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Proper Generalized Decomposition (PGD) is devised as a computational method to solve 
high-dimensional boundary value problems (where many dimensions are associated with 
the space of parameters defining the problem). The PGD philosophy consists in providing 
a separated representation of the multidimensional solution using a greedy approach 
combined with an alternated directions scheme to obtain the successive rank-one terms. 
This paper presents an algorithmic approach to high-dimensional tensor separation based 
on solving the Least Squares approximation in a separable format of multidimensional 
tensor using PGD. This strategy is usually embedded in a standard PGD code in order to 
compress the solution (reduce the number of terms and optimize the available storage 
capacity), but it stands also as an alternative and highly competitive method for tensor 
separation.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

1.1. Framework and motivation

Data is often collected in terms of multidimensional arrays. The number of dimensions is denoted by d, and the object 
containing the information is a tensor F of order d. A multi-index notation identifies each entry of the array as correspond-
ing to specific values of d parameters. The size of the tensor in each dimension is denoted by ni , for i = 1,2, . . . ,d, and F is 
characterized by the generic term [F ] j1 j2... jd

for ji = 1,2, . . . ,ni .
Tensor separation is a generalization of matrix diagonalization and allows representing the data collected in the tensor in 

a compact form. The separated form is expressed as the sum of M terms, each of them consisting in the tensorial product 
of d vectors of dimensions ni , i = 1,2, . . . ,d. Note that only in terms of storage, the number of entries of F is 

∏d
i=1 ni , 

and in the separable version it is described with M
∑d

i=1 ni scalar quantities. For small values of M , this represents a huge 
reduction of the information to be stored.

In the following, the methodology to perform this separation is presented first in the simple case of d = 2, where it can 
be done optimally. Then, the generalization to higher dimensions, in which there is no optimal strategy, is devised using 
the PGD philosophy.
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1.2. SVD and matrix separation

For d = 2, F is a matrix, and the Singular Value Decomposition (SVD) (and matrix diagonalization as a particular case for 
squared matrices) is the standard and optimal tool to obtain a reduced representation of a 2D array (a matrix or second-
order tensor). The outcome of the SVD allows representing the matrix as a sum of tensor products (rank-one matrices) of 
the left and right eigenvectors, each weighted by the corresponding eigenvalue.

Namely, the SVD of F ∈ IRn1×n2 consists in finding square unit matrices U ∈ IRn1×n1 and V ∈ IRn2×n2 such that

F = U�V T (1)

being � a diagonal matrix in IRn1×n2 containing the singular values of F . That is, U and V are such that U TU = IIn1 and 
V TV = IIn2 , and � has the format

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ1
σ2

. . .

σn2

0 0 0 0
...

...
...

...

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

for n1 > n2 or � =

⎡
⎢⎢⎢⎣

σ1 0 . . . 0
σ2 0 . . . 0

. . . 0 . . . 0
σn1 0 . . . 0

⎤
⎥⎥⎥⎦ for n1 < n2

It is assumed that the singular values are sorted in decreasing order, that is,

σ1 ≥ σ2 ≥ · · · ≥ σmin(n1,n2) ≥ 0

The column vectors of matrices U and V are denoted by u j and vk , for j = 1,2, . . . ,n1 and k = 1,2, . . . , n2, that is such that

U = [
u1 u2 . . . un1

]
and V = [

v1 v2 . . . vn2

]
Thus, the SVD in (1) is rewritten as

F =
min(n1,n2)∑

j=1

σ j u j vT
j =

min(n1,n2)∑
j=1

σ j u j ⊗ v j (2)

Note that the two notations in the equation above are equivalent because each term u j vT
j is a rank-one n1 × n2 matrix 

that can also be denoted as u j ⊗ v j using the tensor (or external) product. The latter notation is preferred in the following 
because it is easily extended to problems of dimension higher than two.

The representation displayed in (2) is particularly attractive to obtain a Least-Squares (LS) low-rank approximation of F . 
The Frobenius matrix norm reads

‖F‖2 = F : F = [F ] j1 j2
[F ] j1 j2

(3)

Using this Euclidean-type norm, the truncation of (2) to M terms (being M < min(n1,n2)) results in the best LS rank-M
approximation, that is,

M∑
j=1

σ j u j ⊗ v j = arg min
A∈IRn1×n2 of rank M

‖F − A‖ (4)

This LS optimality is associated with the orthogonality of the left and right eigenvectors.
In particular, the best rank-one approximation of F is σ1u1 ⊗ v1. This is easily shown by noting that for any rank-one 

matrix w1 ⊗ w2 where w1 = ∑n1
k=1 αkuk and w2 = ∑n2

�=1 β� v� , LS discrepancy with F reads

‖F − w1 ⊗ w2‖2 = ‖� − α ⊗ β‖2 (5)

being α ∈ IRn1 and β ∈ IRn2 the vectors representing w1 and w2 in the bases of left and right eigenvectors ({u1, . . . ,un1 } and 
{v1, . . . ,vn2 }, respectively). It is clear from the right-hand side of (5) that an optimal choice for α and β is αk = βk = δk1

√
σk .

Remark 1. The equality (5) is a direct consequence of observing that

‖F − w1 ⊗ w2‖2 = ‖F‖2 + ‖w1 ⊗ w2‖2 − 2F : w1 ⊗ w2
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‖F‖2 =
min(n1,n2)∑

k=1

σ 2
k = ‖�‖2 , ‖w1 ⊗ w2‖2 =

n1∑
k=1

n2∑
�=1

α2
k β2

� = ‖α ⊗ β‖2

and

F : w1 ⊗ w2 =
n1∑

k=1

n2∑
�=1

αkβ� F : (uk ⊗ v�) =
min(n1,n2)∑

k=1

αkβkσk = � : α ⊗ β

These properties are due to the orthonormality of the bases {u j} j=1,...,n1 and {v j} j=1,...,n2 , which has as a direct consequence

F : (uk ⊗ v�) =
⎡
⎣∑

j

σ j u j ⊗ v j

⎤
⎦ : (uk ⊗ v�) =

∑
j

σ j(u j · uk)(v j · v�) = δk�σk

The generalization of these tools to high-order tensor formats is the object of extensive research activities, and dif-
ferent strategies are labeled as High-Order SVD (HOSVD). Nevertheless, for a number of dimensions larger than two, the 
orthogonality among the eigenvectors and therefore the optimality of the separation is no longer guaranteed.

1.3. Problem statement: high-order separation

For d > 2, tensor F ∈ IRn1×···×nd is expressed in a separable format if, for some integer value M , and for i = 1,2, . . . ,d and 
m = 1,2, . . . ,M , there exists a set of vectors f̃

m
i ∈ IRni such that

F =
M∑

m=1

f̃
m
1 ⊗ f̃

m
2 ⊗ · · · ⊗ f̃

m
d (6)

An alternative version of this format uses unit vectors f m
i and amplitudes σm , for i = 1, . . . ,d and m = 1, . . . ,M

F =
M∑

m=1

σm f m
1 ⊗ f m

2 ⊗ · · · ⊗ f m
d (7)

Note that (6) and (7) are readily shown to be equivalent by taking

f m
i = 1

‖ f̃
m
i ‖

f̃
m
i for i = 1, . . . ,d and σm =

d∏
i=1

‖ f m
i ‖ for m = 1, . . . ,M

1.4. Standard approaches

The problem of finding a separable expression with the form of (6) or (7) that approximates a tensor F has a wide range 
of applications in many engineering and scientific fields. The pioneering works appeared in the field of psychometrics, 
see for example the work of Tucker [1] and Harshman [2], and in the field of chemometrics [3,4]. Later, the interest of 
tensor decompositions reached many different scientific communities such as neuroscience [5,6], computer vision [7,8], 
signal processing [9,10], and data mining [11]. Numerical analysis is no exception, and examples of applications on tensor 
decompositions include [12,13]. This list is by no means exhaustive; for a comprehensive review on tensor decomposition 
methods, see [14].

2. PGD strategy and rank-one algorithm

The PGD strategy aims at obtaining an approximation of some tensor F in the separable form given by (7). The idea is 
extensively described in [15–18] and references therein, and consists in combining a greedy algorithm (that is, computing 
first for m = 1 and compute sequentially for any m when the previous m − 1 terms are already obtained) with an alternated 
directions scheme to solve the series of rank-one problems corresponding to term m.

2.1. Greedy scheme and rank-one terms

The first step in the greedy algorithm is to find a rank-one approximation of F , namely find d unit vectors f 1
1, . . . , f 1

d
and the corresponding amplitude σ1 such that

F ≈ σ1 f 1
1 ⊗ f 1 ⊗ · · · ⊗ f 1
2 d
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or, equivalently,

F ≈ f̃
1
1 ⊗ f̃

1
2 ⊗ · · · ⊗ f̃

1
d (8)

Also at this stage, the LS criterion is used to qualify the best rank-one approximation, following the ideas draft in the 
appendix of [18] describing the PGD compression strategy. That is, the d vectors f̃

1
1, . . . , f̃

1
d are sought such that they 

minimize the scalar functional J (·) defined by

J ( f̃
1
1, . . . , f̃

1
d) = ‖F − f̃

1
1 ⊗ f̃

1
2 ⊗ · · · ⊗ f̃

1
d‖ (9)

Note that, in this context, analogously to (3) the Frobenius-type norm for tensors reads

‖F‖2 = [F ] j1 j2... jd
[F ] j1 j2... jd

=
n1∑

j1=1

n2∑
j2=1

· · ·
nd∑

jd=1

[F ]2
j1 j2... jd

(10)

That is,(
f̃

1
1, . . . , f̃

1
d

)
= arg min

IRn1 ×···×IRnd
J ( f̃

1
1, . . . , f̃

1
d) (11)

Functional J (·) is nonlinear and therefore also the problem given in (11) is nonlinear and requires devising an iterative 
solver. Note also that the set of possible solutions (constituted by all the rank-one tensors) is not provided with the structure 
of a linear vectorial space. Obviously, the sum of two rank-one tensors is, in general, a tensor of rank two.

The algorithm proposed to solve problem (11) is detailed in section 2.2. Once the solution to (11) is available, this is 
taken as the first term of the PGD approximation, that is,

F 1
PGD

= f̃
1
1 ⊗ f̃

1
2 ⊗ · · · ⊗ f̃

1
d (12)

From this point on, the algorithm is recursive and obtains the best approximation of the remainder part of F . Namely, 
assuming that F M−1

PGD
is available

F M−1
PGD

=
M−1∑
m=1

f̃
m
1 ⊗ f̃

m
2 ⊗ · · · ⊗ f̃

m
d

the next term is obtained as

F M
PGD

= F M−1
PGD

+ f̃
M
1 ⊗ f̃

M
2 ⊗ · · · ⊗ f̃

M
d

and (
f̃

M
1 , . . . , f̃

M
d

)
= arg min

IRn1 ×···×IRnd
‖F − F M−1

PGD
− f̃

M
1 ⊗ f̃

M
2 ⊗ · · · ⊗ f̃

M
d ‖ (13)

Note that (11) and (13) have exactly the same structure, they are both rank-one least-squares approximation problems and 
therefore the same iterative algorithm devised for (11) is going to be used for (13).

The stopping criteria used to decide whether the number of PGD terms, M is sufficiently large are mainly based on 
characterizing the relative importance of the last term added to the sum. An alternative approach is computing the residual 
‖F − F M

PGD
‖, but this is often discarded because it requires reconstructing F M

PGD
as a multidimensional tensor and this has a 

large computational cost.
Recall that using normalized vectors, the expression for the PGD solution reads

F M
PGD

=
M∑

m=1

σm f m
1 ⊗ f m

2 ⊗ · · · ⊗ f m
d (14)

Typically, M is considered to be large enough if, for some tolerance η� , the following inequality holds

σM < η�σ1

That is, the greedy algorithm is stopped when the amplitude σM of the last term is significantly lower than the amplitude 
of the first one.
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2.2. Alternated directions scheme: iterating in sectional problems

This section is devoted to describing the iterative algorithm devised to solve the rank-one problem (11) (or (13)). Thus, 
the goal is to compute 

(
f̃

1
1, . . . , f̃

1
d

)
minimizing the functional J ( f̃

1
1, . . . , f̃

1
d) given by (9). The idea is to follow an alter-

nated directions strategy, consisting in computing each of the sectional unknowns, say f̃
1
γ for γ = 1,2, . . . ,d, assuming that 

all the others ( f̃
1
j for j 	= γ ) are known. This is done for γ = 1,2, . . . ,d and then iterated until convergence is reached.

The functional J (·) is rewritten as:

J ( f̃
1
1, . . . , f̃

1
d) = ‖F‖2 +

d∏
j=1

f̃
1 T
j f̃

1
j − 2F : f̃

1
1 ⊗ · · · ⊗ f 1

d (15)

where the symbol : must be understood here as total tensor contraction (summing up in all the indices), and corresponds 
to the expression of the norm described in (10).

Thus, in order to compute an approximation to f̃
1
γ , it is assumed that the other modes, f̃

1
j for j 	= γ are known and the 

functional J (·) is to be minimized with respect to f̃
1
γ . Namely

J ( f̃
1
γ ) = ‖F‖2 + α f̃

1 T
γ f̃

1
γ − 2 f̃

1 T
γ g (16)

where the computable quantities α and g are

α :=
⎛
⎝ d∏

j 	=γ

f̃
1 T
j f̃

1
j

⎞
⎠ (17)

and

g := F ...

d⊗
j 	=γ

f̃
1
j (18)

where symbol ... indicates tensor contraction of all possible indices. In this case, provided that F is a tensor of d dimensions 
and 

⊗d
j 	=γ f̃

1
j is a tensor of d − 1 dimensions, this means summing up in all indices i j for j = 1, . . . ,d with j 	= γ . That is, 

(18) is equivalent to

[g]iγ :=
n1∑

i1=1

· · ·
nγ −1∑

iγ −1=1

nγ +1∑
iγ +1=1

· · ·
d∑

id=1

[F ]i1...iγ −1iγ iγ +1...id

d∏
j 	=γ

[
f̃

1
j

]
i j

(19)

Thus, the operation represented in (18) (in compact form) and (19) (with the complete index notation) consists in contract-
ing all the dimensions of tensor F but one (the dimension γ , for γ = 1,2, . . . ,d) with the tensorial product of all the vectors 
f̃

1
j , for j 	= γ .

The vector f̃
1
γ minimizing J ( f̃

1
γ ) in (16) is precisely

f̃
1
γ = 1

α
g (20)

This has to be done for all the dimensions, that is for γ = 1,2, . . . ,d, and iterated until the consecutive approximations 
of f̃

1
j reach stationarity. That is to say, assume each loop on γ is computing f̃

new
j as an approximation to f̃

1
j starting from 

initial guesses f̃
old
j . Convergence is reached once, for some tolerance η, ‖ f newj − f oldj ‖ < η for all j = 1,2, . . . ,d. Note that 

the stationarity condition is expressed in terms of the normalized vectors f j to avoid the possibility that arbitrary constants 
with unit product may affect the d terms. Note that the sectional errors ‖ f newj − f oldj ‖ are already relative because all the 
vectors are normalized. Moreover, in the practical implementation, the global error taken into account is the product of all 
the sectional norms that stand for the Frobenius norm of the multidimensional error tensor, namely

ε = ‖Fnew
PGD

− F old
PGD

‖ =
⎡
⎣ d∏

j=1

( f newj − f oldj )T( f newj − f oldj )

⎤
⎦

1/2

(21)

The strategy presented above for a rank-one approximation of some tensor F is summarized in Algorithm 1.
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Data: Tensor of order d to be approximated: F with general term [F ]i1 i2 ...id ,
(for iγ = 1, . . . ,nγ and γ = 1, . . . ,d)
Result: Rank-one approximation: FPGD = σ f 1 ⊗ f 2 ⊗ · · · ⊗ f d
Initialize: Assign values to f oldi , for i = 1,2, . . . ,d ; select a tolerance η

Compute σ old =
d∏

j=1

[
f old T

j f oldj

]1/2
;

Normalize: f oldj ←
[

f old T
j f oldj

]−1/2
f oldj , for j = 1,2, . . . ,d ;

while ε > η or εσ > η do
for γ = 1 . . .d do

Compute α =
∏
j 	=γ

f old T
j f oldj

Compute g such that

[g]iγ =
n1∑

i1=1

· · ·
nγ −1∑

iγ −1=1

nγ +1∑
iγ +1=1

· · ·
d∑

id=1

[F ]i1 ...iγ −1 iγ iγ +1 ...id

d∏
j 	=γ

[
f oldj

]
i j

Compute f newγ = 1

α
g

end

Compute σ new =
d∏

j=1

[
f new T

j f newj

]1/2
;

Normalize: f newj ←
[

f new T
j f newj

]−1/2
f newj , for j = 1,2, . . . ,d ;

Compute modal error ε =
⎡
⎣ d∏

j=1

( f newj − f oldj )T( f newj − f oldj )

⎤
⎦

1/2

;

Compute amplitude error εσ = ∣∣σ new − σ old
∣∣/ ∣∣σ new

∣∣;
Update f oldj ← f newj , for j = 1,2, . . . ,d ; σ old ← σ new;

end
Store f j ← f newj , for j = 1,2, . . . ,d ; σ ← σ new;

Algorithm 1. Algebraic rank-one approximation for non-separable tensor F .

2.3. Accounting for a separable input

Algorithm 1 is easily adapted to the case in which the input tensor is already provided in a separated format. That is, 
instead of having F , we have � such that

� =
L∑

�=1

φ�
1 ⊗ φ�

2 ⊗ · · · ⊗ φ�
d (22)

The LS approximation of � in the form of another separated tensor FPGD is meaningful, because it may significantly re-
duce the number of terms required to represent the same tensorial magnitude. That is, one would expect having M � L
and achieving a similar accuracy. Actually, this strategy is often used along the PGD computations because, when solving 
parametric boundary value problems, the PGD terms may exhibit redundancies (linear functional dependencies) from a LS 
viewpoint, see [18].

In practice, replacing the full tensor F by the separated tensor � results only in a difference in the computation of the 
auxiliary vector g in (18) or (19). Actually, in this case, (18) is readily replaced by

g = � ...

d⊗
j 	=γ

f̃
1
j =

L∑
�=1

⎡
⎣ d∏

j 	=γ

φ� T
j f̃

1
j

⎤
⎦φ�

γ (23)

Thus, adapting Algorithm 1 to the case in which the input tensor is already expressed in separable format requires only 
replacing the line in which vector g is computed, using (23) instead of (18). This is in practice the only difference between 
the algorithm providing rank-one tensor separation and rank-one tensor compression.

3. Complete LS PGD algorithm

The strategies described in the previous sections allow obtaining a LS PGD approximation F M
PGD

according to (14) of a 
d-dimensional tensor F ∈ IRn1×···×nd . The same strategy works also for an already separated input tensor � as given in 
(22). Both the separation of F and the compression of � are performed by algorithms having the same structure, and 
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Data: Tensor of order d to be approximated: F with general term [F ]i1 i2 ...id ,
(for iγ = 1, . . . ,nγ and γ = 1, . . . ,d)
Tolerances 0 < η � 1 for alternated directions and 0 < η� � 1 for greedy algorithm

Result: PGD approximation: FPGD =
M∑

m=1

σm f m
1 ⊗ f m

2 ⊗ · · · ⊗ f m
d

Initialize counter of PGD terms m = 1 and starting value of amplitude σ1 = 1
while σm > η�σ1 do

Initialize: Assign values to f oldj , for j = 1,2, . . . ,d ;

Compute σ old =
d∏

j=1

[
f old T

j f oldj

]1/2
;

Normalize: f oldj ←
[

f old T
j f oldj

]−1/2
f oldj , for j = 1,2, . . . ,d ;

while ε > η or εσ > η do
for γ = 1 . . .d do

Compute α =
∏
j 	=γ

f old T
j f oldj

Compute g such that

[g]iγ =
n1∑

i1=1

· · ·
nγ −1∑

iγ −1=1

nγ +1∑
iγ +1=1

· · ·
d∑

id=1

[F ]i1 ...iγ −1 iγ iγ +1 ...id

d∏
j 	=γ

[
f oldj

]
i j

− 
m−1∑
m̃=1

σm̃

⎛
⎝∏

j 	=γ

f m̃ T
j f oldj

⎞
⎠[

f m̃
γ

]
iγ

, for iγ = 1,2, . . . ,nγ ;

Compute f newγ = 1

α
g

end

Compute σ new =
d∏

j=1

[
f new T

j f newj

]1/2
;

Normalize: f newj ←
[

f new T
j f newj

]−1/2
f newj , for j = 1,2, . . . ,d ;

Compute modal error ε =
⎡
⎣ d∏

j=1

( f newj − f oldj )T( f newj − f oldj )

⎤
⎦

1/2

;

Compute amplitude error εσ = ∣∣σ new − σ old
∣∣/ ∣∣σ new

∣∣;
Update f oldj ← f newj , for j = 1,2, . . . ,d ; σ old ← σ new;

end
Store: σm ← σ ; f m

j ← f newj , for i = 1,2, . . . ,d;
Update m ← m + 1;

end
Store: M ← m;

Algorithm 2. Algebraic PGD approximation for multidimensional tensor F .

the only difference is in the computation of vector g , which is performed using (18) for separation and (23) for compres-
sion.

The present section is devoted to summarize the ideas of sections 2.1 and 2.2 in a compact algorithmic form.
As already indicated above, the main idea is to use the rank-one approximation of Algorithm 1 to compute the successive 

terms that conform FPGD , following the greedy approach described in section 2.1. The core of the algorithm is the rank-one 
updating from F m−1

PGD
to F m

PGD
. This is essentially following the same rationale as in Algorithm 1, but replacing F by F − F m−1

PGD

as the tensor to be rank-one approximated.
Thus, the rank-one approximation inside the greedy loop aims at approximating f m

1 , f m
2 , . . . , f m

d and σm , which provides 
the best rank-one update of F m−1

PGD
. Here again, this results in a different expression to compute vector g , alternative to (18), 

namely

g = (F − F m−1
PGD

) ...

d⊗
j 	=γ

f m
j = F ...

d⊗
j 	=γ

f m
j −

m−1∑
m̃=1

σm̃

⎡
⎣ d∏

j 	=γ

f m̃ T
j f m

j

⎤
⎦ f m̃

γ (24)

Where the separated structure of FPGD is used in the last term, following exactly the same as in (23) with �.
Thus, the difference between the rank-one approximation described in Algorithm 1 and the complete PGD approximation 

summarized in Algorithm 2 lies in the addition of an outer loop on the number of terms (looping for m) and in the 
computation of g , which is performed according to (24).
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3.1. Algorithmic details: separated and complex inputs

Analogously as it discussed in Section 2.3, Algorithm 2 is easily adapted to accept a separable input � instead of a full 
multidimensional tensor F . Here again, the only difference between separation (of F ) and compression (of �) lies in the 
expression to compute vector g , which for compression reads

g = (� − F m−1
PGD

) ...

d⊗
j 	=γ

f m
j =

L∑
�=1

⎡
⎣ d∏

j 	=γ

φ� T
j f m

j

⎤
⎦φ�

γ −
m−1∑
m̃=1

σm̃

⎡
⎣ d∏

j 	=γ

f m̃ T
j f m

j

⎤
⎦ f m̃

γ (25)

In the case the input data is complex, that is either F or � lie in Cn1×···×nd instead of IRn1×···×nd , the algorithm has to be 
slightly modified. In practice, all the modifications derive from the fact that the Frobenius-type norm for complex tensors 
differs from (10) in the sense that the first argument in the product has to be conjugated, and therefore it reads

‖F‖2 = F̄ ... F = [
F̄
]

j1 j2... jd
[F ] j1 j2... jd

=
n1∑

j1=1

n2∑
j2=1

· · ·
nd∑

jd=1

∣∣[F ] j1 j2... jd

∣∣2 (26)

where the bar (·̄) stands for the conjugate quantity. This affects the computation of the norms of the sectional vectors such 
that the scalar products require not only to transpose one of the vectors, but also to conjugate it. Moreover, in the tensorial 
multicontraction in, for instance, (25), what is located left to symbol ... must be conjugated. This results in replacing (25)
by

g = (� − F m−1
PGD

) ...

d⊗
j 	=γ

f m
j =

L∑
�=1

⎡
⎣ d∏

j 	=γ

φ̄
� T
j f m

j

⎤
⎦φ�

γ −
m−1∑
m̃=1

σm̃

⎡
⎣ d∏

j 	=γ

f̄ j
m̃ T

f m
j

⎤
⎦ f̄

m̃
γ (27)

3.2. Disambiguating normalization

In the stopping criterion of the alternated direction iterations, the comparison of the successive approximation to the 
sectional modes in Algorithms 1 and 2 is carried out in terms of the normalized vectors, see (21). Thus, in the algorithms, 

the normalization is readily indicated as f newj ←
[

f new T
j f newj

]−1/2
f newj , for j = 1,2, . . . ,d. However, this operation must 

be a little bit more sophisticated. In the real framework, the normalization must also disambiguate the sign. In other words, 
dividing by the norm, there could be ±1 factors that may affect all the sectional modes (with an even number of −1 that 
globally cancel out). In this situation, the numerical stopping criterion is requiring more iterations, although, in practice, 
the stationarity in the alternated directions iterations has already been reached. The solution to this problem is simple, 
but it cannot be overlooked. One possibility is to disambiguate the sign by enforcing that the largest (in absolute value) 
component of f newj is positive.

If dealing with complex variables, the standard normalization would be f newj ←
[

f̄
new T
j f newj

]−1/2
f newj , for j =

1,2, . . . ,d. In this case, the ambiguity is not only up to a sign, but up to any complex coefficient with unit module. The 
different modes f newj may be affected by coefficients z j , j = 1,2, . . . ,d, with |z j | = 1 and such that 

∏d
j=1 z j = 1 to can-

cel out globally. In order to disambiguate these factors, the normalization is carried out such that the largest (in module) 
component of f newj is real and positive.

4. Numerical examples

The methodologies presented above for PGD tensor separation and tensor compression are tested in this section for 
different numerical examples.

4.1. Example 1: separation of a 2D manufactured tensor

The first example uses a tensor F synthetically manufactured from a reduced number (six) of separated modes. Thus, 
the separation algorithm, whose input is the full reconstructed tensor is challenged to produce a number of modes similar 
to the number used to manufacture the input. The bidimensional (d = 2) tensor F is generated from a separated expression,

�(x,y) =
6∑

�=1

φ�
x ⊗ φ�

y (28)

where the modal vectors φ�
x and φ�

y , for � = 1, . . . ,6, are defined as the images of vector ξ = [0 1
99

2
99 . . . 98

99 1]T ∈ IR100 by 
different continuous functions taking values in [0,1], namely φ�

x = φ�
x (ξ) and φ�

y = φ�
y(ξ), where
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Fig. 1. Example 1: input modal functions φ�
x and φ�

y , for � = 1, . . . ,6 (in blue) used to manufacture F and modes f j
x and f j

y , for � = 1, . . . ,M = 6 (in red) 
of the separated representation of FPGD .

φ1
x (x) = sin(πx) φ1

y(y) = sin(πy) (29a)

φ2
x (x) = exp

(−(x − 0.5)2

0.01

)
φ2

y(y) = −exp

(−(y − 0.5)2

0.01

)
(29b)

φ3
x (x) = exp

(−(x − 0.2)2

0.01

)
φ3

y(y) = exp

(−(y − 0.2)2

0.02

)
(29c)

φ4
x (x) = exp

(−(x − 0.6)2

0.005

)
φ4

y(y) = exp

(−(y − 0.9)2

0.005

)
(29d)

φ5
x (x) = exp

(−(x − 0.1)2

0.01

)
φ5

y(y) = exp

(−(y − 0.75)2

0.005

)
(29e)

φ6
x (x) = exp

(−(x − 0.8)2

0.02

)
φ6

y(y) = −exp

(−(y − 0.2)2

0.002

)
(29f)

Fig. 1 shows the 1D modal functions φ�
x and φ�

y . The reconstructed 2D tensor F is represented in Fig. 4a.
The PGD separation described in Algorithm 2 is applied to F , and provides

F M
PGD

=
M∑

σm f m
x ⊗ f m

y (30)

m=1
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Fig. 2. Example 1: [panel a] modal amplitudes (σm) of the first six terms of the PGD separated tensor and comparison with the modal amplitudes provided 
by the Singular Value Decomposition method; [panel b] relative error of the PGD separated tensor in Frobenius norm as a function of the number of terms.

The functions corresponding to vectors f m
x and f m

y defining the first six modes (depicted in Fig. 1) account for the exact 
separated representation of F . The algorithm in two dimensions provides an optimal separated form coinciding with the 
results provided by a singular value decomposition method (see Fig. 2a). The modal error evolution is computed as the 
Frobenius norm of the difference of the tensors F and F M

PGD
. The exact solution is reached with six modes up to machine 

precision, as can be seen in Fig. 2b.

4.2. Example 2: separation of a higher-dimension tensor

Ir order to analyze the behavior of the algorithm in higher dimensions, the previous case has been extended to a 
seven-dimensional synthetic problem. A set of functions similar to (29) is used to build the higher-order tensor,

φ1
k (xk) = sin(πxk)

φ
j

k (xk) = a jk exp

(
−(xk − b jk)

2

c jk

)

for j = 2, . . . , 6 and k = 1, . . . 7, in the domain [0,1]7. The discretization of each dimension is done with 10 points, that is, 
ξ = [0 19

2
9 . . . 8

9 1]T ∈ IR10, providing a full tensor with 107 real entries. Coefficients a, b and c are described in Appendix A.
The results of the seven-dimensional case show that the obtained separation does not recover the original six modes 

used to build the tensor. It actually requires 150 terms to obtain a separate representation with a relative error of 10−3

(Fig. 3). This is standard in higher dimensional problems, because none of the available separation procedures is able to 
provide optimal solutions for d > 2 [14]. Note, however, that the reduction in terms of storage is significant: the 107 real 
entries of the full tensor are reduced in the separated form to 150 × 7 × 10 ≈ 104. That is, the relative error of 10−3 is the 
(small) price to pay for saving three orders of magnitude in the storage.

4.3. Example 3: denoising data

An additional application of the proposed PGD algorithm is to filter noise in a data set. In this context, this example 
retakes the previous 2D case of Section 4.1 perturbing the input by adding a random noise with an amplitude of 2% of the 
maximum tensor value, see Fig. 4b. Thus, the 6 modes describing the tensor presented in Example 1 are duly identified 
and separated from the noise that is actually modeled (or represented) by the remaining modes. Fig. 5 shows the modal 
error evolution with respect to the original and noised tensors. As it can be seen, the first six modes provide an accurate 
approximation of the original tensor, while from mode 7 on, the algorithm is adding to the separated representation the 
information added by the noise. It can be observed in Fig. 5 that the discrepancies ‖F noised − FPGD‖ and ‖F − FPGD‖ differ 
at the sixth mode and the following ones. This is associated with the fact that FPGD is computed as an approximation of 
the tensor perturbed by the noise, Fnoised , and not from the original one, F . This is essentially visible for the sixth mode, 
because it is where the relative amplitude of the mode (the accuracy) meets the magnitude of the noise.

This is the reason why the error computed against the original tensor increases after mode 6. Furthermore, in case of the 
error computed against the noised tensor, it decreases as the solution approaches the noised configuration. Note that from 
mode 6 on, such error decreases linearly with a very low convergence rate, as expected in the reproduction of a function 
with structure (noise).
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Fig. 3. Example 2: [panel a] modal amplitudes (σm) of the first 150 terms of the PGD separated tensor; [panel b] relative error of the PGD separated tensor 
in Frobenius norm as a function of the number of terms.

Fig. 4. Examples 1 and 3: [top left panel] Representation of the tensor F used in Example 1; [top right panel] noised version of F ; [bottom panel] denoised 
tensor via the PGD algorithm.

4.4. Example 4: compression of higher-order complex separated tensor

The PGD compression strategy presented above is here applied to a complex tensor of large size and dimension d = 4. The 
tensor, �, is already available in a separated format, as shown in (22), and contains the data to be compressed. It is the PGD 
solution to a parameterized sea wave propagation problem in harbor taken from [18], see Fig. 6 for an illustration. The four 
dimensions correspond to the space distribution of the (complex) wave height and the three parameters, which are: 1) the 
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Fig. 5. Example 3: evolution with the number of modes of the relative error of the result of the PDG algorithm, FPGD , computed against i) the original 
tensor F , and ii) the noised version Fnoised (used as input for PGD).

Fig. 6. Example 4: [left panel] domain, boundary conditions and parameters of the parameterized wave problem (from [18]); [right panel] illustration of 
one spatial solution for some set of parameters.

incoming wave direction, 2) the wave frequency, and 3) the reflectivity of the coastline. The original dataset has L = 1500
modes using a discretization of space, frequency, angle, and reflectivity of 15,757, 100, 50 and 10 degrees of freedom 
respectively. Note that the problem is stated in frequency domain and all dimensions are stored as complex numbers. The 
full tensor of this solution, therefore, occupies 12 GB of memory (corresponding to 15,757 × 100 × 50 × 10 = 787.85 × 106

complex entries) The storage of the separated solution with 1500 modes (corresponding to 1500 ×(15,757 +100 +50 +10) =
23.8755 × 106 complex entries) requires 364 MB. The goal of the compression is to approximate � by FPGD with M � L and 
to significantly reduce the storage requirements while maintaining the accuracy of the represented quantities. Here, PGD 
compression is carried out to obtain 200 modes (instead of using a tolerance η� to stop the process). Note that with 200 
modes, the storage requirement reduces to 48.5 MB. The objective is to check whether PGD compression produces a better 
description of the data when the number of modes is limited by the storage capacity. The results are shown in Fig. 7. On 
the left, the evolution of the modal amplitudes is represented, and, as expected, they globally show a decreasing trend until 
they get stabilized. More interestingly, in the right-hand-side curve, the actual error ‖� − F m

PGD
‖ is represented and shows 

a monotonic decreasing behavior. Moreover, also indicated as a reference value we display the error associated with the 
truncation of � to the first 200 terms, namely ‖� − ∑200

�=1 φ�
1 ⊗ φ�

2 ⊗ φ�
3 ⊗ φ�

4‖. This value is represented in the right panel 
of Fig. 7 as a red cross. It can be noted that, with respect to the first 200 terms of the original separation of �, the error 
associated with F 200

PGD
is by one order of magnitude lower.

This example therefore demonstrates that the PGD compression is able to shorten the separable expressions and improve 
the accuracy of the overall representation at a limited storage capacity.
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Fig. 7. Example 4: [left panel] evolution of modal amplitudes (σm) along the first 200 terms of PGD compression; [right panel] evolution of the relative 
error of the PGD compression (with respect to the full � tensor). The red cross marks the value of the norm of the difference between � and the tensor 
reconstructed with the first original 200 modes of �.

5. Concluding remarks

The PGD least-squares approximation is presented here as a computational tool to perform high-dimensional tensor 
separation at an affordable computational cost and with a limited coding complexity. The algorithms are discussed in detail, 
with special emphasis on the stopping criteria for both the greedy strategy and the alternated directions iteration scheme.

Moreover, the same idea is also used to compress separated approximations with a large number of terms and to reduce 
the storage requirements, while keeping the accuracy of the separated representation.

Appendix A

The functions used in the construction of the seven-dimensional tensor used in Section 4.2 are described next. The 
matrix A, built with the coefficients a jk reads:

A =

⎡
⎢⎢⎢⎣

1 −1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 −1 1 1 1 1 1

⎤
⎥⎥⎥⎦

Similarly, the coefficients b jk and c jk are:

B =

⎡
⎢⎢⎢⎣

0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.2 0.2 0.2 0.2 0.2 0.2 0.2
0.6 0.9 0.6 0.6 0.6 0.6 0.6
0.1 0.75 0.1 0.1 0.1 0.1 0.1
0.8 0.2 0.8 0.8 0.8 0.8 0.8

⎤
⎥⎥⎥⎦ C =

⎡
⎢⎢⎢⎣

0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.02 0.01 0.02 0.02 0.02 0.02
0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.02 0.01 0.02 0.02 0.02 0.02

⎤
⎥⎥⎥⎦
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