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The aim of this paper is to ask the question as whether it is possible, for a given 
dynamical system defined by a vector field over a finite dimensional inner product space, 
to construct a reduced-order model over a finite dimensional manifold. In order to give 
a positive answer to this question, we prove that if the manifold under consideration is 
an immersed submanifold of the vector space, considered as ambient manifold, then it 
is possible to construct explicitly a reduced-order vector field over this submanifold. In 
particular, we found that the reduced-order vector field satisfies the variational principle 
of Dirac–Frenkel and that we can formulate the Proper Orthogonal Decomposition under 
this framework. Finally, we propose a local-point estimator of the time-dependent error 
between the original vector field and the reduced-order one.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Model reduction applied to a dynamical system (described by an ordinary differential equation) allows one to extract the 
most significant features of this system, representing them in a reduced system of coordinates. The goal of this approach is 
to construct a computational low-cost procedure that reproduces the dominant physical mechanisms of the original model. 
The interested reader is referred to the following review papers and books [1–4].

One of the more widely used model reduction technique is the Proper Orthogonal Decomposition (POD). Its main goal 
is to obtain a lower dimensional approximation of a given dynamical system, as follows. Let be an ordinary differential 
equation (ODE)

du

dt
= X(t,u), u(0) = u0 (1)

for t ∈ [0, t f ], with u, u0 ∈ R
n and X : [0, t f ] × R

n −→ R
n . Consider next the solutions to (1) at m-time points 

{u(t1), . . . , u(tm)} collected in the n ×m-matrix A = [u(t1) −x · · · u(tm) −x] and where x = 1
r

∑m
i=1 u(ti) is the mean of these 

observations. POD seeks a r-dimensional subspace S of Rn (r ≤ n) and the corresponding projection matrix �S ∈ R
n×n , so 

that ‖A − �S A‖ is minimized over all k-dimensional subspaces. The projection matrix corresponding to the optimal sub-
space S is obtained as �S = Z Zᵀ , where the matrix Z ∈ R

n×r consists of the columns of the singular vectors corresponding 
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to the r largest singular values obtained from A. In a coordinate system embedded in S , the projection of a point u onto 
S is represented by ξ = Zᵀ(u − x) ∈ R

r . In particular, if x ∈ x + S then x − x = Zξ for some ξ ∈ R
r . A POD-based reduced 

model that approximates the original problem (1) can then be constructed by the following rule. For any point x = Zξ ∈ S , 
compute the vector-field X(t, x + Zξ) ∈ R

n and take the projection Zᵀ X(t, x + Zξ) ∈ R
r onto the subspace S . Therefore, we 

obtain

dξ

dt
= Zᵀ X(t,x + Zξ), ξ(0) = Zᵀu0 (2)

The dynamical system (2) allows an efficient (typically low-dimensional) representation of the key system behaviour. This 
framework appears useful in a wide variety of applications.

The Dirac–Frenkel variational principle is a well-known tool in the numerical treatment of equations of quantum dy-
namics. It was originally proposed by Dirac and Frenkel in 1930 to approximately solve the time-dependent Schrödinger 
equation. It assumes the existence of a vector field over a configuration space represented by a Hilbert space. This con-
figuration space contains an immersed submanifold, the so-called Hartree manifold, and the reduced-order model is then 
obtained by projecting the vector field at each point of the submanifold onto its tangent space (see [1,5]). It allows also one 
to introduce the so-called geometric numerical integration methods for differential equations (see VI.9 in [6]).

A similar approach is used in the so-called dynamical low-rank approximation for time-dependent data matrices and 
tensors [7,8]. The reduced model is obtained by using the Dirac–Frenkel variational principle, over a manifold of matrices 
(respectively, tensors) of fixed rank (respectively, tensor rank).

To the authors’ knowledge, there is no proof, in a general setting, that the reduced-order dynamical system is a vector 
field, that is, a differentiable map between the immersed submanifold and its tangent bundle. This fact implies that the 
existence and uniqueness of the solutions to the reduced dynamical system is not ensured. The main result of this paper 
is to give a positive answer to the above question. In particular, given a vector field defined over a finite dimensional inner 
product space, we will prove the following. Assume that the manifold chosen to construct the reduced-order dynamical 
system is an immersed submanifold of the vector space, considered as ambient manifold. Then we will show that it is 
possible to construct explicitly a reduced-order vector field over this submanifold.

The paper is organized as follows. In the next section, we give some preliminary definitions. In Section 3, we state and 
prove the main result of this paper. We also give some examples and we propose a point estimator of the time-dependent 
error between the original vector field and the reduced order one. Finally, in Section 4, some conclusions are given.

2. Preliminary definitions

A differentiable manifold can be seen as a configuration space used to describe a particular physical system. The most 
obvious examples are related to mechanical systems for the study of the movements of a pendulum or of a system of solids. 
It may equally well be used to model the evolution of a chemical system where the parameters are the temperature and 
the concentrations of various species. One of main characteristics of these abstract objects is the property to describe a 
neighbourhood on each point in the configuration space by using a set of (local) coordinates into an open set of a particular 
finite-dimensional normed space. This neighbourhood and its corresponding set of local coordinates are known as a chart, 
and the whole set of charts constitutes an atlas for the manifold. The atlas can be used to endow the manifold with a 
topology. Since we need to perform infinitesimal variations in our configuration space, a compatibility condition between 
two different coordinates systems is needed.

Along this paper, we will consider a manifold as a pair (M, A) where M is a subset of some finite-dimensional vector 
space V and A is an atlas representing the local coordinate system of M. We recall the definition of an atlas associated 
with a set M.

Definition 2.1. Let M be a set. An atlas of class C p (p ≥ 0) or analytic on M is a family of charts with some indexing set A, 
namely {(Uα, ϕα) : α ∈ A}, having the following properties (see [9]):

AT1 {Uα}α∈A is a covering of M, that is, Uα ⊂ M for all α ∈ A and ∪α∈A Uα = M;
AT2 for each α ∈ A, (Uα, ϕα) stands for a bijection ϕα : Uα → Wα of Uα onto an open set Wα of a finite-dimensional 

normed space (Xα, ‖ · ‖α), and for any α and β the set ϕα(Uα ∩ Uβ) is open in Xα ;
AT3 finally, if we let Uα ∩ Uβ = Uα,β and ϕα(Uα,β) = Uα,β , the transition mapping ϕβ ◦ ϕ−1

α : Uα,β → Uβ,α is a diffeomor-
phism of class Cp (p ≥ 0) or is analytic.

Since different atlases can give the same manifold, we say that two atlases are compatible if each chart of one atlas is 
compatible with the charts of the other one in the sense of AT3. One verifies that the relation of compatibility between 
atlases is an equivalence relation.

Definition 2.2. An equivalence class of atlases of class C p on M, also denoted by A, is said to define a structure of a 
C p-manifold on M, and hence we say that (M, A) is a finite-dimensional manifold. In a similar way, if an equivalence class 
of atlases is given by analytic maps, then we say that (M, A) is an analytic finite-dimensional manifold.
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Now, we introduce the definition of tangent vector to a manifold. It is related to the notion of velocity vector to a curve 
lying in the configuration space.

Let (M, A) be a manifold of class Cp (p ≥ 1) or analytic. Let m be a point of M. We consider triples (U , ϕ, v) where 
(U , ϕ) is a chart at m and v is an element of the vector space in which ϕ(U ) lies. We say that two of such triples (U , ϕ, v)

and (V , ψ, w) are equivalent if the derivative of ψ ◦ϕ−1 at ϕ(m) maps v on w . Thanks to the chain rule, it is an equivalence 
relation. An equivalence class of such triples is called a tangent vector of M at m.

Definition 2.3. The set of such tangent vectors is called the tangent space of M at m and it is denoted by Tm(M).

Each chart (U , ϕ) determines a bijection of Tm(M) on a finite-dimensional normed space, namely the equivalence class 
of (U , ϕ, v) corresponds to the vector v .

The whole set of tangent spaces in a given manifold, called the tangent bundle, plays an important role to describe the 
velocity fields over the configuration space.

Definition 2.4. Let (M, A) be a manifold of class Cp (p ≥ 1). The set

TM =
⋃

m∈M
Tm(M) = {(m, Xm) : m ∈M and Xm ∈ Tm(M)}

is called the tangent bundle of M.

To define an atlas for the tangent bundle, we consider the projection π : TM −→ M over the first component, and we 
can construct for a given (m, Xm) ∈ TM a local chart by taking (Um, ϕ) ∈A and using the fact that there exists a bijection

ψm : π−1(Um) = {(m′, Xm′) : m′ ∈ Um and X ′
m ∈ Tm′(M)} −→ Um ×Tm(M)

It can be shown that A∗ = {(Um, ψm) : m ∈M} is an atlas for TM.
Our next step is to recall the definition of the differential of a morphism between manifolds. It gives a linear map 

between the tangent spaces of the involved manifolds.

Definition 2.5. Let (M, A) and (N, B) be two Cp -manifolds (p ≥ 1). A morphism F from the manifold (M, A) to the man-
ifold (N, B) is a map F : (M, A) −→ (N, B) where we take into account the representation of F by using both atlas. More 
precisely, assume that F (x) = y, then take (U , ϕ) ∈ A a chart in M at x and (W , ψ) ∈ B a chart in N at F (x), since 
we usually perform calculus by means of the parametric representation of both manifolds; in practice, we use the map 
ψ ◦ F ◦ ϕ−1 : ϕ(U ) −→ ψ(W ) where (ψ ◦ F ◦ ϕ−1)(ϕ(x)) = ψ(y). Assume that F : (M, A) → (N, B) is a Cp morphism, i.e.

ψ ◦ F ◦ ϕ−1 : ϕ(U ) → ψ(W )

is a Cp-differentiable map. For x ∈ X , we define

Tx F : Tx(M) −→ TF (x)(N), v 
→ [(ψ ◦ F ◦ ϕ−1)′(ϕ(x))]v

Finally, we will introduce the notion of vector field in a manifold. It represents a global velocity field over a particular 
configuration space. It is defined allocating on each point of the configuration space a velocity vector compatible with its 
local coordinate system.

Let (M, A) be a Cp -manifold (p ≥ 2), a Cp−1-vector field on M is a Cp−1-morphism

X : (M,A) −→ (TM,A∗)

such that

(π ◦ X)(m) = m

holds for all m ∈ M. Let m ∈M and take (U (m), ψm) be a local chart in M, such that ψm(U (m)) is an open set in RM . Then 
U (m) is also a manifold and its tangent bundle is trivial, that is, T(U (m)) = U (m) ×R

M and the vector field X on U is a map 
X |U (m) : U (m) −→ U (m) ×R

M of the form X(m′) = (m′, XU (m)(m′)), the map XU (m) is called the principal part of X. However, 
having a separate notation for the principal part turns out to be an unnecessary burden. By abuse of notation, in linear 
spaces we shall write a vector field simply as a map X : U (m) −→ R

M and shall mean the vector field m′ 
→ (m′, X(m′)). 
When it is necessary to be careful with the distinction, we shall be.

If X : (M, A) −→ (TM, A∗) is a Cp -vector field (p ≥ 1) on M, an integral curve of X is a Cp -morphism (p ≥ 1) γ :
J −→ M, from an open interval J ⊂ R to M, such that γ ′(t) = X(γ (t)) for all t ∈ J . If 0 ∈ J , then the point x = γ (0) ∈ M

is called the starting point of γ . The theorem of existence and uniqueness of integral curves is the following (see [9, IV §2 
Theorem 2.6]).
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Theorem 2.6. Let (M, A) be a Cp-manifold (p ≥ 2), X be a Cp−1-vector field on M and x be a point in M. Then there exists one and 
only one maximal integral curve γ of X with starting point x.

3. Reduced-order models on immersed manifolds

Assume that given X : V −→ V , a Cp-vector field (p ≥ 1) on V , where (V , ‖ · ‖) is a finite-dimensional inner product 
space, we want to construct a reduced-order model of the dynamical system

v̇ = X(v), v(0) = v0

To this end we will consider, a Cp+1-manifold (M, A), where M is a subset of V . The inner product space V is an analytic 
manifold modelled by itself taking into account the trivial atlas Atrivial = {(V , idV )}, where idV : V −→ V . It is well known 
that the trivial atlas endows V with a natural manifold structure. Since the standard inclusion map

i : M−→ V

given by i(v) = v is injective, we shall study i as a morphism between manifolds. To this end, we recall the definition of an 
immersion between manifolds.

Definition 3.1. Let F : (M, A) → (N, B) be a morphism between manifolds and let x ∈ M. We shall say that F is an immersion 
at x if there exists an open neighbourhood Ux of x in M such that the restriction of F to Ux induces an isomorphism from 
Ux onto a submanifold of Y . We say that F is an immersion if it is an immersion at each point of X .

For manifolds, we have the following criterion for immersions (see Theorem 3.5.7 in [10]).

Proposition 3.2. Let (M, A) and (N, B) be two manifolds of class Cp (p ≥ 1). Let F : (M, A) → (N, B) be a Cp morphism and x ∈M. 
Then F is an immersion at x if and only if Tx F is injective.

A concept related to an immersion between manifolds is introduced in the following definition.

Definition 3.3. Assume that (M, A) and (N, B) are manifolds and let f : (M, A) → (N, B) be a Cp morphism. If f is an 
injective immersion, then f (M) is called an immersed submanifold of N.

From now on, we will assume that (M, A) is Cp-manifold (p ≥ 2) and that the standard inclusion map

i : (M,A) −→ (V ,Atrivial)

is a Cp-immersion, that is, i is a Cp-differentiable morphism, and the linear map

Tvi : Tv(M) −→ V

is injective and Tvi(Tv(M)) is a linear subspace of V , for each v ∈M. In consequence,

Tvi : Tv(M) −→ Tvi(Tv(M))

is a linear isomorphism for each v ∈ M. Since V is an inner product space, for each v ∈ M ⊂ V we have that V =
Tvi(Tv(M)) ⊕ Tvi(Tv(M))⊥ , where Tvi(Tv(M))⊥ is the orthogonal complement of the linear subspace Tvi(Tv(M)). It allows 
us to write each velocity vector X(v) = X(i(v)) ∈ V for v ∈M as

X(i(v)) = �v(X(i(v))) + (idV − �v)(X(i(v))) (3)

where �v : V −→ V is the orthogonal projection onto Tvi(Tv(M)). Thus, �v(X(i(v))) ∈ Tvi(Tv(M)) for all v ∈ M, that is, 
Tvi

−1(�v(X(i(v)))) ∈ Tv(M). A natural question arising in this context is as to whether the associated morphism

X̂ : M−→ TM, v 
→ X̂(v) := (v,Tvi
−1(�v(X(i(v))))) (4)

where TM is the tangent bundle of M, satisfies the conditions of Theorem 2.6 and, in consequence, for each v0 ∈ M, the 
differential equation

v̇ = Tvi
−1(�v(X(i(v))), v(0) = v0 (5)
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is well posed on M. We want to point out that the velocity v̇ in (5) satisfies the so-called Variational Principle of Dirac–Frenkel
(see [1]), that is,

v̇ ∈ arg min
ż∈Tv(M)

‖Tv i(ż) − X(i(v))‖ (6)

Since, without loss of generality, we may assume that V = R
n and ‖ · ‖ is the Euclidean norm, by using [11, Corollary p. 183]

(see also [12, Remark 1 p. 124]), we obtain from (6) that (5) is equivalent to

v̇ = Tv i
+(X(i(v))), v(0) = v0 (7)

where Tv i
+ denotes the Moore–Penrose pseudo-inverse of Tv i. We point out that, in contrast to matrix inversion, the 

map from Rr×n to Rn×r given by A 
→ A+ is not continuous (see [13, Example 4.1]). However, if we consider the set 
Ms(R

n×r) := {A ∈ R
n×r : rank(A) = s}, where s ∈ {1, 2, . . . , r}, it can be shown that the map A 
→ A+ is continuous from 

Ms(R
n×r) to Rr×n (see [13, Theorem 4.2]).

We illustrate the above construction with the following two examples.

Example 1 (Proper Orthogonal Decomposition). Suppose the original dynamical system under consideration in V =R
n is given 

by the time-dependent differential equation

u̇ = X(t,u), u(0) = u0 (8)

Let M := S + x ⊂ R
n be the best r–dimensional approximating affine subspace, where S is a linear subspace of Rn defined 

by S = {Zξ : ξ ∈ R
r} where Z ∈ R

n×r is such that Zᵀ Z = idr . Assume that u0 = x + x0 ∈ S . Let �S := Z Zᵀ ∈ R
n×n be the 

orthogonal projection onto the linear subspace S . The local coordinate of x + x ∈ S + x, will be ξ := ϕ(x + x) ∈R
r if and only 

if Zξ + x = x + x = ϕ−1(ξ), that is, ξ = Zᵀx. Thus, (S, ϕ) where x + x 
→ ϕ(x + x) := Zᵀx is a chart, A = {(S, ϕ)} is an atlas 
for the manifold S + x, and the tangent space of S + x at x + x is Tx+x(S + x) = R

r = {ξ : ξ ∈ R
r}. Now, Tx+x i : S −→ R

n is 
given by Tx+x i (ξ ) = [(i ◦ ϕ−1)′(ϕ(x + x))](ξ ) = Zξ , and hence (Tx+x i)

+(x) = Zᵀx. From (7), we obtain the time-dependent 
differential equation on x + S given by

ξ̇ = Zᵀ X(t,x + Zξ), ξ(0) = Zᵀx0

Then X̂(ξ) := (ξ , Zᵀ X(t, x + Zξ)) is the reduced-order model of (8) in the manifold S + x. Observe that ξ ∈ R
r and u ∈R

n .

In the above example, it is clear that the reduced-order model is also a vector field because the map Tx+x i = Z is 
independent of the point x + x. Unfortunately, it is not true for other manifolds in general as we show in the next example.

Example 2. Let us consider the northern hemisphere of the manifold S2 = {x ∈ R
3 : xᵀx = 1}, that is, M = {(x, y, z) ∈ S

2 :
z > 0}. In this case, we consider the chart (U , ϕ) given by the open set U = {(x, y) ∈ R

2 : x2 + y2 < 1} ⊂ R
2 and the map 

ϕ : M −→ U , where ϕ(x, y, z) = (x, y), clearly ϕ−1(x, y) = (x, y, 
√

1 − x2 − y2). Then M as an immersed manifold in R3 is 
also described by x = (i ◦ ϕ−1)(x, y) = (x, y, 

√
1 − x2 − y2), defined over the open set U . Then

Tx i = (i ◦ ϕ−1)′(x, y) =
⎡⎢⎣ 1 0

0 1
−x√

1−x2−y2
−y√

1−x2−y2

⎤⎥⎦
is a full-rank matrix for all (x, y) ∈ U and hence its pseudo-inverse is

Tx i
+ =

[
(1 − x2) −xy −x

√
1 − x2 − y2

−xy (1 − y2) −y
√

1 − x2 − y2

]
Assume that X :R3 −→ R

3 is a vector field in R3. Then (7) appears as[
ẋ
ẏ

]
=

[
(1 − x2) −xy −x

√
1 − x2 − y2

−xy (1 − y2) −y
√

1 − x2 − y2

]
X(x, y,

√
1 − x2 − y2) (9)

where [x(0) y(0)]ᵀ ∈ U . In this case (9) defines a vector field, namely X̂(U ,ϕ) , on U ⊂ S
2 and (U , ϕ) is a chart for the atlas 

A = {(U b
a , ϕb

a ) : a ∈ {x, y, z}, b ∈ {+, −}} of S2 given by the open sets

U+
x := {(x, y, z) : x > 0}, U+

y := {(x, y, z) : y > 0}, U+
z := {(x, y, z) : z > 0}

U−
x := {(x, y, z) : x < 0}, U−

y := {(x, y, z) : y < 0}, U−
z := {(x, y, z) : z < 0}
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and where ϕb
a (x, y, z) ∈ R

2 is obtained by removing a ∈ {x, y, z} from (x, y, z) ∈ R
3. We can proceed in a similar way for 

each chart (U b
a , ψb

a ) ∈ A, obtaining a vector field X̂
(U b

a ,ψb
a )

. However, this procedure does not ensure the existence of a 
vector field X̂ on S2, constructed by using X̂

(U b
a ,ψb

a )
for (U b

a , ψb
a ) ∈ A. Observe that the existence of x ∈ S

2 satisfying that 
x ∈ U b

a ∩ U b′
a′ implies that a possible definition of X̂(x) will depend on the choice of the chart.

The next section is devoted to state and prove the main result of this paper.

3.1. Statement and proof of main result

Let n = dim V and r = dim Tv(M) for all v ∈M. Clearly, r < n. We recall the definition of the non-compact Stiefel manifold 
of Rn×r denoted by Mr(R

n×r) = {
A ∈R

n×r : rank (A) = r
}

, which is an open set in Rn×r and hence a manifold. Assume that 
i is a Cp-immersion (p ≥ 2). Then for each v ∈ M the linear map Tv i : Tv(M) −→ V can be identify with a matrix, also 
denoted by Tv i, in Rn×r . Hence, we can write its Moore–Penrose pseudo-inverse as

Tv i
+ := (Tv i

ᵀ Tv i)
−1 Tv i

ᵀ ∈R
r×n

It allows us to introduce a map MP : M −→R
r×n defined by MP(v) = Tv i

+ . Our first result is the following

Lemma 3.4. Let V be a finite dimensional inner product space and (M, A) be a Cp-manifold (p ≥ 2) such that M ⊂ V . Assume that 
the standard inclusion map i :M −→ V is an Cp immersion. Then the map MP is a Cp−1-morphism between manifolds.

Proof. Given v ∈ M take (U , ϕ) ∈ A be such that v ∈ U . Since the standard inclusion map is an immersion, by Proposi-
tion 3.2, we known that Tvi is injective. Hence Tv i ∈R

n×r has rank (Tvi) = r, that is,

Tvi= [(i ◦ ϕ−1)′(ϕ(v))] ∈ Mr(R
n×r)

and (i ◦ϕ−1)′ : ϕ(U ) −→R
n×r is a Cp−1 map (p ≥ 2). Since Mr(R

n×r) is open in Rn×r , there exists an open set W ⊂ ϕ(U ), 
where ϕ(v) ∈ W , and such that (i ◦ ϕ−1)′(W ) ⊂ Mr(R

n×r). We point out that since Tvi ∈ Mr(R
n×r), then Tvi Tvi

+ is the 
orthogonal projection onto Tvi(Tv(M)). In consequence, we obtain that [(i ◦ϕ−1)′(ϕ(u))][(i ◦ϕ−1)′(ϕ(u))]+ is the orthogonal 
projection onto [(i ◦ ϕ−1)′(ϕ(u))](TuU ) = Tui(TuU ) = Tui(TuM) for all u ∈ ϕ−1(W ) ⊂ U ⊂ M. Hence,

[(i ◦ ϕ−1)′(ϕ(u))]+ = Tui
+

and it maps Tui(TuM) to TuM. Thus, we have that the map

(MP ◦ ϕ−1) : W ⊂ ϕ(U ) −→ R
r×n, ϕ(u) 
→ Tui

+ = [(i ◦ ϕ−1)′(ϕ(u))]+
is well defined as a morphism. Since, the map from Mr(R

n×r) to Rr×n given by Z 
→ Z+ := (Zᵀ Z)−1 Zᵀ is analytic, then 
the lemma follows. �

The main result of this paper is the following.

Theorem 3.5. Let V be a finite dimensional inner product space and (M, A) be a Cp-manifold (p ≥ 2) such that M ⊂ V . Assume that 
the standard inclusion map i :M −→ V is an Cp immersion. If X : V −→ V is a Cp−1-vector field on V , then

X̂(v) := (v,MP(v)X(i(v))) = (
v,Tv i

+ X(i(v))
)

(10)

is a Cp−1-vector field on M such that

Tv i(MP(v)X(i(v))) = �v(X(i(v))) (11)

holds for all v ∈M.

Proof. Without loss of generality, we may assume that V =R
n . From Lemma 3.4, the map MP is a Cp−1-morphism (p ≥ 2). 

In consequence, the map

W ⊂ ϕ(U ) −→ R
r×n ×R

n, u 
→ (MP(v), X(i(u)))

is also a Cp−1-morphism. Let us consider the evaluation map

eval : Rr×n ×R
n −→ R

r
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given by eval(L, u) := Lu. It is clearly a C∞-bilinear map and

MP(v)X(i(v)) = eval (MP(v), X(i(v)))

is a Cp−1-morphism. Thus, we conclude that X̂ is a vector field on M. Finally, (11) follows from the fact that �v =
Tv i Tv i

+ = Tv i MP(v). �
Remark 1. The above theorem remains true for time-dependent vector fields X : R × V −→ V .

Theorem 3.5 says us that the reduced-order model given by (10) is a true dynamical system on the manifold M, and 
from Theorem 2.6 we have ensured the existence and uniqueness of solutions for that reduced model.

3.2. A local-point estimate for the time-dependent error

In practice, we need to consider, for a given initial condition v0 ∈ M, a local chart system (U , ϕ) ∈ A, such that v0 ∈ U . 
Denote by ξ = ϕ(v), where v ∈ U , the local coordinates on the manifold M. Then we can write the dynamical system 
associated with (10) in ϕ(U ) as

ξ̇ = MP(ϕ−1(ξ))X((i ◦ ϕ−1)(ξ))), ξ(0) = ϕ(v0) (12)

The differential equation (12) is the reduced-order model in M of the dynamical system in V given by

v̇ = X(v), v(0) = v0 ∈ M (13)

To describe the time-dependent error, we take into account

e(t) = v(t) − (i ◦ ϕ−1)(ξ(t))

where v(t) is the solution to (13) and ξ (t) the solution to (12). Clearly, e(0) = 0 ∈ V , and if M is an invariant manifold 
for the vector field X , that is, X(v) ∈ Tv i(Tv(M)) for all v ∈ M, then e(t) = 0 for any time t . Now, we introduce v̂(t) :=
(i ◦ ϕ−1)(ξ(t)) ∈ M, and from (11), we have

d

dt
v̂(t) = T̂v(t) i(ξ̇(t)) = �v̂(t)(X (̂v(t)))

Recall that �v̂(t) is the orthogonal projection onto T̂v(t) i(Tv̂(t)(M)). Since v(t) = v0 + ∫ t
0 X(v(s))ds and v̂(t) = v0 +∫ t

0 �v̂(s)(X (̂v(s)))ds we can write

e(t) =
t∫

0

(
X(v(s)) − �v̂(s)(X (̂v(s)))

)
ds

=
t∫

0

(
X(v(s)) − �v̂(s)(X(v(s)))

)
ds +

t∫
0

(
�v̂(s)(X(v(s))) − �v̂(s)(X (̂v(s)))

)
ds

=
t∫

0

(
idV − �v̂(s)

)
(X(v(s))ds +

t∫
0

�v̂(s) (X(v(s)) − X (̂v(s)) ds

In consequence, the error speed

d

dt
e(t) = (

idV − �v̂(t)
)
(X(v(t)) + �v̂(t) (X(v(t)) − X (̂v(t)))

can be decomposed into two orthogonal components. The first one represents the normal error speed, and it is given by

d

dt
e⊥(t) := (

idV − �v̂(t)
)
(X(v(t)) ∈ T̂v(t)i(Tv̂(t)(M))⊥

and the second is associated with the tangent error speed and is defined as

d
e‖(t) := �v̂(t) (X(v(t)) − X (̂v(t))) ∈ T̂v(t)i(Tv̂(t)(M))
dt
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Recall that e(t) = v(t) − v̂(t). Since X ∈ Cp-vector field (p ≥ 1) on V , by using the Taylor’s expansion, we have

X(v(t)) − X (̂v(t)) = X (̂v(t) + e(t)) − X (̂v(t)) = X ′(̂v(t))e(t) +O(‖e(t)‖2)

Then,

�v̂(t) (X(v(t)) − X (̂v(t))) = �v̂(t) (X (̂v(t) + e(t)) − X (̂v(t)))) ≈ �v̂(t)
(

X ′(̂v(t))e(t)
)

Finally, we obtain the following expression

d

dt
e(t) = d

dt
e‖(t) + d

dt
e⊥(t) ≈ �v̂(t)

(
X ′(̂v(t))e(t)

) + (
idV − �v̂(t)

)
(X(v(t))

It allows us to propose a definition of a local point estimate ̂e(t) for the time-dependent error e(t) as follows.

Definition 3.6. Let be v0 ∈ M, (U , ϕ) ∈ A be such that v0 ∈ U and v̂(t) = (i ◦ ϕ−1)(ξ(t)) with ξ (t), which solves (12). We 
define the local point estimate error ̂e(t) of (13) in (U , ϕ) ∈A as the solution to the differential equation

d

dt
ê(t) = �v̂(t)(X ′(̂v(t)) ê(t)) + (

idV − �v̂(t)
)
(X (̂v(t))), ê(0) = 0 (14)

In the Example 1, we known that �v̂(t) = �S = Z Zᵀ ∈ Rn×n for all time t , and hence (14) for a time independent vector 
field X :Rn −→ R

n is

d

dt
ê(t) = �S X ′(̂v(t)) ê(t) + (idRn − �S) X (̂v(t)), ê(0) = 0

In particular, for a linear vector field X(v) = Av, where A ∈R
N×N , we obtain the linear differential equation

d

dt
ê(t) = �S A ê(t) + (idRn − �S) Av̂(t), ê(0) = 0

Finally, by using the method of variation of parameters, we have the following expression for the point estimate error

ê(t) =
t∫

0

e(t−s)�S A (idRn − �S) Av̂(s)ds

which allows us to give the following bound

‖̂e(t)‖ ≤
(

sup
0≤s≤t

‖ (idRn − �S) Av̂(s)‖
)

(e‖�S A‖t − 1)

4. Conclusions

In this paper, we give a constructive approach under a geometric framework of the reduced-order model of a vector 
field defined over a finite-dimensional inner product space. Moreover, a local point estimate for the time dependent error is 
given. Establishing the properties of this proposed estimate is part of our future research and will be published elsewhere.
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