in stresses 
log10(ε)

Error in SIFs 
log10(ε)

n = 2 10 −1.4137 −1.3121 −1.5543
30 −2.0785 −1.6041 −1.5914
50 −2.2081 −1.5592 −1.7093

n = 6 10 −2.3236 −1.6326 −2.5541
30 −4.7309 −4.2851 −4.4160
50 −5.8604 −5.1474 −5.0110

n = 8 10 −2.4972 −1.7541 −2.4210
30 −5.0535 −4.5884 −5.8802
40 −6.2975 −5.6968 −6.0031
50 −5.6359 −4.8222 −5.8995

Fig. 10. The distribution of transverse stress σy and of the corresponding error along the horizontal line y = 0.

The convergence with the degree p of the polynomial shape functions and the number n of singular shape functions 
is now discussed. The numerical solution is wrong without singular shape functions, the error being at least 50%. Table 3
presents the obtained accuracy from two to eight singular functions. The introduction of two singular functions is sufficient 
to get an error of about 1%. Next the accuracy is easily improved by increasing the number of singular functions and the 
degree. For instance, with a degree p = 10 (42 polynomials), one passes from an error of 10−1.4 for n = 2 to an error of 
10−2.3 for n = 6, and finally to 10−3.3 for n = 20. There is a plateau of accuracy at a high level (10−5 or 10−6). Moreover, the 
error in stress and Stress Intensity Factor has about the same order of magnitude as for the displacement. The convergence 
with these two parameters p and n is also illustrated in Fig. 10, where the distribution of transverse stress σy is plotted: 
one sees clearly the strong improvement obtained by increasing the number of singular functions from n = 2 to n = 8.
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Table 4
Convergence with degree in the presence of few singu-
lar functions for the square elasticity shown in Fig. 3.

n p Error of v (log10(ε))

n1 = n2 = 1 10 −2.4695
30 −3.4594
50 −3.5111

n1 = n2 = 2 10 −2.5001
30 −3.4637
50 −3.6689

3.3. Application in two-dimensional elasticity

Let us come back to the 2D elasticity problem of Fig. 3. The accuracy of TMM without singular functions was not better 
than 1%. The accuracy of the vertical displacement v with two and four singular functions is reported in Table 4. Two types 
of singular functions are used: n1 and n2 singular functions located at upper-left and bottom-left corners respectively. At 
least one order of magnitude is gained simply by adding one singular function at each corner (n1 = n2 = 1), the error being 
reduced to 0.035% for a degree p = 30 and for n1 = n2 = 1. This establishes once more the connection between singularities 
and bad convergence of Taylor series, as well as a simple manner to get tremendous improvements of this convergence. 
Note that the maximal error mentioned in the Table (103.67) may be due as well to FEM as to TMM.

4. Conclusion

A boundary collocation meshless method involving high-order polynomial shape functions and singular shape functions 
was proposed in this paper to solve problems with singularities. Since these shape functions are the approximated solu-
tions to the considered problems, discretization concerns only the boundary, and least-square collocation is employed to 
determine the unknown coefficients. Based on previous research, the proposed technique without singular shape functions 
always works well when the solution to a considered problem is smooth, while it fails to recover the solution of problem 
with singularities. So we wonder what is the probability of solving singular problem effectively by introducing singular 
shape functions. It was well established [20] that the solution to a problem in an angular domain can be split in a smooth 
part and a linear combination of singular functions: in the present method, the smooth part is discretized by Taylor series.

Few benchmark tests established that the accuracy of the approximated solution is widely improved by introducing few 
singular shape functions. When enough collocation points are chosen, accuracy is dominated by two factors: the degree of 
polynomial shape functions and the number of singular shape functions. For a fixed number of singular shape functions, the 
proposed technique converges with the degree of polynomial shape functions. And for a fixed degree of polynomial shape 
functions, accuracy increases with the number of singular shape functions.
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Appendix A. Singular solutions to opening crack

In this Appendix, we compute analytically the whole set of singular functions in the case of a crack tip. This is based on 
the well-known complex variable method, and we refer the reader to [27] for the details. A similar approach can be done 
for the square domain problem in Fig. 3.

The Airy stress function U satisfying the biharmonic equation �2U = 0 reads:

U = Re [zϕ(z) + χ(z)] (21)

where z = x + iy and both ϕ(z) and χ(z) are harmonic functions.
The complex representation of displacements denotes

2μ(u + iv) = κϕ(z) − zϕ′(z) − χ ′(z) (22)

where ν and μ represent the Poisson’s ratio and the shear modulus, respectively. The number κ is a constant related to 
ν and it takes the value 3 − 4ν for plane strain, while it takes the value (3 − ν)/(1 + ν) for generalized plane stress. The 
complex representations of stresses denote



J. Yang et al. / C. R. Mecanique 346 (2018) 603–614 613
{
σx + σy = 2

[
ϕ′(z) + ϕ′(z)

]
σy − σx + 2iτxy = 2

[
zϕ′′(z) + ψ ′(z)

] (23)

The force acting on an arc AB then can be expressed by:

X + iY = −i
[
ϕ(z) + zϕ′(z) + ψ(z)

]B

A
(24)

where ψ(z) = χ ′(z).
One sets the harmonic functions as follows: ϕ(z) = c1zα and ψ(z) = c2zα , where α is a real number and c1, c2 are 

unknown complex numbers determined by the boundary conditions on the upper and lower surfaces of the crack tip. The 
force (X + iY ) vanishes along the crack tip, hence the Eq. (24) satisfies the following conditions:

ϕ(z) + zϕ′(z) + ψ(z) = 0, θ = ±π (25)

The following relationships can be obtained from Eq. (25):{
c1eiαπ + c1αe−iαπ + c2αe−iαπ = 0

c1e−iαπ + c1αeiαπ + c2αeiαπ = 0
(26)

Considering Eq. (26), one can get

ei·4απ = 1 (27)

which means α = 1
2 , 1, 3

2 , 2, 5
2 , · · · . To ensure the singularity of the approximation, the integer values of α should be 

removed. Finally, α = 1
2 , 3

2 , 5
2 , · · · are obtained.

Considering the value of α deduced from the boundary conditions, one can get the following relationship between c1

and c2 by Eq. (26):

c2 = −c1α + c1 (28)

If c1 is set to be 1 and i respectively, these corresponding values of c2 are as follows:{
c1 = 1, c2 = 1 − α

c1 = i, c2 = −i(1 + α)
(29)

Substituting the values of c1 and c2 in Eqs. (22) and (23), one can obtain the expressions of displacements and stresses as 
follows:
• the first set of singular solutions, c1 = 1 and c2 = 1 − α:{

u = 1
2μ rα [(κ − 1 + α) · cos(αθ) − α · cos ((2 − α)θ)]

v = 1
2μ rα [(κ + 1 − α) · sin(αθ) − α · sin ((2 − α)θ)]

(30)⎧⎪⎨⎪⎩
σx = rα−1 · α · [(α + 1)cos((α − 1)θ) − (α − 1)cos((α − 3)θ)]

σy = rα−1 · α · [(3 − α)cos((α − 1)θ) + (α − 1)cos((α − 3)θ)]

τxy = rα−1 · α · (α − 1) [sin((α − 3)θ) − sin((α − 1)θ)]

(31)

• The second set of singular solutions, c1 = i and c2 = −i(1 + α):{
u = −1

2μ rα [(κ + 1 + α) · sin(αθ) + α · sin ((2 − α)θ)]

v = 1
2μ rα [(κ − 1 − α) · cos(αθ) + α · cos ((2 − α)θ)]

(32)⎧⎪⎨⎪⎩
σx = rα−1 · α · [(α − 1)sin((α − 3)θ) − (α + 3)cos((α − 1)θ)]

σy = rα−1 · α · (α − 1) [sin((α − 1)θ) − sin((α − 3)θ)]

τxy = rα−1 · α · [(α − 1)cos((α − 3)θ) − (α + 1)sin((α − 1)θ)]

(33)

Selecting one value of α, there will be two sets of singular solutions. The way to deduce the non-singular shape functions 
from Taylor series has been introduced in section 2.1. The linear combination of the non-singular shape functions and singu-
lar solutions shown in Eqs. (30) and (32) leads to the approximations of this considered problem. Since the approximations 
satisfy the control equations, only boundary conditions need to be considered to determine the unknown coefficients. This 
last step is realized by using the least-square collocation technique as shown in section 2.2.
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