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The red blood cell (RBC) membrane is a composite structure, consisting of a phospholipid 
bilayer and an underlying membrane-associated cytoskeleton. Both continuum and particle-
based coarse-grained RBC models make use of a set of vertices connected by edges 
to represent the RBC membrane, which can be seen as a triangular surface mesh for 
the former and a spring network for the latter. Here, we present a modeling approach 
combining an existing continuum vesicle model with a coarse-grained model for the 
cytoskeleton. Compared to other two-component approaches, our method relies on only 
one mesh, representing the cytoskeleton, whose velocity in the tangential direction of the 
membrane may be different from that of the lipid bilayer. The finitely extensible nonlinear 
elastic (FENE) spring force law in combination with a repulsive force defined as a power 
function (POW), called FENE–POW, is used to describe the elastic properties of the RBC 
membrane. The mechanical interaction between the lipid bilayer and the cytoskeleton 
is explicitly computed and incorporated into the vesicle model. Our model includes the 
fundamental mechanical properties of the RBC membrane, namely fluidity and bending 
rigidity of the lipid bilayer, and shear elasticity of the cytoskeleton while maintaining 
surface-area and volume conservation constraint. We present three simulation examples 
to demonstrate the effectiveness of this hybrid continuum–coarse-grained model for the 
study of RBCs in fluid flows.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The human red blood cells (RBCs) are normally biconcave discocytes with a diameter of approximately 8 μm and a 
thickness of about 2 μm. The mean volume is about 94 μm3 and the average surface area around 135 μm2, a value greater 
than the surface area of a sphere with the same volume. The RBC membrane (∼10 nm in thickness) is composed of a lipid 
bilayer supported from inside by a two-dimensional (2D) triangular spectrin network of cytoskeletal proteins. A highly elastic 
membrane, together with a high surface-to-volume ratio, provides RBCs with the ability of large reversible deformation 
when passing through capillaries. This composite bilayer–spectrin membrane may be treated as an elastic thin shell. Based 
on this simplified elastic description and the assumption of flat membrane, two fundamentally different approaches have 
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been proposed to study RBCs in fluid flows: one more traditional, founded on continuum mechanics, and the other, founded 
on molecular details, see for recent reviews [1–4].

The classical continuum approach, which was largely inspired by numerical methods developed in mechanical engi-
neering, considers the suspending fluids as well as the RBC membrane itself as a continuous medium. A number of 
well-established continuum methods have been developed, including boundary integral/element method (BIM/BEM) and 
several interface tracking methods widely employed in multi-phase flows. These methods have been used to simulate the 
dynamics of a single RBC in flows as well as the collective behavior of an ensemble of them [4]. From this point of view, the 
RBC is most often modeled as a hyperelastic capsule (made of a polymerized membrane) [1,4]. However, the fluid nature 
of the cell membrane was systematically lacking; the near-incompressibility of the membrane was generally taken into ac-
count through a high dilatational modulus. Numerical simulations with vesicles (made of lipid bilayer) with bending rigidity 
can provide insight into the shapes taken by RBCs, either at equilibrium – the typical biconcave shape of RBCs or in flows 
– bullet, parachute and slipper shapes [1], but shear elasticity and shape memory that are the fundamental mechanical 
properties of RBCs are missing.

Discrete modeling exploits the microstructural properties of RBCs. Any medium is seen as a huge number of molecules, 
submitted to thermal agitation and to intermolecular forces. However, to be able to resolve much larger space and time 
scales involved in the transport of RBCs in fluid flows, coarse-graining of spectrin-level models has to be used, and the 
level of coarse-graining characterizes the crudeness with which the molecular level of the medium is represented [5]. 
Mesoscale (whole cell) particle-based methods [6] consider both the lipid bilayer and the spectrin cytoskeleton and the 
interaction between them. Some cell scale particle-based models keep the trace of the two contributions in the form of 
a two-component whole cell model [7,8]. In this way, the detachment of the cytoskeleton from the lipid bilayer, which 
for example can occur in the micropipet aspiration experience or in the flow through a constriction, has been successfully 
simulated [8].

One could regard the continuum approach as the ultimate state of coarse graining; however, in that ultimate state, the 
molecular structure is fully integrated and forgotten. There is a need for developing new numerical methods combining 
the two approaches, thus being able to benefit from advantages of both of them. Indeed, the idea of representing the 
cytoskeleton as a discrete 2D structure made of a large number of connected springs is very attractive. This is the starting 
point of the present contribution. Actually, particle-based and continuum-based models work all on the same principle: one 
mesh (or two coupled meshes if we distinguish between the bilayer and the cytoskeleton) made of triangular elements to 
represent the RBC membrane. In the particle-based model, the mesh is seen as a discrete network of springs, which tends 
to a good representation of the spectrin cytoskeleton when the number of vertices reaches the real cytoskeleton structure. 
In the continuum-based model, the mesh is understood as a finite element discretization of the membrane, in which a 
two-dimensional mesh, embedded in a 3D domain, is defined by a set of vertices connected by edges. Therefore, the same 
ingredients are present, providing very similar modeling possibilities in these two approaches.

In this paper, we propose to explore the idea whether the combination of a spring network with a vesicle model could 
give rise to an accurate and reliable hybrid discrete-continuum RBC model. It is a first attempt to couple a 3D vesicle model 
with a discrete description of the cytoskeleton. From purely mechanical considerations, such a model could extract the es-
sential mechanical properties of the RBC membrane: fluidity and bending rigidity of the lipid bilayer, and shear elasticity of 
the cytoskeleton while maintaining surface-area and volume conservation constraint. This is also computationally feasible 
thanks to an existing continuum vesicle model [9,10]. The argument is that, in the vesicle model, the movements of the 
bilayer in the normal and tangential directions are treated differently, namely in Lagrangian fashion for the former and with 
an Eulerian description for the latter. Therefore the tangential movement of mesh vertices (or nodes in a finite element 
context), which does not change the membrane shape, is fully independent of the tangential movement of the lipids. Ac-
tually, the possibility of prescribing the tangential velocities of mesh vertices to any convenient set is used to preserve the 
mesh quality in a vesicle simulation context. Our idea for an extension towards RBCs is then to prescribe this velocity set 
to that of the vertices of a spring network. In doing so, the movement of the mesh vertices is constrained to slide along 
the bilayer. However, this constraint is automatically ensured by the fact that the same mesh is used both for the bilayer 
and the cytoskeleton, and that the nodes of the bilayer finite-element mesh are also the vertices connected by the edges 
of spring network. As far as numerical aspects are concerned, one of the major developments involves assigning a spring 
behavior law to the edges and a drag friction law (based on the lipid/node relative velocity) to the vertices, as well as a 
way how to incorporate these additional forces into the vesicle model.

In the following sections we first describe the RBC membrane model and outline the numerical methods. We then 
present three numerical examples to evaluate the proposed hybrid model, followed by a conclusion of the paper.

2. Cytoskeleton elasticity

The membrane model consists of a collection of points {xn, n ∈ 1 . . . N}, which are the vertices of the RBC surface trian-
gulation, representing the cytoskeleton. The length of the link connecting vertices n and p is defined as lnp = |xn − xp|. The 
spring network induces on each node (or vertex) n of the surface mesh a resulting force given by
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fn =
∑

p

fnp =
∑

p

Knp(xp − xn) (1)

where the summation is over all the vertices p connected to the node n by an edge np, i.e. spring np.
In Eq. (1), fnp denotes the force exerted by the node p on the node n, and Knp represents the stiffness coefficient of the 

spring np, connecting the node n at the position xn to the node p at the position xp . In the case of a linear spring with the 
spring stiffness knp , the force fnp , as a function of the spring length lnp and its value at rest l0np , is given by

fnp = knp
lnp − l0np

lnp
(xp − xn) = knp(1 − l0np/lnp)(xp − xn) = Knp(xp − xn) (2)

Since the aim of this paper is not to compare different spring laws but rather to test the idea described in the introduc-
tion, we only consider one of the constitutive laws proposed in [5], namely the finitely extensible nonlinear elastic (FENE) 
spring in combination with a repulsive force defined as a power function (POW). It is worth mentioning that compared to 
the linear spring model, i.e. Eq. (2), the FENE–POW spring model has been widely used for modeling the shear resistance 
of the cytoskeleton, especially for large deformations of RBCs [5]. The elastic energy of the spring np is then the sum of an 
attractive part and a repulsive one

Unp = −ka

2
(lmax

np )2 log(1 − x2
np) + kr

(α − 1)lα−1
np

(3)

where ka and kr are, respectively, the FENE (attractive) and the repulsive spring constants, α is the repulsive exponent 
assumed as a constant value.

This expression uses the normalized spring length (or separation distance) xnp = lnp/lmax
np ∈ [0, 1]. So, the spring’s behavior 

law can be adjusted by fixing three physical parameters: the maximum spring length lmax
np , and the attractive and repulsive 

spring constants ka and kr . The total stiffness coefficient Knp is given by

Knp = ka

1 − x2
np

− kr

(lmax
np xnp)α+1 (4)

Equation (4) defines a spring with non-zero equilibrium length l0np given by fnp = −δUnp/δxn = 0 for x0
np = l0np/lmax

np . The 
equilibrium length l0np corresponds to the length of the spring in the reference shape, i.e. stress-free mesh. For simplification, 
we use hereinafter x0 and l0 to denote, respectively x0

np and l0np . The two spring constants ka and kr can be related by

kr = ka
lα+1
0

1 − x2
0

(5)

Thanks to the Virial theorem, the elastic shear modulus of the spring network μS can be expressed in terms of ka and 
kr as follows:

μS =
√

3

4

(
2kax2

0(
1 − x2

0

)2
+ kr(α + 1)

lα+1
0

)
(6)

Combining Eq. (4) with Eq. (5) and Eq. (6) yields finally the spring force at node n by an edge np

fnp = Knp(xp − xn) = 4μS

√
3

(
2x2

0
1−x2

0
+ α + 1

)
(

1 − x2
0

1 − x2
np

− xα+1
0

xα+1
np

)
(xp − xn) (7)

As in [5], we set α = 2 and the ratio x0 = 1/2.05. For a given shear modulus μS, which is in the range of 4–12 μN/m for 
a normal RBC, and on the basis of the triangulation of cell membrane (xnp = lnp x0/l0 = lnp x0/l0np) and its stress-free mesh 
(l0 = l0np), the elastic force fe

np at node n by the edge np exerted by the spring network on the lipid bilayer can be obtained 
from Eq. (7) since fe

np is simply equal to fnp , and subsequently incorporated into the bilayer–cytoskeletal interaction as 
described below.

3. Cytoskeleton–bilayer interaction

In [9,10], the boundary element method is used to resolve the lipid’s flow on the vesicle membrane, which can be 
formulated as

ulip = P
(

u∞ + G f b
)

(8)
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where the exponent “lip” stands for the lipid’s velocity field and “∞” indicates the imposed background bulk fluid flow. G is 
the Green operator due to the Stokeslet, f b(x) the bending force field induced by the lipid bilayer in response to deforma-
tions and P the projector onto a subspace of surface divergence-free vectors to satisfy the incompressibility constraint on 
the lipid’s flow:

divS(ulip) = 0 (9)

The projector P includes the contribution of a surface-tension-like force resulting from the Lagrange multiplier of the surface 
divergence-free constraint.

In matrix form, it writes[
ulip

n,i

]
= [P ] [u∞

n,i

] + [P ][G][F b(x)] [xn,i(t + dt)
]

(10)

where the index “n, i” indicates the ith component of the position xn or the velocity un of node n and F b(x) is the matrix 
producing the nodal bending forces from the node positions (see [9] for details).

For a RBC, we have to add the elastic force fe exerted by the spring network on the lipid bilayer. It is given by a matrix 
F e(x), which produces the nodal forces from the node positions in the same way as F b(x) for bending. This spring elastic 
action is transmitted to the lipid bilayer in the normal direction directly and in the tangential plan indirectly via the drag 
forces fd that the lipids exert on the cytoskeleton

fd = Cf(�tgulip − �tgucyt) = �tgfe (11)

where the exponent “cyt” stands for cytoskeleton and Cf is the friction coefficient. The operator �tg = Id − �n is the 
projector onto the tangent plan of the membrane surface, with �n = n ⊗ n the projector in the normal direction given by 
the normal vector n pointing toward the outside bulk fluid. Thus, the system (10) can be replaced by[

ulip
n,i

]
= [P ] [u∞

n,i

] + [P ][G]
(
[F b(x)] + ([�n] + [�tg])[F e(x)]

)[
xn,i(t + dt)

]
(12)

where ([�n] + [�tg]) can simply be eliminated, since it is nothing else than the identity matrix.
From the kinematic point of view, the sliding of the cytoskeleton is taken into account thanks to the mixed Lagrangian–

Eulerian updating of the mesh node’s position

x(t + dt) = x(t) + dt u = x(t) + dt �nulip + dt �tgucyt (13)

Thus, the mesh nodes moves with the lipid’s velocity in the normal direction only, whereas it moves tangentially with 
the cytoskeleton’s ones. Using equation (11), it writes also

x(t + dt) = x(t) + dt �nulip + dt �tgulip − dt
1

Cf
�tgfe = x(t) + dt ulip − dt

1

Cf
�tgfe (14)

or in matrix form[
xn,i(t + dt)

] = [
xn,i(t)

] + dt
[

ulip
n,i

]
− dt

Cf
[�t][F e(x)] [xn,i(t + dt)

]
(15)

Using the Stokes–Einstein relation and measured values of the translational diffusivity of band 3 and glycophorin C in 
the lipid bilayer, the drag force and thus the values of the friction coefficient can be deduced [11]. However, these values 
are relevant only in the context of a spectrin-scale modeling or in the case involving a dynamical process. In the present 
study, the value of Cf affects only numerical efficiency; Cf → 0 is equivalent to minimizing the elastic energy at each time 
step, whereas a finite value leads to a relaxation of the cytoskeleton stresses. We set Cf = 1 in most of our computations, 
but the final stationary RBC shape remains the same for all the examples we have considered, whatever its value.

4. Numerical examples

Here, we present three simulation examples to evaluate the proposed approach.

(i) Sedimentation of an initially prolate vesicle in an infinite fluid for increasing values (μS) of spring forces. In this way, 
we can get insight into how the presence of a discrete spring network, representing the cytoskeleton, alters the large 
deformation of a settling vesicle. Since our approach is based on a combination of a vesicle model with a cytoskeleton, 
it is natural to begin with this relatively simple case. Another reason is that the case of a settling vesicle exhibiting a 
finger-like protuberance has been extensively studied over the past years, which enabled us to start from well-validated 
stationary vesicle shapes [9,10,12].

(ii) Stretching of a RBC in the optical tweezers experiment [13], which is a more classic validation of RBC models.
(iii) Motion of a single RBC in a capillary.
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Fig. 1. (a) Final discoidal shape of a simulated three-dimensional vesicle with ν = 0.6 (typical value for RBCs). The triangular mesh is composed by N = 642
nodes and M = 1280 elements. The mesh is constructed by refining the triangular faces of an icosahedron inscribed into a sphere by dividing recursively 
each triangle into four smaller triangles, and projecting the resulting nodes to the surface of the sphere. (b) A comparison of the final shapes for increasing 
mesh elements, both in the 3D and in the axisymmetric case.

A surface mesh of M = 1280 triangular elements, as shown in Fig. 1(a), is typically used in our numerical simulations. 
The discoidal shape obtained from the stress-free state of a vesicle is used as a reference shape; it defines the equilibrium 
position of the nodes and the equilibrium length of the spring network that simulate the spectrin network of the cytoskeletal 
proteins. However, it must be stressed that there is no universal consensus on the reference shape that should be adopted 
to describe the real deformation of a RBC under external solicitations. Fig. 1(b) shows a comparison between the stationary 
shapes obtained by the 3D code and the axisymmetric one for a vesicle with the same deflation ν = 0.6 of a RBC. In 
both the axisymmetric and the three-dimensional cases, a convergence towards the final shape is observed when increasing 
the number of mesh elements. The first feature we notice is that a good description of the 3D final vesicle shape can be 
obtained, even with a relatively small number of triangular elements.

The shear modulus is defined by μS = cμ0, with μ0 = 5 μN/m as a reference value for the shear stress of a healthy RBC 
cytoskeleton, and then we let μS vary through the coefficient c to adjust the strength of the cytoskeleton contribution; c = 0
corresponds to a purely vesicle model, whereas c = 1 leads to a two-component vesicle–cytoskeleton model; increasing this 
coefficient results, as expected, in an increase in the shear resistance of the cell membrane.

Before presenting the numerical results, it is useful to recall some relevant dimensionless parameters that we are using. 
If the vesicle has a volume V (= 4/3πR3

0, which defines a characteristic vesicle size R0) and a surface area A, then the 
vesicle motion, as it flows in a circular capillary, is determined by three independent dimensionless parameters:

(1) the reduced volume ν (= 3
√

4πV A−3/2, which quantifies the geometric ability of the vesicle to deform, it can range 
from 0 – totally deflated vesicle – to 1 – sphere. RBCs have a typical value between 0.6 and 0.65);

(2) the bending capillary number Ca (= ηU R2
0/κB, where κB is the bending modulus, η the viscosity of ambient fluid, and 

U the maximum velocity of unperturbed Poiseuille flow);
(3) the confinement parameter β (= R0/Rc) between the vesicle size R0 and the capillary radius Rc.

In the case of buoyant vesicles, a new dimensionless parameter is introduced to compare gravitational energy to bend-
ing energy, the Bond number Bo (= 	ρg R4

0/κB, where 	ρ is the difference of density between inner and outer fluids, 
g the gravity). When taking into account the shearing resistance of the cell membrane, we need to define another non-
dimensional parameter, called the reduced bending number Cb, which is the ratio of the bending modulus to the shearing 
modulus, Cb = κB/(μS R2

0). We have Cb ≈ 0.005 for RBCs if we set κB = 2.4 × 10−19 J [5,7], R0 = 3 μm, and μS = 5 μN/m 
[5,7]. These values are used in our simulations when appropriate, despite a large scatter in the experimentally measured 
values.
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Fig. 2. Stationary shape profiles of a vesicle–cytoskeleton model with reduced volume ν = 0.9 for several values of c and of the Bond number in the 
sedimentation simulations. (a) Bo = 40, (b) Bo = 220. In the case of a vesicle (μS = 0 μN/m), there is a finger-like shape that disappears if we increase 
the value of the shear modulus μS. For high values of the shear modulus (μS > 50 μN/m), the final shape is close to the initial reference one – a prolate 
ellipsoid. Coordinates are normalized with the equivalent radius of the vesicle R0.

4.1. Sedimentation

The first simulation example deals with a settling vesicle in combination with an underlying discrete spring network 
in an unbounded flow. Our objective here is to evaluate how effectively a cytoskeleton can influence the final shape of a 
settling vesicle. The appropriate dimensionless parameters involved are the reduced volume ν , the Bond number Bo, and 
the reduced bending number Cb. Instead of using Cb, we explicitly prescribe the value of c (μS = c × 5 μN/m), and thus 
study the sedimentation of an initially prolate shape of fixed reduced volume for different values of the Bond number. We 
investigate the influence of the spring forces on the final shape in order to better characterize our model for the simple 
case of the gravity-induced sedimentation of a vesicle. We intentionally set very high values of the Bond number so that 
the vesicle exhibits large deformations characterized by the emergence of a stationary long finger-like shape. If we neglect 
the action of the cytoskeleton, the corresponding final shape is the same as when the vesicle has the same deflation and 
Bond number. We compare the deformation of the final shape for increasing network connecting forces. A prolate ellipsoid 
with ν = 0.9 is selected as the reference shape (i.e. stress-free state); we perform several simulations for different values of 
μS for a given Bo. We observe that, for high values of μS, the membrane does not deform because the cytoskeleton elastic 
force is too high and the final shape comes back to the initial reference one. For low values of μS , the final shape is close 
to the stationary shape of a settling vesicle with same values of ν and Bo.

Numerical results are presented in Fig. 2, where the axisymmetric stationary shape profiles for increasing values of c
are compared to that of a vesicle (i.e. μS = 0 μN/m). An initially prolate shaped vesicle of reduced volume 0.9 evolves 
towards a pear like shape with an elongated tail all the more pronounced when the Bond number becomes higher. It makes 
it clear that the presence of a cytoskeleton prevents such large deformations. Even a small value of μS (0.5 μN/m) can 
maintain the shape close to the initial prolate in a sedimentation experiment for reasonable values of the Bond number. 
From this numerical experience, it is concluded that the emergence of long finger-like shapes can be observed only for 
vesicle sedimentation, since in the case of RBCs, even for large values of Bo, the cytoskeleton prevents the finger from 
appearing, indicating a significant interplay between vesicle dynamics and the cytoskeleton.

4.2. RBC stretching

As a second numerical example, we perform RBC stretching simulations and compare our numerical results with the ex-
perimental data of RBC deformations by optical tweezers [13]. In our simulations, the reference shape of RBC is a biconcave 
surface, and the geometry can be obtained using the following expression [14]



J. Lyu et al. / C. R. Mecanique 346 (2018) 439–448 445
Fig. 3. Variation of the axial D A and transverse DT diameter (μm) of RBC membrane as a function of stretching forces (pN) for two values of the shear 
modulus, μS = 5 μN/m and μS = 50 μN/m. Simulation results are compared with the optical-tweezers experiment [13] and numerical predictions by a 
spectrin-level modeling [6].

z = ±D

√
1 − 4(x2 + y2)

D2

[
a1 + a2

x2 + y2

D2
+ a3

(
x2 + y2

)2

D4

]
(16)

where D = 7.82 μm is the cell diameter, a1 = 0.0518, a2 = 2.0026 and a3 = −4.491. The volume and surface area of the 
corresponding RBC are respectively 94 μm3 and 135 μm2, giving a reduced volume ν = 0.64.

The RBC membrane network is composed of N vertices, which define the level of the membrane representation from 
the spectrin-level to the coarse-grained network of N (= 642). The total stretching force Fs is applied to N− (−Fs) and N+
(+Fs) vertices, with N− = N+ = εN , along the negative and positive axial directions, respectively. These vertices cover a 
near-spherical area on the surface with ε ≈ 0.02, which is in agreement with the contact area of the attached silica bead 
with diameter dc ≈ 2 μm used in the experiments. The axial diameter D A is computed as |xmax − xmin|, where xmax is the 
maximum x position among the N+ vertices and xmin is the minimum one among the N− vertices. The transverse diameter 
DT is calculated as 2 × maxi=1...N

√
(yi − c y)2 + (zi − cz)2, where c y and cz are the coordinates of the y and z centers of 

mass.
The elastic shear modulus μS measured experimentally lies in the range of 4–12 μN/m, and the bending modulus 

in the range of 1–7×10−19 J [5,7], indicating a large-amount scatter in the measured values. Fig. 3 shows the change 
in RBC’s axial and transverse diameters in response to the applied stretching forces. As the stretching force increases, 
the RBC’s axial diameter increases, while the transverse one decreases from the initial value D = 7.82 μm. We find 
a reasonable good agreement with the experimental data of RBC deformation when we set c = 1, i.e. μS = 5 μN/m, 
given the uncertainty in the measured mechanical properties of the RBC membrane. For a much higher value of μS, i.e. 
μS = 50 μN/m, the RBC membrane withstands significantly the applied stretching forces since the cell deformation is 
much less. As could be expected, the deformations of the RBC membrane in response to the applied stretching forces 
depend largely on the value of the shear modulus used in a numerical model. Indeed, the finite element method simula-
tion of the RBC membrane [13] finds an agreement with the experimental data for μS = 5.3 μN/m, whereas Fedosov et 
al. [5] obtain a better agreement for μS = 6.3 μN/m. Our simulation results are also fully consistent with the numerical 
results reported in [6]. Based on spectrin-level modeling, Li et al. [6] obtained an inferred value of the shear modulus 
μS = 8.3 μN/m – a relatively higher value of the shear modulus than that we used in the simulations, which could explain 
why our model gives rise to a relatively larger deformation of the RBC membrane when compared to that predicted by 
Li et al. [6].

While our model offers an important advantage in the case of hydrodynamic solicitations typical of sedimentation dy-
namics thanks to the inclusion of a fluid solver, the model, in its current implementation, suffers from difficulties in larger, 
sharp solicitations such as in the “optical tweezers” experiment. When the applied stretching force of Fs is higher than 
60 pN, the induced forces within the spring network are too strong compared to the most common hydrodynamic forces, 
which is the prelude to the possibility of increasing further the loading force. A possible solution to this problem can be the 
implementation of a more efficient relaxation algorithm and/or the use of a locally mesh-refinement strategy. It is worth 
mentioning that there is a tremendous difference in the number of vertices being used between a spectrin-level RBC mod-
eling and a coarse-grained model; the former uses about 30,000–40,000 vertices, and the latter, such as ours, uses around 
500–1,000 vertices.
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Fig. 4. Three-dimensional shape of a vesicle having the same typical deflation of a RBC (i.e. ν = 0.6) immersed in a capillary with β = 0.5 and Ca = 10. The 
colors represent the intensity of the surface divergence of velocity on the vesicle (Eq. (9)), which is on the order of 10−9 (blue)∼10−8 (red), an indication 
of the near-incompressibility of the membrane.

4.3. Motion of a single RBC in a capillary

The third and the last simulation example concerns a single RBC in capillary flows. For practical issues, the transport 
of BRCs inside a capillary is a more relevant situation to consider. Two specificities of this class of flows contribute to RBC 
deformation: curvature of the Poiseuille-type flow profile and confinement. For large capillaries, the RBC sees the influence 
of the boundaries only through the background velocity profile (typically Poiseuille flow). Direct interaction with a wall 
appears only for the RBC coming very close to it. For small capillaries, the RBC feels the direct influence of the walls from 
all sides. Thus, it feels that wall not only through the action on the velocity profile, but also directly through the confinement 
effect, and thus both the curvature of the flow and the confinement become involved. The confinement is characterized by 
the confinement parameter β; a larger value of β means a stronger confinement. The strength of the flow and its relative 
importance with respect to the bending energy is characterized by the capillary number Ca.

As in the case of sedimentation in an unbounded flow, we analyze the differences between the final shape of a vesicle 
and a RBC for increasing strengths of the spring network. Fig. 4 shows the equilibrium shape of a vesicle with the same 
deflation as that of a RBC (ν = 0.6) submitted to a Poiseuille flow inside a capillary for β = 0.5 and Ca = 10. The final shape 
is a non-axisymmetric parachute. Indeed, if the confinement is not strong enough, non-axisymmetric vesicle shapes could 
be observed. They become axisymmetric when the confinement is increased beyond a critical value, which strongly depends 
on other control parameters. Since the most significant challenge in vesicle dynamics simulations is to require and enforce 
an incompressibility constraint of the membrane surface, locally and globally, the field of surface divergence of velocity is 
shown on the vesicle.

The influence of the presence of a cytoskeleton on the shape taken by the cell is illustrated in Fig. 5 for Ca = 10 and 
β = 0.33 (top left) or β = 0.5 (bottom left). A vesicle (red profiles) takes a typical parachute-like shape whose curvature 
increases with confinement and which can deviate from the axial symmetry, as shown in Fig. 5 by the difference in the xy
and xz cross sections (filled and unfilled circles). When the effect of a cytoskeleton is considered, even for a very weak shear 
modulus (μS = 0.5 μN/m), large deformations of the parachute shape are reduced substantially, and the asymmetry of the 
cell becomes less significant. As the cytoskeleton strength is further increased (μS = 5 μN/m) the cell recovers the discocyte 
shape typical of RBCs at rest. That means that hydrodynamic forces are not strong enough to oppose to cytoskeletal forces 
in order to allow shape deformation, and that the biconcave shape is more resistant to the flow stress.

The choice of the reference shape assume an increasing importance on the final shape for high values of μS. Therefore, 
it would be interesting to extend the study by considering different reference shapes. Another remark concerns the accuracy 
of the state of the cytoskeleton, which shows local anomalous surface features (hills) in equilibrium (Fig. 5-bottom right) 
when the shearing resistance becomes larger, though it seems to be less pronounced with a mesh refinement. This feature 
has also been reported in [5], leading them to try to overcome the difficulty with the help of an appropriate numerical 
treatment. Such a strategy would involve a significant computational effort to account for larger deformations of RBCs in 
narrow capillaries.

5. Conclusion

By combining a continuum description of a lipid membrane with a discrete representation of cytoskeleton, we have 
presented an approach for modeling the membrane of red blood cells in the context of the prediction of red blood cells dy-
namics in a flow. The model includes the essential mechanical properties of the RBC membrane, namely shearing resistance 
and bending rigidity, as well as the constraints of fixed surface area and fixed enclosed volume. Specifically, the RBC mem-
brane is modeled as a composite network, which consists of a dynamically triangulated surface as in a fluid vesicle model. 
The membrane is then coupled with an additional network of springs with fixed connectivity, representing the cytoskeleton. 
Compared to other two-component approaches, we explicitly computed the mechanical interaction between the bilayer and 
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Fig. 5. Stationary shape profiles obtained with the two-component vesicle–cytoskeleton model for a RBC transported in a capillary for increasing contribu-
tion of cytoskeleton, Ca = 10 and two confinement parameters: β = 0.33 (top left) and β = 0.5 (bottom left). Filled and unfilled circles represent the cross 
sections on the xz and yz plane, respectively. Coordinates are normalized with the equivalent radius of the RBC. The finite-element meshes, i.e. the state 
of the cytoskeleton corresponding to the shape profiles for β = 0.5 are shown on the right.

the cytoskeleton by considering normal elastic spring and tangential friction force. Another advantage is only one mesh that 
is used both for the bilayer and the cytoskeleton, thus significantly reducing the computational complexity.

We have presented three simulation examples to illustrate the effectiveness of our model. As the aim of this work 
was to see if adding a spring network to a BEM vesicle model could be a possible way to build a RBC model, we have 
thus focused our attention on the main issue, namely the capacity of the model to handle the shape memory effect of a 
cytoskeleton, especially in the case of large deformations such as the sedimentation case with a large Bond number. We 
have therefore limited our study to stationary shapes; a full model accounting for a real friction coefficient between the 
bilayer and the cytoskeleton has not been tested. The tank-treading motion of RBCs in a shear flow [11] represents an 
interesting test to examine the extent to which our model deals with dynamical behaviors. Given the essential ingredients 
that are already present in our model, there is no obvious reason why our model should fail to capture the dynamical 
behaviors of a tank-treading case, which would involve merely an actual value of the friction coefficient between the bilayer 
and the cytoskeleton of the RBC membrane, instead of an arbitrarily chosen value for stationary shapes.

This work fills the gap between continuum mechanical modeling and coarse-grained modeling of RBC membranes by 
fusing these two approaches. Our numerical results show that this two-component vesicle–cytoskeleton model is able to 
extract the mechanical properties of RBCs and predict its dynamics in fluid flows. However, our model in its current im-
plementation suffers from difficulties in high, local mechanical loading such as in the tweezers experiment. A solution to 
overcome this problem is to use locally a mesh-refinement strategy. Another problem relates to the accuracy of the state 
of cytoskeleton, which showed local anomalous surface features (kinks). We need to use a suitable numerical treatment to 
mitigate this issue. Moreover, further investigation is needed to consider different reference shapes of the cytoskeleton that 
should be adopted in order to provide deeper insights into the dependence of the stationary shape on the reference one for 
different flow configurations. A more performing algorithm for the computation of the cytoskeleton interactions and for the 
energy minimization would also be welcomed.
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