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A robotic approach based on Denavit–Hartenberg parametrization is proposed for simulat-
ing and interpreting Codman’s paradox. A 3-degree-of-freedom robot model of the 
glenohumeral joint, driving the arm reduced to its long humerus, is considered for 
simulating the two-step rotational sequence of Codman’s paradox. We propose to use 
the classical distinction made in robotics between the joint space, i.e. the inner space 
of joint angles, and the operational space, i.e. the outer physical space, for interpreting 
this historical version of the paradox, as there is some kind of confusion between these 
two spaces to be considered for arm movement definition. In its extended form, developed 
by MacConnail, the three-step rotational sequence of Codman’s paradox would highlight 
the motor redundancy of the shoulder joint, necessitating for its simulation, according 
to our robotic approach, a 4-axis model of the shoulder spheroid joint. Our model 
provides a general prediction of the conjunct rotation angle in full accordance with clinical 
observation for a two-step or three-step version of Codman’s paradox. The relation of the 
paradox with a possible general law of motion is finally discussed.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Codman’s paradox is originally described by the Bostonian surgeon E.A. Codman [1] in his book The Shoulder, and it 
is still today intensively discussed either to claim that it is not a paradox [19,22,14], or to emphasize its importance for 
a general thought about shoulder movements [4,9,15,25]. However, the simple fact that an article dedicated to Codman’s 
paradox can lead to a controversy in the journal where it has been published – see, for example, Paul [17] in response to 
Politti et al. [19], and Cheng [4] in response to Stepen and Otahal [22] – highlights the always actual difficulty to clearly 
interpret this powerful paradox. This fact is, according to us, in relation with the apparently purely kinematic character 
of Codman’s paradox: multiple mathematical interpretations can then be proposed for explaining the result of the suc-
cessive rotations at the shoulder joint considered by the paradox, in its initial form as in its renewed form developed in 
the 1950s by MacConaill [11,13]. Among the mathematical tools used for explaining Codman’s paradox, rotation matrices 
applied to vectors [22,14] or points in homogeneous coordinates [19] appear to be efficient tools thanks to which it can 
be hoped that the paradox will be definitively solved. Things however do not appear so simple due to the assumption, 
made in many “solutions” of Codman’s paradox, that abduction–adduction and flexion–extension axes are considered as 
fixed – this is clearly assumed in [19,22,14]. If, in the case of the look for parameters modeling the orientation of the 
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Fig. 1. Three-degree-of-freedom robot model for Codman’s paradox simulation. (a) Arm model and placement of frames according to R. Paul’s notation. 
(b) Corresponding table with Denavit–Hartenberg parameters (ai , αi , di , θi ), for i = 1 to 4 (see text for the definition of these parameters and also Fig. 2).

shoulder, such an assumption is perfectly relevant, as done for example in [7]; it is much more questionable for interpret-
ing Codman’s paradox. Such hypothesis indeed leads us to assume that the muscles actuating the shoulder complex have 
no influence on the location of movement axes, which is an opinion difficult to defend. Moreover, because the external–
internal arm rotation axis is clearly a mobile axis to consider in Codman’s paradox analysis, most of these mathematical 
models combine fixed abduction–adduction and flexion–extension axes with this last mobile axis; this is also a questionable 
point regarding the corresponding kinematic structure modeling the shoulder movements – i.e. the considered sequence 
of joint movements – because it then mixes fixed and mobile axes. To overcome such a difficulty, we propose in the 
framework of this article a robotic approach of Codman’s paradox. Such an approach has, according to us, three advan-
tages:

• it clearly defines a serial kinematic chain making possible the kinematic modeling of the whole arm structure consid-
ered as a non-jointed single unit arm-forearm-hand driven by the shoulder joint reduced to a ball-and-socket joint. 
The final hand position and orientation can then be deduced and compared with the predictions made by Codman’s 
paradox;

• every rotation axis of the robotic model moves with respect to the previous one in the considered serial kinematic chain 
generating, as predicted by Roth’s proof, an independence of the final hand location with the order of joint controls;

• the robotic model is based on the powerful and optimal Denavit–Hartenberg parametrization [6] of rotation axes in the 
affine space, leading to a synthetic computation of the composed rotations.

It is important to note that the proposed robotic approach, which we are going to develop by means of the so-
called homogeneous matrices, makes it possible to deal with changes in both position and orientation, imposed by joint 
movements to the arm-tip in physical space. Although Euler angles can also be ordered in accordance with a chosen 
sequence of rotation axes, they are only devoted to specify the orientation of a body in space and not both its posi-
tion and orientation. Finally, due to its analytic form, a robotic model would be able to cover all examples, which is 
actually an essential point in the appreciation of Codman’s paradox simulation models as pointed out by Cheng [4]. 
Our look for this relevant robotic model adapted to Codman’s paradox simulation will be done in two stages: the first 
one is limited to the examples considered by Codman himself for illustrating his paradox, the second one is dedicated 
to cover both this classic form and the renewed form of Codman’s paradox after its rereading by MacConaill. We will 
so lead to propose a general definition of Codman’s paradox and to question a possible ‘law of motion’ in relation 
to it.
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Fig. 2. General definition of Denavit–Hartenberg parameters according to R. Paul’s notation and special case of intersecting joint axes with, as a consequence, 
a corresponding length ai between axes-i and i + 1 equal to zero (see text).

2. Codman’s paradox first complexity level and its kinematic solving

For many students and readers in human joint physiology, Codman’s paradox is often discovered in one of the trans-
lations of the famous Kapandji’s treatise about human upper limb joint physiology [10]. Kapandji introduces Codman’s 
paradox as follows: “Start from the reference position [. . . ], with the upper limb hanging vertically alongside the trunk, 
the palm of the hand facing medially and the thumb facing anteriorly, and abduct the limb to 180◦ in the frontal plane 
and then extend the limb in the sagittal plane for −180◦ . The limb once more lies vertically alongside the body but with 
the palm facing laterally and the thumb facing posteriorly. The movements can also be reversed starting with 180◦ flex-
ion followed by 180◦ adduction. The limb is laterally rotated through 180◦ . It is easy to note that the orientation of the 
palm has changed and that the limb has been axially rotated through 180◦ (p. 14)”. Kapandji uses the term ‘conjunct 
rotation’ introduced after Codman by MacConaill [11] to designate “the mechanical and involuntary movement about the 
longitudinal axis of the upper limb [brought out] by this sequential movements” (idem, p. 14). If we adopt MacConaill’s 
terminology, any analysis of Codman’s paradox, limited for the moment to these two examples, must explain the origin 
of this ‘involuntary’ conjunct rotation and its experimental π-value. Because Codman’s paradox seems to be limited to the 
interpretation of the glenohumeral joint – i.e. no translation of this joint induced by the shoulder complex is considered –, 
a simple kinematic interpretation of the paradox is based on a ball-and-socket joint model of this anatomical articulation. 
And since any ball-and-socket joint is equivalent to a sequence of three single degree of freedom revolute joints with inter-
secting axes, the simple robotic model shown in Fig. 1a can be considered: the arm and its hand define a single structure 
driven by the sequence of three revolute joints. We propose to adopt the following axis sequence: the first rotation axis 
is an abduction–adduction axis and the second rotation axis is a flexion–extension axis. In this way, for a π/2-abduction, 
the flexion–extension arm movements can be described as horizontal flexion–extension, in accordance, for example, with 
Kapandji’s treatise. The third axis is then the rotation axis of the long humerus about itself. It is important to recall that, 
in this type of serial chain sequence, the first axis remains fixed and drives the second one, which drives the third one. 
Such a model is well adapted to study the movements of the long humerus induced by a combined sequence of abduction–
adduction and flexion–extension movements. We are free to choose the direction of each axis of rotation. In the proposed 
model, the positive directions respectively correspond to abduction, flexion, and external rotation. The joint variables will 
be denoted by θ1 for abduction–adduction, θ2 for flexion–extension, and θ3 for external–internal rotation. The end-point of 
the arm will be denoted by P , situated at a distance L from the ball-and-socket joint center along the third rotation axis. 
Because hand position and hand orientation are both involved in Codman’s paradox, we associate with the hand a frame 
whose origin is point P and whose axes are defined according to the classical Paul’s notation [16], in relation with the 
Denavit–Hartenberg parameters, as illustrated in Fig. 2 in the case of intersecting axes, which is the only case to be consid-
ered here. Frame R i is associated with axis i movement as follows: the origin O i is located at the intersection between axis 
i and axis i + 1, the X i -vector is put along the common perpendicular to both axes and the Z i -axis is put along the axis 
i + 1 in its positive direction. Consequently, the variable θ i is the rotation angle from the X i–1-vector to X i -vector about 
Z i -axis. In order to express the homogeneous transformation from frame R i–1 to frame R i four parameters are required 
whose one is the θ i -joint variable and the three others are: the ai -positive “distance” from axis i to axis i + i′ measured 
along the X i -vector, equal to zero in our case; the αi -twist angle from axis i to axis i + i′ measured around the X i -vector; 
the di -distance from origin O i–1 to origin O i measured along the Z i–1-vector, which can be freely chosen in the case of the 
first and last axes. This frame notation imposes a zero value to the joint angle, corresponding to the equality of vectors X i–1

and X i . It is however possible to introduce joint offsets in order to impose zero values to all joints of the robot model in a 
given reference configuration. It is easy to show that the offset is then simply equal to minus the corresponding angle from 
vector X i–1 to vector X i in this reference configuration. In our case, the reference configuration will be the neutral initial 
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Fig. 3. Simulation of the two-step Codman’s paradox with our 3 d.o.f. arm model. (a) Abduction is performed first, changing the initial axis sequence 
(1, 2, 3) into (1, 2′, 3′). (b) Flexion is performed first, changing the initial axis sequence (1, 2, 3) into (1, 2, 3′). (c) Equivalent rotation performed about the 
arm rotation axis 3, showing that the final orientation of the hand (drawn in black while the initial one is drawn in light grey) is the same as the one 
resulting from the two-step rotational sequences shown in (a) and (b) – it is important to note that the labeled axes are the current axes and that the 
current movement is made around the axis marked with a rotation arrow; a similar approach will be used in Figs. 4 and 8.

attitude of the arm to be considered in Codman’s paradox. According to these rules, the frames R0 to R3 are located as 
shown in Fig. 1a, and we give in Fig. 1b the corresponding Denavit–Hartenberg table, gathering the (ai , αi , di , θi ) parameters 
for each joint i, i = 1 to 4. Let us check that such a robotic model is well adapted to the simulation of Codman’s paradox, 
as illustrated in Fig. 3: if an abduction of π is made first, the initial rotation is made around axis-1 transforming axes 2, 3 
into 2′ , 3′ – axis 1 is unchanged – and then an extension of π can be made by rotation of the arm around axis 2′ (Fig. 3a); 
conversely, if a flexion of π is made first around axis 2, adduction can then be made around the unchanged axis 1 (Fig. 3b); 
in both cases, the final hand position is equal to the initial one, with a conjunct rotation angle equal to π. This value of 
the conjunct rotation can be determined from the so-called direct kinematic model of our robot model. Always according 
to Paul’s notations associated with the Denavit–Hartenberg parameters this direct kinematic model can be written as the 
homogeneous matrix denoted by Tarm(θ1, θ2, θ3) expressing the frame R3 components with respect to frame R0, resulting 
from the following equation:

Tarm(θ1, θ2, θ3) = A1(θ1)A2(θ2)A3(θ3) (1)

where

Ai(θi) =

⎡
⎢⎢⎢⎣

cos θi − sin θi cosαi sin θi sinαi ai cos θi

sin θi cos θi cosαi − cos θi sinαi ai sin θi

0 sinαi cosαi di

0 0 0 1

⎤
⎥⎥⎥⎦
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is the so-called Denavit–Hartenberg matrix, as rewritten by Paul [16]; while the first three columns respectively express, 
in homogeneous coordinates, the vectors X i , Y i , Z i , the last one expresses the point O i , with respect to the previous R i–1

frame. From the table given in Fig. 1b, we get:

Tarm(θ1, θ2, θ3) =

⎡
⎢⎢⎢⎣

−C1 S2C3 − S1 S3 C1 S2 S3 − S1C3 C1C2 LC1C2

−S1 S2C3 + C1 S3 S1 S2 S3 + C1C3 S1C2 L S1C2

C2C3 −C2 S3 S2 L S2

0 0 0 1

⎤
⎥⎥⎥⎦ (2)

where Ci and Si are respectively for cos(θi) and sin(θi). One fundamental and, according to us, too less emphasized property 
of any serial chain robotic model results from the so-called Roth proof: in a general study about screws, Roth [20,21]
considers a case of special motions resulting from the fact that two screws axes are assumed to be rigidly linked, i.e. the 
distance and the inclination are fixed between them. In the case of pure rotations about two axes φA and φB, “the order 
of the transformations about φA and φB is immaterial” – in [21], p. 600 – due to the fact that the transformation matrices 
about the second and mobile axis in the first sequence φA then φB and second sequence φB and φA are similar. If indeed, 
transformation matrices of the two rotations are respectively denoted by A and B with respect to a reference frame, the 
homogeneous matrix of the rotation about moved axis φB into φB2 is given by B2 = ABA−1 which is a typical similarity 
transformation – see for example [18] – leading to B2 = (ABA−1)A = A B . The term of Roth’s proof was introduced by some 
biomechanicians in their studies of coordinates systems applied to motor limb physiology [23,2,8] – see also [3], without 
however an explicit reference to Roth’s proof. We elsewhere showed that Roth’s proof can also be applied to any robot 
defined as a serial chain whose bodies are rigidly linked by revolute or prismatic joints in order to show that the order of 
joint controls has no effect on the resulting location of the robot flange [24]. In this way, robot joint motions can be called 
“similarity-transformation motions” in Roth’s meaning, and also it follows that joint space is a vector space. Because the 
joint control order is immaterial, there is no ambiguity in any so-called direct kinematic model of a robot in the form T
(q1, . . . , qn), where T is the homogeneous transformation from robot base frame to robot hand frame and q1, . . . , qn are the 
joint variables. Consequently, the look for the conjunct rotation predicted by Codman’s paradox can be considered here as 
the look for the θ3c value solving the matrix equation:

T arm(θ1, θ2,0) = T arm(0,0, θ3c) ⇒

⎡
⎢⎢⎢⎣

−C1 S2 S1 C1C2 LC1C2

−S1 S2 C1 S1C2 L S1C2

C2 0 S2 L S2

0 0 0 1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0 0 1 L

S3c C3c 0 0

C3c −S3c 0 0

0 0 0 1

⎤
⎥⎥⎥⎦ (3)

We easily deduce that, for non-zero θ1 and θ2 angles, this equality is true if and only if θ1 = θ2 = π and, in this case, 
θ3c = π, which is in full accordance with both considered examples for illustrating Codman’s paradox. As a conclusion, such 
a purely kinematic approach inspired by robotics appears to be one way to “solve” Codman’s paradox, in its first two-step 
version. But we think that a robotic model can bring some supplementary material in the understanding of Codman’s para-
dox: robotics distinguishes the joint space, which is the inner space of joint angles, from the operational or task space, 
which is the outer physical space of positions and orientations reached by the chosen end-point of the robot. This opera-
tional space can also be defined by the final frame, R3, in the case of this first robot model. According to a robotic point of 
view, the final location of the hand after the movement sequence of Codman’s paradox is limited, since the final position 
is the same as the initial one, to a change of orientation in the operational space. This is a phenomenon well known in 
robotics: when we move the robot arm, without moving its wrist, both position and orientation of the hand change. Always 
according to a purely robotic point of view, the notion of conjunct rotation has no meaning and the fact that the two joint 
vectors [π, π, 0]ᵀ and [0, 0, π]ᵀ generate a same final hand frame is a consequence, especially in the case of this location, of 
a double joint solution to reach it. But, as well underlined by Codman himself, what is truly paradoxical in this movement 
sequence is that, in its final attitude, the arm, which was initially in a neutral rotation around its long humerus, is now in 
extreme external rotation. No robotic model can explain this phenomenon because joint 3 was not controlled during the 
two-step Codman’s movement sequence. According to us, this simple fact highlights that Codman’s paradox is not a purely 
kinematic paradox easy to solve by some combination of rotations of a kinematic model of the shoulder joint, but both a 
motor and kinematic paradox. This appears more clearly through the second type of Codman’s paradox movement sequence 
that we consider now.

3. Second complexity level of Codman’s paradox and the question of motor redundancy

3.1. An over-actuated robotic model for simulating Codman’s paradox

MacConaill [11] reconsiders Codman’s paradox by substituting to the two-step closed-loop movement a three-step 
closed-loop movement defined, for example, as follows: from same neutral initial position as considered earlier, a first 
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Fig. 4. Impossibility to realize with a 3 d.o.f. robot model the sequence of three elementary joint movements imposed by MacConaill’s version of Codman’s 
paradox. (a) First abduction movement changing the initial axis sequence (1, 2, 3) into (1, 2′, 3′). (b) Second swing movement changing the axis sequence 
(1, 2′, 3′) into (1, 2′, 3′′). (c) Resulting singular configuration due to the confusion between axis 1 and axis 3′′ making impossible the final extension back 
movement.

Fig. 5. Over-actuated model of the arm driven by a sequence of four revolute joints with intersecting axes. (a) Kapandji’s scheme combining three shoulder 
fixed axes with the mobile axis of the long humerus about itself – in [10], page 3. (b) Proposed serial chain 4-axis robot model with the ordered sequence 
of joints 1 to 4: while joint 1 realizes a vertical swing around a fixed axis, and joint 4 corresponds to the external–internal rotation of the arm similar 
to this of Kapandji’s scheme, joint 2 and joint 3 are now responsible for abduction–adduction or flexion–extension movements according to the spatial 
location of their corresponding axis – see text. (c) Corresponding Denavit–Hartenberg table.

abduction movement of π/2 is performed, then a second swing or horizontal flexion movement of π/2 is considered before 
a final vertical flexion, to bring back the arm at its initial position. Let us see how this sequence of three joint movements 
can be simulated with our robotic model: abduction is performed by a rotation around axis 1, then swing by a rotation 
around axis 2′ but neither axis 2′ or axis 3′′ is then able to realize the final back movement in extension, as illustrated in 
Fig. 4, due to the singularity configuration resulting from the confusion between axis 1 and axis 3′′ . The so-called gimbal-
lock phenomenon is well known in theory of mechanisms: the 3 d.o.f. ball-and-socket joint becomes singular when two 
of its axes come to be the same. But, in daily life experience, it is clear that no such gimbal-lock phenomenon occurs in 
human shoulder joint. The great originality of MacConaill’s version of Codman’s paradox would then be, according to us, to 
highlight the possibility for the shoulder complex to avoid this singularity. One way to model such a kinematic possibility, 
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Fig. 6. Cheng’s law illustrated in the case of a three-step closed-loop motion: +π/2 elevation, −π/2 swing and back motion: the −π/2 angle corresponding 
to the resulting conjunct rotation is indeed equal to the swing angle (the initial hand location is drawn in light grey and the final one in black).

without abandoning the reference to elementary shoulder movements, consists in considering an over-actuated model of the 
shoulder ball-and-socket joint. If the number of degrees of freedom of this model is always equal to 3, its mobility – i.e. the 
number of independent joint control parameters – is now equal to 4, according to the following four axes sequence: the first 
one is a vertical axis realizing swing motions, the second and third ones are perpendicular axes realizing according to the 
context abduction–adduction or flexion–extension movements, and the fourth one is the external–internal rotation axis with 
which the conjunct rotation is associated. It is worthy to note that, while the first and second axes in our previous 3 d.o.f. 
robot model respectively corresponded to shoulder abduction–adduction and shoulder flexion–extension, it is no longer the 
case of this model, due to the presence of the first swing axis, which can lead to interpret joint 2 and joint 3 movements 
either like shoulder abduction–adduction or shoulder flexion–extension. It is also interesting to remark that our model can 
be considered as some robotic interpretation of the amazing scheme proposed by Kapandji [10] and reproduced in Fig. 5a: 
this model combines three fixed axes (‘transverse axis’, ‘antero-posterior axis’, vertical axis’, respectively numbered 1, 2, 3 
in the figure) with the mobile fourth axis of arm rotation about the long axis of the humerus. It is worthy to note that, in 
our robotic model shown in Fig. 5b, only the first axis is fixed. By using the Denavit–Hartenberg table shown in Fig. 5c, we 
derive, as done in the previous section, the following homogeneous transformation from frame R0 to frame R4 associated 
with the hand, denoted by Tarm+:

Tarm+(θ1, θ2, θ3, θ4)

=

⎡
⎢⎢⎢⎣

−(C1 S2 S3 + S1C3)S4 + C1C2 S4 (C1 S2 S3 + S1C3)S4 + C1C2C4 C1 S2C3 − S1 S3 L(C1 S2C3 − S1 S3)

−(S1 S2 S3 − C1C3)C4 + S1C2 S4 (S1 S2 S3 + C1C3)S4 + S1C2C4 S1 S2C3 + C1 S3 L(S1 S2C3 + C1 S3)

C2 S3C4 + S2 S4 −C2 S3 S4 + S2C4 −C2C3 −LC2C3

0 0 0 1

⎤
⎥⎥⎥⎦

(4)

Let us now show the relevance of this model for Codman’s paradox simulation.

3.2. Towards a general definition of Codman’s paradox

As particularly well highlighted by Cheng [4], “[. . . ] there is no study explaining why there are different examples [. . . ] 
when referring to Codman’s paradox, and what is the common law that governs the motion in the different examples” 
(p. 1201). Consequently, Cheng proposed the following original definition of Codman’s paradox (idem, pp. 1202–1203): 
“1. Codman’s paradox involves a closed-loop motion that consists of three sequential rotations of the long axis of the arm in 
reference coordinate system. 2. The first rotation is about an axis that is perpendicular to the initial position of the long-axis 
of the arm. The second rotation is about an axis that coincides with the initial position of the long-axis. The third rotation 
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is to move the long-axis back to its initial position. 3. The questioned axial rotation angle is defined as a rotation about the 
long-axis.” And, in relation to this general definition, he proposes the following law of motion: ‘The equivalent axial rotation 
angle is equal to the angle of swing’ (idem, p. 1203), where “swing” in Cheng’s terms corresponds to the second long-axis 
rotation. Let us see first how we could demonstrate Cheng’s law of motion.1 Let us call Z0 the initial fixed long-axis arm 
and X0 an arbitrary axis perpendicular to Z0, as illustrated in Fig. 6.2 The result of an elevation of angle θe around a fixed 
X0 axis followed by a “swing” of angle θs around a fixed Z0 axis and finally the back motion considered in Cheng’s law 
around some unknown vector V of an unknown angle θb can be expressed by a sequence of three successive rotations, 
performed in the fixed frame R0. Cheng’s law can now be expressed according to the following mathematical formulation – 
we would remind that rotation matrices must be left multiplied because all rotations are defined in the same fixed frame, 
while our previous robotic models imposed a right multiplication of homogeneous matrices due to the definition of each 
rotation in a current frame:

∀θe ∈ R, ∀θs ∈ R, ∃V ∈ R3,∃θb ∈ R such as: Rot(V , θb)Rot(Z 0, θs)Rot(X0, θe) = Rot(Z 0, θs) (5)

where Rot designates the vector rotation matrix-operator whose first argument is a rotation vector and the second argument 
is a rotation angle. We deduce from (5) the following matrix equation:

Rot(V , θb) = Rot(Z , θs)Rot(X0,−θe)Rot(Z ,−θs) =
⎡
⎢⎣

Ce + C2
s (1 − Ce) Cs Ss(1 − Ce) −SsCe

Cs Ss(1 − Ce) 1 − C2
s (1 − Ce) Cs Se

Ss Se −Cs Se Ce

⎤
⎥⎦ (6)

where Ce, Se, Cs, Ss are respectively for cos(θe), sin(θe), cos(θs) and sin(θs). Let us now consider the well-known formula:

Rot(V , θb) = cos(θb)I 3 + (
1 − cos(θb)

)
nnᵀ + sin(θb)[ñ] (7)

where V = [l1 l2 l3]ᵀ and:

nnᵀ =
⎡
⎢⎣

l21 l1l2 l1l3

l1l2 l22 l2l3

l1l3 l2l3 l23

⎤
⎥⎦ and [ñ] =

⎡
⎢⎣

0 −l3 +l2
+l3 0 −l1
−l2 +l1 0

⎤
⎥⎦ (8)

which leads to:

Rot(V , θb) =
⎡
⎢⎣

Cθb + (1 − Cθb)l21 l1l2(1 − Cθb) − l3 Sθb l1l3(1 − Cθb) + l2 Sθb

l1l2(1 − Cθb) + l3 Sθb Cθb + (1 − Cθb)l22 l2l3(l − Cθb) − l1 Sθb

l1l3(1 − Cθb) − l2 Sθb l2l3(1 − Cθb) − l1 Sθb Cθb + (1 − Cθb)l23

⎤
⎥⎦ (9)

Let us assume that V is a unit-vector. We get from Eqs. (6) and (9):

Trace
(
Rot(V , θb)

) = 1 + 2Cθb = 1 + 2Cθe (10)

from which we deduce: θb = ±θe and then from equality of terms (3, 3) in both matrices of Eq. (6) and Eq. (9): l3 = 0; 
finally, we can check that two solutions solve our problem:

V = [Cθs, Sθs,0]ᵀ with θb = −θe or V = [−Cθs,−Sθs,0]ᵀ with θb = +θe (11)

We will consider the first one. Let us illustrate it in the example shown in Fig. 6: the arm long axis is initially set vertically, 
defining the Z 0 direction; a θe = +π/2 elevation is first performed around the fixed X0-axis and then a θs = −π/2 swing is 
performed around the fixed Z 0-axis. From Eq. (11) we get V = [0, −1, 0]ᵀ with θb = −π/2, and we can check that a third 
rotation of −π/2 around fixed Y 0-axis bring back the arm long axis in its initial position, with a −π/2 conjunct rotation.

Our demonstration of Cheng’s law only used general properties of spatial vector rotations, without considering any joint 
specificity. This is due, according to us, to the fact that all rotations are defined in a fixed frame. In particular, the swing 
rotation axis and the long-arm rotation axis are the same, although, as noted by Cheng [4] himself, “[. . . ] swing is generally 
used to describe a rotation around a vertical axis” (p. 1203). Our robotic model precisely proposed to distinguish a fixed 
vertical swing axis from a mobile rotation arm axis, as justified by our daily experience (see Fig. 7). Moreover, because 
Cheng’s definition refers to a three-step sequence, it appears to be badly adapted for two-step Codman’s paradox sequences 

1 In a reply to the letter to the editor written by Stepan and Otahal [22], Cheng [4] proposes a mathematical demonstration of his law; we decided to 
propose an alternative demonstration of Cheng’s law, because it will help us to better justify our own mathematical approach.

2 In his 2006-paper, Cheng considers a reference frame in which is defined the initial arm long axis by its longitude and latitude. Because elevation and 
swing in Cheng’s law are both defined with respect to the initial long-axis positioning, we decided in this study to choose a reference frame R0 directly 
linked to the initial long-axis arm positioning. Our demonstration is consequently independent of this initial long-axis position.
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Fig. 7. Justification of the vertical fixed swing axis: when, for example, the arm is placed in the horizontal plane, it can both horizontally swing and rotate 
its forearm around its long axis.

which involve no swing. This is why, inspired by Cheng’s work, we propose the following revised definition of Codman’s 
paradox:

Assuming the arm initially set in a neutral attitude, i.e. with zero joint angles, Codman’s paradox involves a closed-loop, eventually 
repeated, motion of the arm’s long axis that consists of a sequence of abduction–adduction and flexion–extension relative movements, 
mixed with eventual swings about a fixed vertical axis – relative means here that successive movements are performed with respect to 
the current axis.

The third point of Cheng’s definition questioning the resulting axial rotation angle keeps the same. It is important to 
note that, by comparison with Cheng’s redefinition of Codman paradox, we force the arm to be initially placed in a rest 
position along the body. In his 2006-paper, Cheng reports examples with non-zero initial arm positions. Our robotic model 
is able to deal with such initial situations; however, a closed-loop movement of the arm in full extension, starting from a 
non-neutral attitude, corresponds to what is called, in joint physiology, ‘arm circumduction’. Arm circumduction is generally 
defined as a movement of the shoulder in a circular motion so that, if the elbow and fingers are fully extended, the subject 
draws a circle in the physical space. We consider that the determination of a possible conjunct rotation during any arm 
circumduction is a next step, beyond Codman’s paradox analysis, in the understanding of shoulder movements, which we 
do not want to deal with in the framework of this article. Also, for limiting the complexity of our presentation, we will 
consider the initial arm situation imposed by Codman and MacConnail analyses.

Let us apply our relative 4R kinematic structure to this revised definition of Codman’s paradox. Due to the independence 
of joint movements inside the considered (θ1, θ2, θ3, θ4)-sequence, it is worthy to note that the resulting axial rotation 
is independent of the order in which are performed swing, abduction–adduction, or flexion–extension movements. The 
resulting axial rotation angle – or conjunct rotation angle – we note θ4c then results from the following matrix equation to 
be solved:

Tarm+(θ1S , θ2S , θ3S ,0) = Tarm+(0,0,0, θ4c)

⇒

⎡
⎢⎢⎢⎣

−C1S S2S S3S − S1S C3S C1S C2S C1S S2S C3S − S1S S3S L(C1S S2S C3S − S1S S3S)

−S1S S2S S3S + C1S C3S S1S C2S S1S S2S C3S + C1S S3S L(S1S S2S C3S + C1S S3S)

C2S S3S S2S −C2S C3S −LC2S C3S

0 0 0 1

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

S4c C4c 0 0

C4c −S4c 0 0

0 0 −1 −L

0 0 0 1

⎤
⎥⎥⎥⎦ (12)

where θ1S , θ2S and θ3S are, respectively, the sum of angles θ1, θ2 and θ3 performed during the closed-loop sequential 
movement, and C , S are respectively for the cosine and sinus of the considered angles. Let us still emphasize that due to 
Roth’s proof and its application to serial chain robots, the order in joint movement sequence has no effect on the final hand 
location, making it possible to gather the different values of a given joint variable into their sum. It clearly appears, first, 
from the comparison between the last columns of the two matrices of Eq. (12), that the closed-loop movement condition 
of Codman’s paradox is realized if and only if C 2S C 3S = 1, which corresponds to only two choices for the variables θ2S and 
θ3S : (θ2S , θ3S ) = (0, 0) and (θ2S , θ3S ) = (π, π). In the first case, it also appears, by a simple comparison of other matrix 
terms that θ4c = −θ1S , and, in the second case, that θ4c = π − θ1S . Let us check this result on MacConaill’s examples. 
In the first one, the lateral abduction is performed by θ2 = +π/2, followed by a swing corresponding to a joint-1 control 
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Fig. 8. Simulation of our over-actuated robot model applied to the three-step MacConaill’s version of the Codman’s paradox: (a) the final hand orientation 
resulting from a first θ2 angle equal to +π/2 (abduction), followed by a θ1 angle equal to +π/2 (swing), and finally a θ2 angle equal to −π/2 (extension) 
is equivalent to the one resulting from a θ4 angle equal to −π/2 (internal rotation). (b) The final hand orientation resulting from a first θ3 angle equal to 
+π/2 (flexion), followed by a θ1 angle equal to −π/2 (swing) and finally a θ3 angle equal to −π/2 (adduction) is equivalent to the one resulting from a θ4

angle equal to +π/2 (external rotation).

θ1 = +π/2 while the final movement is made by a θ2 = −π/2, as illustrated in Fig. 8a. Consequently, we are in the case 
θ2S = +π/2 − π/2 = 0, θ3S = 0, and we effectively check that the conjunct rotation angle measured around axis 4 is equal 
to: θ4c = −θ1S = −π/2. In the alternative example, as described for example in Cheng [5], the first movement would be 
a right angle flexion (θ3 = +π/2) followed by and horizontal swing of θ1 = −π/2, and a final adduction movement (θ3 =
−π/2); we are still in the case (θ2S , θ3S ) = (0, 0), and we can check that the resulting conjunct rotation angle is well given 
by formula: θ4c = −θ1S , i.e. +π/2, as illustrated in Fig. 8b. Let us also remark that the two examples cited in Section 2 are 
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Fig. 9. Repetition of the three-step cycle considered in Fig. 8b and the resulting additive conjunct rotation – from MacConaill [13]. p. 76: from the initial 
attitude of image ①, the arm performs a first complete cycle, leading the arm back to its initial position with a resulting external arm rotation of +π/2
shown in image ④, before repeating the two first steps of the cycle (images ⑤ and ⑥), at the end of which it would try to perform an external arm rotation 
of π.

also included in this new robot model, since they correspond to the case (θ2S , θ3S ) = (θ2, θ3) = (π, π), with θ1 = 0 and so 
θ4c = π − θ1 = π, in accordance with the historical form of Codman’s paradox. Furthermore, our model can also consider 
what MacConaill calls successive cycles in the performance of Codman’s paradox movements, as illustrated in Fig. 9: images 
① to ④ correspond to the realization of the cycle considered in Fig. 8b, while images ⑤ and ⑥ correspond to the repetition 
of this cycle, which would lead to an external arm-rotation of π, not shown in Fig. 9. According to our model, at the end of 
repetition of the two considered cycles, we always get: (θ2S , θ3S ) = (0, 0) but now θ1S = −π/2 − π/2 and so θ4c = +π, 
i.e. the arm is in full external rotation without permitting no supplementary rotation around the long humerus. It is worthy 
to remark that our model can simulate examples with joint angles different from −π/2, 0, +π/2, π but such examples are 
not fully, according to us, within the spirit of Codman’s paradox, which is, essentially, a paradox to be tested and read on 
his/her own body.

To conclude, in accordance with our robotic model, Codman’s paradox only occurs in two cases: both the sum of 
θ2-angles and the sum of θ3-angles are either equal to 0, or equal to π. In the first case, the resulting conjunct rotation 
is equal to minus the sum of swing angles, in the second case to π minus the same sum. This result is slightly differ-
ent from the general law of motion proposed by Cheng although, as in Cheng’s law, it appears that the conjunct rotation, 
which does not result from a two-step closed-loop motion, only depends on the sum of swing angles. If the two-step version of 
Codman’s paradox is considered, the θ2-angle corresponds to an abduction or adduction movement of value equal to π and 
the θ3-angle corresponds to a flexion or extension movement of value equal to π, while no swing – corresponding to a 
zero θ1-angle – is performed; if the three-step version of Codman’s paradox is considered, the θ2 and θ3 angles correspond 
either to abduction–adduction movements or flexion–extension movements according to the situation in the physical space 
of their corresponding axis.

At his time, MacConaill [12] also attempts to derive, from Codman’s paradox, a general law that he expressed as follows: 
‘It can be shown, both theoretically and experimentally, that the amount of conjunct rotation is directly proportional to 
the amount of backward swing’ (p. 362) – ‘backward swing’ is here understood by MacConaill as a swing around a vertical 
axis, as we did it. No mathematical proof of this law is, however, given in the mentioned article as, at our knowledge, in 
other MacConaill’s articles. MacConaill even goes further by claiming, always in the same mentioned paper, what he calls 
the ‘Law of the Conservation of Axial Rotation’, which he presents in the following way: ‘the effect of any axial rotation 
is conserved unless means be taken either to prevent this or to undo it’ (idem, p. 362). According to him, this law – for 
which he clearly says that he has not been able to prove it – ‘plays the same part in mechanics of the joints as the law of 
the conservation of energy does in mechanics generally’ (idem, pp. 362–363). How our analysis of Codman’s paradox can 
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help us to understand this law? On the one hand, the idea of a conservation of joint motions can be related to the fact 
that, according to Roth’s proof, joint motions are independent on the order in which they are performed. Consequently, we 
can say that the external–internal rotation movements inside a complex limb motion add theirs effects, i.e. the performed 
angles. But the same thing could be said with abduction–adduction or flexion–extension movements. On the other hand, if 
we accept – although obviously excessive – the relevance of a comparison between a so-called internal rotation conservation 
principle and the energy conservation principle, vertical swing, as previously defined, would play the role of a “potential” 
internal rotation whose conjunct rotation would be the effect to be summed up with any voluntary internal rotation. 
This last property would justify a posteriori our choice for an over-actuated robotic model combining a vertical swing axis 
responsible for involuntary arm rotation with the own arm rotation axis responsible for external–internal rotation. Beyond 
Cheng’s law expressed in a fixed frame and our robotic model of Codman’s paradox, this is indeed this surprising ability of 
the upper limb to sum up voluntary and involuntary arm rotations that reveals Codman’s paradox.

4. Conclusion

In his book, Codman [1] introduces his famous “pivotal” paradox as follows (p. 43): “And now we come to a curious 
paradox which I have only recently observed, although I have studied the motions of the shoulder for years. You can prove 
that the completely elevated arm is in either extreme external rotation or in extreme internal rotation.” What will be called later 
“conjunct rotation” appears to be initially defined by its bounds. In the robotic perspective of our paper, this historical defi-
nition of Codman’s paradox could be interpreted as some kind of confusion between the arm joint space (whose elements 
are here the joint vectors composed of the two angles performed from the rest position in abduction and flexion) and the 
operational space (whose elements are the hand position and orientation): when the arm is elevated due to a given joint 
vector, the position and also orientation of its hand change in a given reference frame, and if a closed-loop motion is per-
formed, the position of the hand is finally the same, but not its orientation, giving the illusion of some involuntary, to use 
Kapandji’s term, long-humerus rotation. At this stage, Codman’s paradox could also be read as the shoulder musculature 
adaptation to large changes in the orientation of the hand, resulting from the combination of a full abduction and of a full 
flexion.

At a further level, introduced by MacConaill with its three-step closed-loop motion, Codman’s paradox would introduce, 
according to us, another fundamental aspect of shoulder adaptation: its motor redundancy, which is notably evidenced 
by the absence of a gimbal-lock-like kinematic singularity. We proposed to represent this motor redundancy by a 4-axis 
robotic model whose sequence is made of a swing around a first fixed axis in series with three mobile axes for abduction–
adduction, flexion–extension, and internal–external rotation. The conjunct-rotation angle deduced from this model is in good 
accordance with what is predicted by the different versions of Codman’s paradox. Moreover, this original approach led us to 
propose a general definition of Codman’s paradox in relation with Cheng’s recent proposed definition. However, an impor-
tant question remains, which we think may be deeply associated with Codman’s paradox and its multiple commentaries: 
what is the best way for expressing the shoulder complex mobility and its apparent absence of kinematic singularities?
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