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A parametric study is presented, which employs a new anisotropic constitutive law in order 
to study the influence of anisotropic plasticity on the deformation field of the Asymmetric 
Rolling (ASR) process. A version of the facet method is presented, where an analytical 
yield function is restricted to the subspace of the stress and strain rate space relevant for 
2D Finite Element Analysis (FEA), but can still accurately reproduce the plastic anisotropy of 
an underlying Crystal Plasticity (CP) model. The influence of anisotropy on the deformation 
field and corresponding texture evolution is examined in terms of the changes in texture 
component volume fractions and formation of texture gradients. It is found that a material 
with the anisotropy of a sharp cold-rolled aluminium alloy is more beneficial than that of 
a recrystallised hot-rolled aluminium alloy, and this influence of anisotropy suggests that 
Asymmetric Rolling (ASR) may be best carried out in the latest stages of cold rolling.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

1.1. Aluminium alloys for automotive bodywork

Aluminium alloys are recently gaining importance as a versatile material in the drive to reduce emissions and increase 
fuel efficiency of passenger vehicles. For example, the “Super Light Car” project, sponsored by the European Council For 
Automotive Research (EUCAR) resulted in a design concept with more than 50% (by weight) of aluminium alloys in an 
application engineered material approach to vehicle weight reduction [1]; aluminium alloy bodywork has also already been 
used successfully in some mass-produced vehicles such as the Ford F150. However, one of the difficulties in replacing steel 
with aluminium alloys in automotive bodywork is their lower formability, which arises in part from their characteristic 
plastic anisotropy, which in turn is closely related to their crystallographic texture [2].

In general the 5XXX series alloys are employed in inner panels due to their better formability, while the 6XXX series 
alloys are almost exclusively used for outer panels where formability is to some degree traded for the ability to increase the 
yield strength after forming by precipitation hardening. Precipitation hardening is crucial to providing the necessary dent 
resistance [3]. The main alloying elements in the 6000 series alloys, namely Mg and Si, have strong solid-solution, dispersion 
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Abbreviations

ODF Orientation Distribution Function
API Application Programming Interface
ASR Asymmetric Rolling
CP Crystal Plasticity
CPFEM Crystal Plasticity Finite Element Method
EUCAR European Council for Automotive Research
FE Finite Element
FEA Finite Element Analysis
LDH Limiting Dome Height
LDR Limiting Drawing Ratio
ND Normal Direction

NNLS Non Negative Least Squares
OIM Orientation Imaging Microscopy
PSN Particle Stimulated Nucleation
RD Rolling Direction
SR Symmetric Rolling
TBH Taylor–Bishop–Hill
TD Transverse Direction
UTS Ultimate Tensile Strength
XRD X-Ray Diffraction
CPFFT Crystal Plasticity Fast Fourier Transform

and precipitation (age) hardening effects. In addition, these elements inhibit recovery, which increases the strain hardening 
rate [4].

In general, 6016 is currently valued for formability and corrosion resistance, while 6111 is more favoured in the US for its 
higher Ultimate Tensile Strength (UTS) after ageing, as typically thinner sheet gauges (0.9–1.0 mm) are employed there [3]. 
While the nominal compositions of these alloys do allow producers some flexibility to adjust the mechanical properties and 
heat treatability, ultimately quite specific compositions are required to obtain an optimal combination of low-yield strength 
before forming and high-yield strength after the paint bake cycle [5]. This motivates research into mechanical processing 
techniques that can improve material properties, such as formability, without altering composition.

1.2. Formability, anisotropy, and texture

The formability of a sheet metal can be quantified by parameters such as Limiting Dome Height (LDH), Limiting Drawing 
Ratio (LDR), the direction-averaged normal anisotropy r and the power-law strain-hardening exponent n. Stress ratio param-
eters can be similarly employed, e.g., the ratio P of stress in plane strain tension to the equibiaxial stress [6] or the ratio of 
stress in plane strain tension to the pure shear stress [7]. Anisotropy parameters such as r are of particular interest in the 
current context, as they can be obtained from multiscale models.

Whiteley [8] attributed the discovery of a correlation between LDR and r to Lankford et al. [9],1 presented the first 
theoretical analysis in the form of Eq. (1), and suggested that LDR was only weakly correlated with n. The validity of this view 
has since been upheld by experiment and analyses [10]. The correlation may be explained by considering that increasing 
the value of r should generally increase the proportion of strain occurring in the sheet plane rather than in the thickness, 
so that the thickness is reduced less rapidly during deformation, and failure is inhibited:

LDR = exp

(
f

√
1 + r

2

)
(1)

The factor f in Eq. (1) is a tuning parameter used to account for the effects of friction, punch geometry, and sheet thickness.2

A more advanced analysis [11] provides Eq. (2), which extends Eq. (1) to include the influence of n on LDR. Eq. (2) predicts 
that in the range 0.15 ≤ n ≤ 0.3, which accounts for most commercially produced aluminium alloys, LDR is only weakly 
a function of n, while for fixed values of n the relationship between r and LDR is almost linearly increasing. Thus it is 
reasonable to expect that increasing r increases formability in deep drawing:

LDR =
[
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+ exp
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2

)
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]1

2
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The anisotropy parameters such as r can be determined by mechanical testing, but due to the fact that r is a function of the 
yield surface, it may also be derived numerically from experimental texture measurements by means of a statistical Crystal 
Plasticity (CP) model [12]. Thus modification of the texture, which in turn results in modification of the yield surface, may 
be expected to modify r and ultimately the formability in deep drawing.

Rolled sheet steels typically feature textures with an α fibre (〈110〉 ‖ Rolling Direction (RD)) and γ fibre (〈111〉 ‖ Normal 
Direction (ND)); rolled aluminium alloys have quite different textures, typically consisting of the β fibre, (i.e. orientations 

1 I.e. cited by Whiteley [8] as [9].
2 f = 1.0 for perfect frictionless cup drawing.
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linking the copper {112}〈111〉, S3 {123}〈634〉 and brass {110}〈112〉 components) and cube {100}〈001〉 components. In both 
cases, the major difference in anisotropy r for these two classes of sheet metal is predicted by CP models such as the 
Taylor–Bishop–Hill (TBH) model [13], or more advanced models such as the alamel model [14,15], primarily on the basis of 
the texture.

1.3. Modification of texture by asymmetric rolling

Shear deformation is present in conventional continuous Symmetric Rolling (SR) processes, but this shear is usually of 
negligible magnitude, of opposite sense at the top and bottom surfaces of the sheet, and is often confined to the surface 
layers. ASR modifies the conventional rolling process so that conditions at the upper and lower sheet surface are intention-
ally unequal, in order to impose a zone of unidirectional shear deformation throughout the sheet thickness. ASR has been 
experimentally implemented with (a) differing roll diameters [16–20], (b) differing angular velocities of the rolls [21–27], 
(c) use of an idle roll [28,29] and (d) roll centre offset [30] (sometimes referred to as “snake” or “serpentine” rolling). Most 
recent experiments that focus on the utility of ASR for microstructure modification in aluminium alloys use method (a), 
though method (b) has also been frequently used.

Experiments and CP simulations of ASR focusing on texture modification [15,18,25,28,31–34] show that the shear de-
formation present in ASR rotates the typical β fibre and cube texture components of sheet aluminium alloys towards the 
{001}〈110〉 (H), {111}〈110〉 (E) and {111}〈112〉 (F) components, that components in this texture persist during recrystallisa-
tion during annealing, and that this type of texture modification generally leads to improved r values.

The mechanics of deformation of ASR has been analysed by the slab method [35–42], though the majority of these 
studies focus on the prediction of rolling forces and control of sheet curvature. However, it is consistently concluded from 
such analysis that the shear deformation in ASR tends to increase with increasing difference of roll surface velocities, friction 
stresses, and rolling reduction.3

There are potential practical difficulties with using ASR for beneficial texture modifications in an industrial setting. For 
example, it is well known that ASR can cause significant sheet curvature, the direction and magnitude of which are a complex 
function of the friction, reduction, and contact length [43–48]. At the same time, it is claimed that such curvature can be 
regulated via application of additional bending moments and control of entry/exit angles and coiler tensions [37,49]. An 
issue that has received much less attention to date is the formation of texture gradients [50,51], which may be problematic, 
as such gradients can promote strain localisation [52,53] or can lead to production problems such as edge cracking [54].

In summary, it is evident that the deformation field in ASR is a complex function of the process parameters. Further-
more, the occurrence of phenomena such as texture gradients requires an approach that accounts for an inhomogeneous 
deformation field and considers the mechanics of the evolution of the microstructure.

1.4. Explicit 2D finite element analysis of metal forming

Finite Element Analysis (FEA) of engineering scale press-forming operations for sheet metal parts involve meshes with 
hundreds or thousands of elements. Such simulations typically involve very large areas of contact relative to the volume 
of material being deformed. A static implicit solution procedure may not be efficient in this scenario, as each iteration 
in the solution to a given displacement increment may change the contact conditions significantly and impede or even 
prevent convergence. A quasi-static analysis using a dynamic explicit procedure may alleviate this problem because there 
is no updating of the contact conditions during stress integration, and so no change in the contact conditions during an 
increment [55].

However, with the explicit technique the requirement for numerical stability limits the size of the time increment as a 
function of the element size and material density. For modelling of sheet metal forming, the time increments are usually in 
the range 10 ns to 2 μs, which necessitates tens of thousands to hundreds of thousands of increments, even when mass or 
time scaling is employed. It is crucial then that the material constitutive model is as computationally efficient as possible, 
because it must be evaluated in every increment in every integration point.

Many metal-forming processes may be satisfactorily modelled with two-dimensional finite element formulations, either 
assuming plane stress (e.g., forming of thin sheet) or plane strain (e.g., rolling of sheet metal). Reducing a Finite Element 
(FE) analysis from three to two dimensions in this way brings immediate computational benefits by greatly reducing the 
number of integration points to be considered for a given resolution of the deformation field.

When an anisotropic constitutive model is employed in the analysis, constraining the element formulation to plane stress 
or plane strain may allow for further simplifications, if certain assumptions about the symmetry of the material properties 
can be made. For example, in the case of rolling of sheet metal, the material is subjected to deformation that has two-fold 
rotational symmetry about the Transverse Direction (TD), so that the material will feature at least monoclinic symmetry of 
the macroscopic mechanical properties about that axis. Therefore, the shear strain components εRD–TD and εND–TD should be 
negligible, and the deviatoric stresses σ ′

RD–TD and σ ′
ND–TD can be neglected, along with σ ′

TD. In this case, the yield criterion φ
is a function of only three deviatoric stress components φ(σ ′

RD, σ ′
ND, σ ′

RD–ND).

3 Slab analysis typically assumes homogeneous strains, perfect plasticity and rolling of thin sheet.
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1.5. Anisotropic yield criteria and multiscale methods

Many commercial and research FEA packages used to simulate metal forming follow a displacement-driven approach, for 
which the onset of plastic yielding is conveniently described by a convex analytical function of the stress. The choice of 
such yield functions has been shown to affect prediction accuracy for many phenomena such as forming limits [56,57], 
springback [58] and earing profiles [59].

The first continuum mechanics theories of Tresca and von Mises were developed to explain experimentally observed 
macroscopic-level plasticity. They were found to be inaccurate for some sheet metals [60], inspiring the development of the 
first general anisotropic model for orthotropic material [61], whose experimental limitations [62] led to further refinements 
[63]. In recent years, a very large number of yield criteria have been developed for specific applications and materials, as 
surveyed, for example, by Banabic et al. [64], Barlat et al. [65], Chinesta and Cueto [66], Yoshida et al. [67], Bruschi et al. [68]. 
Many of these recent models are underpinned by the theory of representation of tensor functions [69,70], which provides 
a general framework for formulating convex anisotropic yield functions respecting the symmetry of material properties. In 
particular the method of linear transformation of the stress tensor, which is a special application of this theory (applied 
for example by Barlat et al. [71], Karafillis and Boyce [72]), has been shown to allow for an increase of the number of 
calibration parameters, and thus of the model’s accuracy for some particular cases, without increasing the mechanical test 
data required [73].

A second direction in the development of yield functions is one seeking to account more directly for the link between 
the microstructure and the shape of the yield surface. Calculations of the theoretical upper bound of the yield surface for 
fcc materials [13] inspired researchers to propose new functions and develop methodologies to calibrate them using multi-
scale models. These models account for the mechanisms of plastic slip, twinning, lattice rotation, and strain hardening [12,
74–82]. Within this approach, the concept of “hierarchical multiscale modelling” has evolved, where multiscale CP, Crystal 
Plasticity Finite Element Method (CPFEM) or Crystal Plasticity Fast Fourier Transform (CPFFT) models are used to calibrate a 
plastic potential function [83–85] or a traditional yield function[86,87] via “virtual mechanical tests”. “Virtual mechanical 
testing” consists in employing multiscale models to simulate different mechanical tests to calibrate a yield function. Such 
tests include the simulation of deformations that are very difficult to carry out in experiments, but are valuable for the 
characterisation of material behaviour.

CP models operate with statistical information on the microstructure, typically the crystallographic texture and some 
aspect of the grain morphology, data that may be gathered through X-Ray Diffraction (XRD) and Orientation Imaging Mi-
croscopy (OIM) measurements. Examples of such models, in order of increasing computational cost, are the classic TBH model 
[13], the grain interaction [14,88–90], and self-consistent [91,92] models. Greater accuracy and the possibility to account for 
more physical phenomena is available at higher cost, in terms of computation and material characterisation, using the CPFEM 
[93] and CPFFT [94,95] approaches.

From the point of view of formulating and calibrating yield functions for practical applications, each of the two ap-
proaches outlined above have their own advantages: the first one aims to use a minimum of familiar mechanical tests 
for calibration, and benefits from extensive analysis and validation in the literature; the second one closely approximates 
the mechanical responses predicted by the chosen underlying models of the microstructure, which may account for many 
physical phenomena at meso- and microscopic scales, without the associated computational cost. The second approach is 
followed in this work: specifically it is a special case of the “facet method” [83], which is based on a theory of plastic 
potentials [96], wherein a plastic potential function (a convex analytical expression) is (a) calibrated by using a multiscale 
model to find stresses for a set of strain rates, and (b) describes the full yield surface and its derivatives. It is assumed 
in this work that a strain-rate-driven CP model assumes the role of the “multiscale model”. However, it should be pointed 
out that other types of material model may be substituted without modification as long as they provide a unique stress 
response for an imposed velocity gradient and satisfy the normality rule of plasticity theory.

2. Anisotropic 2D finite element model of asymmetric rolling

2.1. Crystal plasticity calibrated material law for 2D FEA

A conventional displacement-driven FEA software code requires a material constitutive model that can calculate the stress 
for a given increment of strain. To simulate a sheet metal forming problem, such a code must account, amongst other factors, 
for the typical anisotropy of the metal. In most engineering sheet metals, the plastic anisotropy can be deduced from the 
crystallographic texture using CP models. However, CP models are relatively computationally expensive in the context of FEA, 
in fact, so much so that the classic phenomenological models are still widely used in most commercial applications.

The facet method was introduced by Van Houtte et al. [83] to allow CP models to be incorporated into FEA based 
multiscale models for engineering applications in a computationally efficient way. It specifies potential functions of either 
the stress σ or strain rate D , which are usually denoted by φ(σ ) and �(D) respectively. When an associated flow is 
assumed, such potential functions can be used to form yield functions. The functions �(D) and φ(σ ) have certain properties 
in order to be suitable for use in FEA: (a) they are convex, (b) they are smooth and have analytic derivatives, (c) they can 
accurately reproduce the underlying CP model behaviour in the full deviatoric stress or strain rate space, including, e.g., 
Bauschinger effects. In the facet method, the potential functions �(D) and φ(σ ) are specified as homogeneous polynomials 
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of even order that always meet the above criteria; they are calibrated by finding the polynomial coefficients that reproduce 
the stress response of a polycrystal. In the current context, the stress responses are calculated by a CP model for a number 
of different strain rate modes, which is also known as virtual mechanical testing.

In this work, the virtual tests are defined by the choice of strain rates D used as input to the CP model, which provides 
the stress response σ as output. As there are no implicit symmetry constraints in the formulation of the potential function 
φ(σ ) of the facet method, a simple approach is to choose a set of strain rate modes that covers the strain rate space with 
approximately even density, but as a set features only triclinic symmetry. This avoids redundant virtual tests for a material 
with higher sample symmetry, such as the monoclinic symmetry resulting from the ASR process.

2.2. Facet yield function for 2D FEA

In this article, the facet method is modified for application in a specific circumstance – namely the simplification of the 
expression for a stress space potential φ to be used as a conventional yield function φs(σ ) in a 2D FEA code. It may be noted 
that the potential function φ is expressed in deviatoric stress space, and is calibrated with the results of virtual tests that 
correspond to approximately evenly spaced points on the yield surface in the deviatoric stress space. Thus calibrated, it can 
be used both for plane stress or plane strain, as the two cases differ only in how the FE stress integration algorithm exploits 
the yield function. The superscript “s” in φs refers to the fact that φs describes the yield surface shape – this point will be 
returned to in section 2.6. Noting the use of the superscript k as an index of summation to avoid confusion with tensor 
component indices, the function φs(σ ) has the following form:

φs(sq) =
(

s∗
m∑

k=1

λk(sqdk
q )

n

) 1
n

(3)

m ≥ 3, n = 2l, l ≥ 1, l,m,n ∈N (4)

λk > 0, ∀ k (5)

This expression is the nth root of a homogeneous polynomial of degree n – i.e. each of the terms is raised to the same 
power n (n is hereafter referred to as the order of the function φs). The term s∗ is a scalar which normalises φs for some 
reference stress mode, as will be explained below. k is an index of summation. m is the total number of terms in the 
expression, which is related to the number of virtual tests used in the calibration; the λk are the adjustable weighting 
terms. The deviatoric stress term sq is the running variable; the parameters (d1

q . . .dk
q ) have the meaning of deviatoric strain 

rates, and correspond to the strain rates chosen for the virtual mechanical tests. Both the input sq and the parameters 
dk

q are contracted forms of the deviatoric stress tensor σ ′ and deviatoric strain rate tensors (D ′1 . . . D ′k), where the index 
q ∈ {1, 2, 3} also serves to emphasise the difference with the more usual Aij notation for tensorial quantities.

The conditions of Eq. (4) are necessary for φs to be a closed surface,4 and Eq. (5) ensures that this surface is convex, as 
proven by Van Houtte et al. [83]. The definition of the contraction for sq (Eq. (6)) and dq (Eq. (7)) is a special case of the 
contraction method proposed by Van Houtte et al. [83].

s = 1√
2

⎛⎜⎝ σ ′
11−σ ′

22√
3
(
σ ′

11+σ ′
22

)
2σ ′

12

⎞⎟⎠ (6)

d = 1√
2

⎛⎜⎝ D̂ ′
11−D̂ ′

22√
3
(

D̂ ′
11+D̂ ′

22

)
2D̂ ′

12

⎞⎟⎠ D̂ ′
q = D ′∣∣∣∣D ′∣∣∣∣

2

(7)

The weight terms λk in Eq. (3) are calibrated for m stress and plastic strain rate pairs (sk
q , dk

q ) that are obtained as the result 
of virtual mechanical tests. These virtual tests are carried out for a chosen number η of strain rate modes.

As mentioned above, φs is defined by Eq. (8) for some reference mode5 of stress ŝ∗ . The conventional choice for a 
reference stress mode ŝ∗ for sheet metal is one that corresponds to the uniaxial tensile test in the RD. In any case, once a 
choice is made for ŝ∗ , the value of s∗ in Eq. (3) is determined per Eq. (8).

definition: φs(ŝ∗
) = 1 ⇒ s∗ =

(
m∑

k=1

λk(ŝ∗
qdk

q )
n

)−1

(8)

4 More precisely, m ≥ N for an N-dimensional space; it is also necessary that at least N of the dq have unique directions.
5 A stress mode is a stress vector of the type in Eq. (6) that has unit length.
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The first derivatives of φs, which will be required by the FEA code, can be derived using the chain rule, and are given in 
Eqs. (9) and (10).

∂φs

∂σi j

=
3∑

l=1

∂φs

∂sl

∂sl

∂σi j

(9)

∂s1

∂σi j

= 1√
2

⎛⎝1 0 0
0 −1 0
0 0 0

⎞⎠ ∂s2

∂σi j

= 1√
6

⎛⎝1 0 0
0 1 0
0 0 −2

⎞⎠
∂s3

∂σi j

= 1√
2

⎛⎝0 1 0
1 0 0
0 0 0

⎞⎠ ∂φs

∂sl

= s∗ ∑
λkdk

l (sqdk
q )

n−1(
s∗ ∑

λk(sqdk
q )

n
) n−1

n

(10)

The anisotropy can be derived from the function φs in terms of the Lankford parameter rθ or the contraction ratio qθ . 
Eq. (11) defines the rθ as a function of the angle θ of a tensile test sample with respect to RD; the contraction ratio qθ is 
defined in Eq. (12). Eqs. (11), (13), and (14) can be used to calculate rθ or qθ from φs.

rθ = dεwidth

dεthickness

(11)

qθ = rθ

1 + rθ

(12)

dεi j =dλ
∂φ
∂σi j

(13)

dεlength = − 2 sin θ cos θdε12 + cos2 θdε11 + sin2 θdε22

dεwidth = − 2 sin θ cos θdε12 + cos2 θdε22 + sin2 θdε11

dεthickness = − (dεlength + dεwidth)

(14)

2.3. Calibration with virtual mechanical tests

First, the calibration problem is formulated as a standard matrix equation of the form Ax = b, which can be solved for 
x. Recalling that m is the number of terms in Eq. (3), and η is the number of chosen virtual tests, then in standard matrix 
form (i) the unknown x is an m × 1 column matrix of the λk weighting values, (ii) b is an m × 1 column matrix of ones, and 
(iii) A is an η × m matrix. Each row i and each column j in A is the evaluation of the jth term of φs for the ith calibrating 
stress si :⎛⎜⎝ (s1 · d1)n · · · (s1 · dm)n

...
...

(sη · d1)n · · · (sη · dm)n

⎞⎟⎠
⎛⎜⎝ λ1

...

λm

⎞⎟⎠ =
⎛⎜⎝1

...

1

⎞⎟⎠ (15)

Recalling the constraints of Eqs. (4) and (5), in particular that λk ≥ 0, the Non Negative Least Squares (NNLS) method [97]
can be used to solve for the column matrix of λk values in Eq. (15).

Employing Eq. (15) in its simplest form assumes an equal number η of calibrating stresses s and m of parameters (d, λk). 
Ideally, there would be no redundancy in the calibration data. Here “redundancy” can be understood in the sense that 
Eq. (15) is usually over-determined. In other words, more virtual tests than strictly necessary may have been carried out. 
There is no obvious way to determine a priori which set of parameters – i.e. strain rate directions d, and their corresponding 
calibrating stresses s – are optimal. This is because the optimal choice of virtual tests depends on the morphology of the 
yield surface to be approximated, which is not known in advance.

Previous authors [87,84,83] have assumed an “equidistant grid”, i.e. a set of stress mode or strain rate mode directions 
that, when considered as unit vectors, evenly cover the orientation space with some specified resolution. A large subset of 
the points in such grids have cubic symmetry, which would lead to many redundant virtual tests in materials with higher 
than triclinic sample symmetry. Thus, in the present case, the “spiral” algorithm presented by Saff and Kuijlaars [98] is 
adopted and used to generate η evenly spaced strain rates d with triclinic symmetry. Using the strain rates di as input, the
alamel CP model is used to carry out the virtual mechanical tests, which provides the stresses si . The di and si are then 
substituted into Eq. (15), and the coefficients λ are found.

2.4. Texture measurements

The textures of two materials were measured to calibrate facet yield functions for simulations of the deformation field 
and texture evolution during ASR. {111}, {200}, {220}, and {311} pole figures were measured on the mid-thickness RD-TD 
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Table 1
Common texture components and Miller indices for rolled materials with orthorhombic sample symmetry.

Name Miller idx. Euler angles† Name Miller idx. Euler angles†

Copper {112}〈111〉 (90◦,35◦,45◦) H {001}〈110〉 (0◦,0◦,45◦)
Brass {011}〈211〉 (35◦,45◦,0◦) P‡ {011}〈233〉 (19◦,90◦,45◦)
S3 {123}〈634〉 (59◦,36◦,63◦) F {111}〈211〉 (90◦,54◦,45◦)
Cube {001}〈100〉 (0◦,0◦,0◦) E {111}〈110〉 (60◦,54◦,45◦)
Goss {011}〈100〉 (0◦,45◦,0◦)
† Approximate Euler angles following the Bunge convention (ϕ1, , ϕ2).
‡ Different definitions exist for the P component, e.g., {011}〈122〉, see [99,100]).

Fig. 1. Orientation Distribution Function (ODF) for AA1050-CR (cold rolled aluminium sheet) 1 mm sheet in as received condition: (left to right) ϕ2 = 0◦, 45◦ , 
and 65◦ ODF sections and {111} pole figure. The material has strong copper, brass, and S3 components.

Fig. 2. ODF of AA6016-HR (hot rolled aluminium alloy sheet) 1.22-mm sheet in as received condition: (left to right) ϕ2 = 0◦, 45◦ , and 65◦ ODF sections and 
{111} pole figure. The material has a cube texture, with weak Goss and P components.

Fig. 3. Legend of texture components on the ODF assuming orthorhombic sample symmetry. The blue dashed line indicates the position of the γ fibre in 
the ϕ2 = 45◦ section.

plane with reflective XRD using a Siemens D500 goniometer. The device operates with a copper X-ray tube and a scintillation 
detector with Soller slits and a lithium fluoride monochromator.

Table 1 lists some of the standard texture components, and the corresponding positions in the Bunge Euler space con-
ventionally used for material with orthorhombic sample symmetry are given in Fig. 3.

The 1XXX series aluminium alloys are technically pure-grade ones that are known to feature β fibre textures in the 
rolled condition, and strong cube textures when annealed after cold rolling. The ODF for a 1-mm-thick cold-rolled 1050 
alloy, hereafter referred to as “AA1050-CR”, is given in Fig. 1. As it is cold-rolled, this texture consists mainly of strong 
copper and S3 orientations, with a weaker brass component. The 6XXX series aluminium alloys typically have weaker 
rolling and annealing textures than the 1XXX series. Their textures feature the same components, with the exception of the 
P component, which is associated with Particle Stimulated Nucleation (PSN) [101]. The ODF of a hot-rolled 6016 alloy, referred 
to hereafter as “AA6016-HR”, is shown in Fig. 2, where recrystallisation during interpass or batch annealing is expected to 



D. Shore et al. / C. R. Mecanique 346 (2018) 724–742 731
cause the formation of a strong cube component. While, in general, the texture of any particular alloy is dependent on the 
composition and processing history, these two textures are somewhat typical examples of cold-rolled and hot-rolled sheet 
aluminium alloys [102,103].

2.5. Selecting parameters η, m, and n

As touched on above, it is not possible to prescribe optimal values for the number of virtual tests η, the order of the 
expression n, and the number of terms m that would be valid for all materials and all multiscale models. Optimal values 
depend on the characteristics of the yield surface being approximated, which is only known after some sufficient number 
of virtual tests are carried out.

In practise, however, one can determine parameter values that would be valid for a particular class of material, e.g., sheet 
aluminium, and a particular multiscale model, e.g., alamel or taylor fc, by studying the yield surface for one representative 
example. One carries out a large number N of virtual tests on the chosen example, and then calibrates facet potential 
functions φs for a range of different values of η, n, and m. One then calculates an error value ξ(η, n, m) for each calibrated 
function φs, which allows suitable values of η, n, and m to be found.

If the NNLS method is used to solve the calibration problem (Eq. (15)), then m can initially be chosen as mtrial = η. It 
is then typically found that some of the coefficients λi will be zero; in other words, the total number of terms m in the 
calibrated function φs with non-zero coefficients λi �= 0 is less than mtrial . This means that, in practise, if we use the NNLS 
method and always assume mtrial = η, then m is not an independent parameter, but is some value m < mtrial, which is a 
result of the NNLS solution procedure. It then remains to find suitable values for η and n.

Two types of error variable are proposed here: the first of these is defined in Eqs. (16)–(18), and is referred to as the 
“strain rate matched stress error” ξσ (or “stress error” for short). It is the average of the Euclidean distances in deviatoric 
stress space between the reference stresses σ ′

i
∗ (which are the direct response of the multiscale model to the input strain 

rates D∗
i ) and the corresponding facet approximation stresses σ ′

i . The value for σ ′
i is found by searching for the stress for 

which the derivative of φ is parallel to the strain rates D∗
i , see Eq. (18):

ξσ = 1

N

N∑
i=1

∣∣∣∣σ ′
i − σ ′

i
∗∣∣∣∣∣∣∣∣σ ′

i
∗∣∣∣∣ (16)

ξσ
max = max

(∣∣∣∣σ ′
i − σ ′

i
∗∣∣∣∣∣∣∣∣σ ′

i
∗∣∣∣∣

)
(17)

with α
∂φ
∂σ

∣∣∣∣
σ=σ ′

i
∗
= D∗, for some constant α (18)

The second error variable is referred to as the “stress matched strain rate error” ξ D (or “strain rate error” for short). It is 
based on the average of the cosines of the angles between the normalised strain rate vector of the reference D̂

∗
i and the 

normalised strain rate vector of the facet expression, at the same stress σ ′
i = σ ′

i
∗ . It is defined in Eqs. (19)–(20):

ξ D = arccos

{
1

N

N∑
i=1

D̂ i · ∂φ
∂σ

∣∣∣∣
σ=σ ′

i

}
(19)

ξ D
max = arccos

{
max

(
D̂ i · ∂φ

∂σ

∣∣∣∣
σ=σ ′

i

)}
(20)

Fig. 4 plots the value of the stress error ξσ as a function of the number of virtual tests η, for the facet functions φs with 
the order n = 8, for the AA1050-CR and AA6016-HR materials. Likewise Fig. 5 plots the value of the strain rate error ξ D

as a function of η. Here ξσ and ξ D are calculated using a reference set of N = 5000 strain rate modes and corresponding 
stresses, derived directly from the taylor fc CP model. Note that the taylor fc model is used because, for a given texture, it 
typically predicts a more sharply featured yield surface, and more extreme variation in r values, which is more challenging 
to model with analytic expressions. It can be clearly seen that the error decreases rapidly with increasing η up to η = 100, 
after which little improvement in the calibrated expression is observed; this is true both for the averaged variables (ξσ , ξ D ) 
and those based on maxima (ξσ

max, ξ D
max). All of the error variables display the same trend. As noted above, there are not in 

general m = η terms in the calibrated solution, that in fact the number of terms m appears dependent on the sharpness of 
the texture, the available slip systems, the order n of the facet expression and, to a lesser extent, on η itself. For example, 
with n = 8 and η = 100, for the materials in Figs. 4 and 5 it is found that 20 ≤ m ≤ 30.

Next the value of the order n is determined by examining the effect of increasing n on φ. In principle, higher values 
of n allow a yield surface with very sharp edges and vertices to be modelled with greater fidelity. However, n cannot be 
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Fig. 4. Strain rate matched stress error ξσ for the calibrated facet function φs (Eq. (3)) as a function of the number η of virtual tests used for calibration 
(Eq. (15)), for two textured sheet materials: (left) the average error values ξσ and (right) the maximum values ξσ

max. The stress error decreases rapidly as 
η increases, up to η = 100, after which the error changes slowly. Note the logarithmic scale for the horizontal axis.

Fig. 5. Stress matched strain rate error ξ D for the calibrated facet function φs (Eq. (3)) as a function of the number η of virtual tests used for calibration 
(Eq. (15)), for two textured sheet materials: (left) the average ξ D value and (right) the maximum ξ D

max values. The error ξ D decreases rapidly as η increases, 
up to η = 100, after which the error changes slowly. Note the logarithmic scale for the horizontal axis.

increased indefinitely as larger n requires larger number of terms m,6 and may also introduce local curvatures in the yield 
surface which, though not breaking convexity, are not predicted by the CP model.

Taking the AA1050-CR material as an example, Fig. 6 (left) plots the variation of ξ D
max with η for different orders n, 

while Fig. 6 (right) plots the number of terms m that are found in the calibrated function φη for the same data. Considering 
n = 8 as the reference, it appears that increasing the order above n = 12 reduces the error for η > 100 (Fig. 6, left). However, 
increasing the order above 16, e.g., for n = 18 causes the trend to reverse (the error begins to increase). These optimal values 
of n are higher than first reported by the authors of the facet [83], but are in general agreement with recent findings [87]. 
In general, the higher the order n the greater the number of terms m, e.g., at a value η = 200 for the functions with n ≥ 14
it is found that 50 ≤ m ≤ 60 while m = 27 for n = 8 (Fig. 6, right). For all orders n, the number of terms m appears to 
increase slowly but indefinitely with η, despite there being no longer any decrease in error ξ D

max for η > 200.
A more conventional analysis than the above would be to examine the yield loci for the calibrated functions φη , or plots 

based on the gradient of the functions φ such as those presented by Kuwabara et al. [104]. A section of the normalised σ11

σ22 yield locus and the corresponding gradient plot for the AA1050-CR material is given in Fig. 7, together with direct CP 
model values superimposed as open circles.7 In this plot, it can be seen that n = 12 gives a yield locus and gradient plot 
that coincides with the CP results more closely than n = 8, but that the further improvement for n = 16 is very subtle.

Finally, it may be noted from the above that the calibration of the facet potential function of Eq. (3), using the NNLS 
method and the spiral algorithm for selecting strain rate modes for virtual test, is stable. Which is to say that above a 
minimum number η ≥ 100 of virtual tests and above a minimum order n ≥ 8, the solution is (a) of good quality, and (b) 
does not change rapidly in quality, even with changes in η and n.

In summary, for the textured aluminium materials examined here, it appears that a reduced space facet expression can 
be accurately calibrated using η = 200 virtual tests. The potential function φ should have order n = 12, which results in 

6 The computational cost is proportional to m, and minimising m is particularly desirable in an explicit FEA context.
7 Note that these superimposed CP values were not used in the calibration, but are calculated separately for the purpose of comparison.
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Fig. 6. Affect of order n on the facet function φs (Eq. (3)) for the AA1050-CR material. (Left) Affect of order n on the strain rate error ξ D as a function of the 
number of points η used to calibrate φs (Eq. (3)) – error reduces rapidly as η increases, up to η = 100, but decreases very slowly thereafter; (right) affect 
of order n on the number terms m in the calibrated facet function φs (i.e. the number of terms with non-zero coefficients λi �= 0 after solving Eq. (15)), as 
a function of the number of points η used in the calibration – m appears to increase indefinitely with η, but at a slow rate; note the use of a log scale for 
η in both cases.

Fig. 7. A section of the normalised yield locus (left) and gradient plot (right) of a facet function φs calibrated for AA1050-CR (cold rolled aluminium sheet) 
with η = 200 virtual tests, as a function of the order n. (Left) A section of the σ11–σ22 yield locus for three values of the order (n); (right) the gradient plot 
for this yield locus section. The inset image illustrates the meaning of the angles ϑ and �; more information on this type of plot is given in [104].

m ≈ 40 terms. Higher-order expressions do not appear to require more calibration stresses, i.e. η = 200 is sufficient in all 
cases. Increasing the order above n = 16 reduces the accuracy of the calibration.

2.6. Plastic corrector stress increment

An infinitesimal increment of strain dε can be additively decomposed into elastic and plastic parts dε = dεe + dεp. The 
increment of stress dσ for an isotropic linear elastic material can be found from the elastic part of the strain dεe using the 
elastic stiffness tensor C of Hooke’s law (Eq. (21)) as Eq. (22):

σ = C : εe (21)

dσ = C : dεe = C : dε − C : dεp (22)

The stress increment dσ can be thus viewed as being composed of two parts, per Eq. (23): (a) a hypothetical “trial” or 
“predictor” increment dσ tr = C : dεe, which represents the stress increment if the strain increment were to be fully elastic, 
and (b) a plastic “corrector” increment dσ p = C : dεp, which corrects the trial value to account for plasticity that occurs 
during the increment.

dσ = dσ tr − dσ p (23)
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If a yield criterion φ is a function of the stress σ and the material state (represented by a vector of variables κ ), then from 
the onset of plasticity the following is required to hold:

φ(σ ,κ) = 0 (24)

This constraint is referred to as “the consistency condition”, and can be interpreted to mean that the stress must remain on 
the surface represented by Eq. (24) during plasticity. This constraint also applies for increments of the stress dσ or changes 
in the material properties dκ , e.g., due to strain hardening, so that the following holds:

φ(σ + dσ ,κ + dκ) = φ(σ ,κ) + ∂φ
∂σ

: dσ + ∂φ
∂κ

: dκ = 0 (25)

If the partial derivatives are held constant for the small but finite increments �σ and �κ , and evaluated at some stress 
σ (t+δt) and state κ (t+δt) at the time t + δt during the increment, then with reference to Eq. (24) Eq. (25) may be approximated 
as:

φ(σ + dσ ,κ + dκ) ≈ �σ : ∂φ
∂σ

∣∣∣∣
σ (t+δt)

+ �κ : ∂φ
∂κ

∣∣∣∣
κ (t+δt)

= 0 (26)

In a forward Euler procedure, the derivatives of Eq. (26) would be evaluated at the beginning of the increment (i.e. at 
σ = σ (t) , κ = κ (t)), but the stress would in general drift outside of the yield surface during successive increments due to an 
accumulation of approximation errors. In a backward Euler procedure, the derivatives would be evaluated at the end of the 
increment (i.e. at σ = σ (t+�t) , κ = κ (t+�t)), so that the consistency condition would be fulfilled with a specifiable accuracy 
at the end of the increment, and drift would be avoided. In general a backward Euler procedure requires iteration as the 
derivative at the end of the increment is typically unknown.8 However, in the context of an explicit FEA procedure, it is 
assumed that the small magnitude of the increments permit derivatives evaluated at some intermediate moment (t + δt) 
within the increment to be good approximations of their value at the end of the increment (t +�t), so that there is no need 
for iterative refinement. In the current case, derivatives of φ with respect to the stress are evaluated at the point on the 
yield surface that is intersected by a line along the direction of trial stress σ tr , which is considered a suitable approximation. 
Derivatives with respect to the material state κ are evaluated at the beginning of the increment.

It is assumed in Abaqus
© that the strain rate mode is constant during the increment,9 and it is likewise here assumed 

that the plastic strain mode is constant during the increment. Assuming that the yield function and the plastic potential are 
identical,10 the increment of plastic strain �εp can be related to the function φ with a scalar dλ by means of the associated 
flow rule of plasticity theory:

�εp =
t+�t∫
t

dεp =
∫

∂φ
∂σ

dλ ≈ �λ
∂φ
∂σ

∣∣∣∣
σ (t+δt)

(27)

The associated flow rule implies that the plastic strain rate direction (or the direction of a small increment of plastic strain 
�εp) at yield is determined by the normal to the yield surface represented by a contour φ = constant. As explained above, 
the derivatives of φ, and thus �εp , are evaluated at the stress point on the yield surface that is intersected by a line along 
the direction of trial stress σ tr , which approximates the stress point at the end of the increment. The increment �λ of the 
variable dλ, sometimes called the “plastic multiplier”, is a scalar measure of the magnitude of the increment of plastic strain. 
As with the consistency condition, the derivative in Eq. (27) is assumed constant and evaluated at the same intermediate 
point within the increment (i.e. σ (t+δt) ‖ σ tr).

Assuming the yield surface does not change shape during the increment, but only scales isotropically as a function of 
the state variables κ , the function φ can be separated into a function φs(σ ) describing the surface shape and a function 
φh(κ) = σ y(κ) describing the scaling, where σ y is the equivalent yield stress:

φ(σ ,κ) =φs(σ ) − σ y(κ) = 0 (28)

This assumption allows separation of the variables in Eq. (26) so that it can be written:

�σ : ∂φs

∂σ
− �κ : ∂σ y

∂κ
= 0 (29)

It is then assumed that the evolution of the mechanical properties of the material due to plastic strain, i.e. the change in the 
yield stress σ y , can be completely accounted for by a single variable κ = εeq and its increment �κ = �εeq, representing a 
scalar measure of the magnitude of the plastic strain:

8 An exception to this would be if the von Mises criterion were assumed for φ.
9 “We assume that the stretch at any time during the increment has the same principal directions as the total increment of stretch. . . This assumption might be 

questionable if the increments are very large, but it is consistent with the levels of approximation used in the integration of the inelastic constitutive model” [105].
10 In other words, they are both represented by the same continuous function φ with continuous first derivatives.
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σ y (κ + �κ) = σ y (
εeq + �εeq)

≈ σ y (
εeq) + �εeq dσ y

dεeq

∣∣∣∣
σ=σ (t)

(30)

The scalar εeq, referred to hereafter as the “accumulated plastic strain”, is the sum of all increments of equivalent plastic 
strain �εeq since the beginning of plastic deformation. The single-variable derivative in Eq. (30) can be interpreted as the 
slope of the equivalent stress vs. equivalent strain curve defining the isotropic hardening, and is evaluated at the start 
of the increment, qualifying Eq. (30) as a forward Euler approximation. The increment �εeq is a work-equivalent plastic 
strain defined in terms of the equivalent stress σ eq, the deviatoric stress σ ′ , and the increment of plastic strain �εp (with 
reference to Eq. (27)):

σ eq · �εeq =σ ′ : �εp (31)

�εeq = σ ′ : �εp

σ eq = �λ

⎛⎝σ ′ : ∂φs

∂σ
φs(σ )

⎞⎠ (32)

The consistency condition of Eq. (26) can then be rewritten as:

∂φs

∂σ
: �σ = dσ y

dεeq �εeq = �λ
dσ y

dεeq

⎛⎝σ ′ : ∂φs

∂σ
φs(σ )

⎞⎠ (33)

Rewriting Eq. (22) in incremental form, and using the definition of �εeq in Eq. (31), one has:

�σ = C :
(

�ε − �λ
∂φs

∂σ

)
(34)

Substituting �σ of Eq. (34) into Eq. (33) gives:

∂φs

∂σ
: C :

(
�ε − �λ

∂φs

∂σ

)
= �λ

dσ y

dεeq

⎛⎝σ ′ : ∂φs

∂σ
φs(σ )

⎞⎠ (35)

Rearranging Eq. (35) allows the unknown �λ to be written in terms of known quantities:

�λ =
∂φs

∂σ
: C : �ε

∂φs

∂σ
: C : ∂φs

∂σ
+ dσ y

dεeq

⎛⎝σ ′ : ∂φs

∂σ
φs(σ )

⎞⎠
(36)

If A and B are two symmetric deviatoric tensors, and C is the stiffness tensor for an isotropic elastic material, the expression 
of Eq. (37) can be written (where μ is Lamé’s second parameter):

A′ : C : B ′ =2μA′ : B ′ (37)

As the tensors appearing in tensor products with C are deviatoric, Eq. (37) can be used to simplify Eq. (36) further:

∂φs

∂σ
: C : �ε =2μ

∂φs

∂σ
: �ε (38)

∂φs

∂σ
: C : ∂φs

∂σ
=2μ

∂φs

∂σ
: ∂φs

∂σ
= 2μ

∣∣∣∣∣∣∣∣∂φs

∂σ

∣∣∣∣∣∣∣∣2

(39)

�λ =
2μ

∂φs

∂σ
: �ε

2μ
∣∣∣∣∣∣∣∣∂φs

∂σ

∣∣∣∣∣∣∣∣2

+ dσ y

dεeq

⎛⎝σ ′ : ∂φs

∂σ
φs(σ )

⎞⎠
(40)

�σ p = C : �εp = 2μ�λ
∂φs

∂σ
(41)
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2.7. Stress integration algorithm

The procedure outlined below is used to implement a stress integration algorithm for a linear isotropic elastic/anisotropic 
plastic material in the context of a 2D FE analysis. This integration algorithm is implemented for plane strain according to 
this schematic as a set of fortran subroutines and modules. The meaning of each symbol and variable is defined in the 
previous section 2.6.

Algorithm 1: Predictor–corrector stress integration algorithm for plane strain.

Data: strain increment �ε, and current state (σ (t), ε(t), εeq (t)) at time t
Result: updated state (σ (t+�t), εeq (t+�t)) at time (t + �t)

begin
let σ tr = σ (t) + C : �ε ; � trial stress
Evaluate φ = φs(σ tr) − σ y(εeq) ;
if φ ≤ 0 then

σ (t+�t) = σ tr ; � stress = trial stress
εeq (t+�t) = εeq (t) ; � no hardening

else

Evaluate dσ y

dεeq at σ (t) ; � Slope of hardening curve

Evaluate ∂φs

∂σ at yield surf. in the direction of σ tr ;

Evaluate �λ via Eq. (40) ;
Evaluate �σ p via Eq. (41) ;
Evaluate �εeq via Eq. (32) ;
σ (t+�t) = σ tr − �σ p ;
εeq (t+�t) = εeq (t) + �εeq ; � update of material state

return σ (t+�t), εeq (t+�t)

This procedure describes the solution to the constitutive model for one increment of an explicit FE solution procedure. It 
requires one evaluation of the yield function φs for every increment for each integration point in the model to check if 
plasticity has occurred; for each integration point where plasticity indeed occurs, the derivative of φs with respect to stress 
is also required, along with the derivative of the equivalent stress/equivalent strain curve.

2.8. Parametric model of asymmetric rolling

A parametric model of the ASR process was designed to study the evolution of texture and texture gradients in ASR. This 
model is discussed in detail in an earlier work [106], where only isotropic plasticity was assumed. In the present case, this 
parametric model is extended with a user material subroutine to use the anisotropic facet model of Eq. (3), and is employed 
as follows: (a) three levels of rolling pass reduction are considered, ρrr ∈ {20%, 30%, 40%}; (b) four values of the ratio of upper 
to lower roll ratio are modelled, ρul ∈ {1.0, 1.25, 1.5, 1.75}; (c) three values of the ratio of roll-radius-to-sheet-thickness are 
used, ρut ∈ {10, 20, 30}; (d) the python Application Programming Interface (API) and the explicit solver of the FEA package
Abaqus

© is used to obtain the deformation field for every combination of the above parameters; (e) the rolls are assumed to 
be rigid and the deformable sheet is modelled with first-order plane strain elements, (f) between ten and twenty element 
layers were used in the sheet thickness, depending on the ratio of upper to lower roll radii ρul, giving meshes with 1000 to 
2500 elements; (g) contact is modelled with a linear pressure/overclosure relationship for normal stresses and a Coulomb 
friction coefficient of μ = 0.2 for tangential stresses; (h) strain hardening is modelled with the power law of Eq. (42) with 
K = 692 MPa, n = 0.275 and ε0 = 0.01, considered representative of the 6XXX alloys; (i) the facet model is used as yield 
criterion, and is calibrated with virtual mechanical tests using the alamel model for each of the two textures shown in 
Fig. 1 and Fig. 2; (j) nodal positions of elements in a steady-state “zone of interest” spanning the thickness of the sheet 
are exported and used to calculate velocity gradient L(t, y) as a function of time t and position in the sheet thickness y; 
(k) L(t, y) is input to the alamel CP model to calculate texture evolution.

σ eq = K (ε0 + ε)n (42)

3. Results

A parametric study of ASR is carried out using FEA with the new facet model as a yield criterion (see section 2.2) to study 
the effect of anisotropy on the evolution of texture and texture gradients. As described in section 2.8, the deformation field 
in ASR was calculated for three levels of rolling pass reduction, ρrr, four values of roll ratio ρul, and three values of the ratio 
of roll-radius-to-sheet-thickness ρut. The facet model is calibrated with virtual mechanical tests using the alamel model 
for each of the two textures shown in Fig. 1 and Fig. 2. These textures are considered as textures representative of sheet 
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Fig. 8. Contraction ratio (qθ ) values from facet functions φs for various orders (n) compared to direct CP results: (left) AA1050-CR (cold rolled aluminium 
sheet), (right) AA6016-HR (hot rolled aluminium alloy sheet).

aluminium alloys close to the start and the end of the cold rolling process. In other words, the texture of the AA6016-HR
material features the mixed cube and β fibre typical for the early stages of cold rolling, while the AA1050-CR material 
features the strong β fibre texture typical for the later stages.

Firstly, results confirming the ability of the new facet model to reproduce the anisotropic material properties predicted 
by the alamel CP are presented. The results of the parametric study are then given, and the relevance to texture control in 
ASR is discussed.

3.1. Quality of anisotropy approximation by facet

The anisotropy of the two textured materials displayed in Fig. 1 and Fig. 2 is assessed by calculating the parameters rθ

and qθ (defined in Eqs. (11) and (12)) as a function of the angle of the tensile direction θ with respect to the sheet RD. 
The anisotropy parameters are plotted in Fig. 8, where the open circles represent the anisotropy calculated directly from the 
texture by the CP model, while the continuous lines represent the anisotropy values calculated from the derivatives of the 
corresponding calibrated facet function, found using Eqs. (11), (13) and (14).

It can be observed that these two materials (a) have clearly different anisotropy due to their different textures, and that 
(b) the facet model closely reproduces the anisotropy of the underlying CP model behaviour. The effect of the choice of 
order n for the facet function is also shown in Fig. 8. Increasing n improves the agreement between the direct CP results 
and the facet derived values, though little further improvement is seen for n > 12. In the simulations that follow, the order 
n = 12 is assumed.

3.2. Effect of anisotropy on texture evolution

The goal of the present section is to examine the influence of anisotropy in a range of configurations of the ASR process. 
In essence, it is a theoretical exploration that separates the anisotropy from its origin, i.e. the inhomogeneous and evolving 
texture of the material, so that it can be manipulated as an independent process parameter. In the same vein, an additional 
simplification is made so that texture evolution occurring during the process does not influence the deformation field. 
If these idealisations were not made, one would be faced with comparing the effects of different initial anisotropies on 
processes that perforce have different starting textures, and different paths of evolution – in other words not comparing like 
with like.

For the purpose of the exercise, it is therefore necessary to assume that some single texture can be usefully considered 
representative of sheet aluminium alloys undergoing cold rolling – to this end the texture of the AA6016-HR material is 
adopted (see section 2.4).

Fig. 9 presents box plots of evolution of the two most important texture components, namely the γ and β fibres, for 
all configurations of the ASR simulated in the parametric study. The evolution assuming the anisotropy of AA1050-CR is 
plotted on the left, while the results assuming the anisotropy of AA6016-HR are shown on the right. The upper, lower and 
middle horizontal lines of the boxes represent the upper and lower quartiles, and the median, respectively, of the relevant 
data, while the whiskers represent minimum and maximum values, excluding outliers; outliers are defined as those values 
greater than 1.5 times the upper or lower quartiles. The dotted and dashed lines indicate the volume fractions of the γ and 
β fibres in the material before rolling.

For both types of material, it can be seen that the volume fraction of the β fibre is reduced and that of the γ fibre 
is increased as the asymmetry of the process increases (the asymmetry is expressed here in terms of the roll radius ratio 
ρul). This trend agrees with earlier results obtained with an isotropic material model [106]. However, the influence of the 
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Fig. 9. Volume fractions of the γ and β texture components after ASR, with the same starting texture. The shaded boxes represent values for the γ fibre, 
and the unshaded boxes represent β fibre. (Left) results of texture evolution due to ASR assuming the anisotropy derived the texture of the alumjurijlong 
(Fig. 2) and (right) the result assuming the cold rolling texture of Fig. 1. The dotted and dashed lines indicate the volume fractions of the γ and β fibres in 
the material before rolling.

Fig. 10. Texture heterogeneity ̃ f (Eq. (43)) as a function of the roll-radius-to-sheet-thickness ratio ρut, with reduction ρrr = 0.4; (left) assuming the prop-
erties of AA6016-HR and (right) the properties of AA1050-CR.

anisotropy is visible at high asymmetry ρul ≥ 1.5, where the β fibre is reduced more for the cold-rolled AA1050-CR material 
than for the warm rolled AA6016-HR material.

The results suggest that the texture homogeneity is more strongly affected by the roll-radius-to-sheet-thickness ratio 
than by the anisotropy. It also appears that it may be most beneficial to carry out ASR in the last stages of cold rolling, 
where the sheet will have inevitably acquired a strong β fibre texture, and the roll-radius-to-sheet-thickness ratio will tend 
to be higher due to the small sheet thickness at this stage. Conversely, carrying out ASR in the initial stage of cold rolling 
can be expected to be less effective due to the typical recrystallisation type texture present after hot rolling and the greater 
sheet thickness.

The second aspect that is examined is the influence of the anisotropy during ASR on the development of texture het-
erogeneity. As explained in the method section, the texture evolution is simulated as a function of position in the sheet 
thickness by calculating velocity gradients from the deformation field obtained from the FEA. This allows the texture hetero-
geneity to be quantified by Eq. (43) as f̃ . f̃ is the maximum of the values of the squared difference of an ODF for a texture 
at a given position in the sheet thickness f (g)i with the average ODF for all of the textures at all thickness positions f (g)avg

– a large value of f̃ indicates that a large texture gradient is present in a given simulated sheet.

f̃ =max

(∫ (
f (g)i − f (g)avg

)2 dg

)
(43)

Fig. 10 plots f̃ against the roll-radius-to-sheet-thickness ratio ρut, for a reduction of ρrr = 40%. It is clear that symmetric 
rolling ρut = 1 is predicted to produce more homogeneous textures than ASR. It is also visible that increasing the asymmetry 
of the process tends to increase texture heterogeneity, but increasing the roll-radius-to-sheet-thickness ratio mitigates this 
effect. The influence of anisotropy suggests that lower values of f̃ are obtained with the anisotropic properties of the 
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AA6016-HR material, but that for higher values of the ratio ρut = 30, the differences in texture heterogeneity between the 
two materials is small.

3.3. Discussion

In terms of using ASR for modification of the texture in aluminium alloys, the pre-existing anisotropy of the sheet be-
ing rolled is predicted to most influence the texture evolution at higher process asymmetry (higher roll radius ratios). The 
material with the anisotropy arising from a sharp cold-rolled texture appears to result in the most beneficial texture modifi-
cations – i.e. greatest reduction in β fibre, greatest reduction in sensitivity of texture evolution to other process parameters. 
This is significant because it is beneficial to both increase the γ fibre, but to also decrease the β fibre. The γ fibre will tend 
to be stable during texture changes occurring during the annealing step at the end of cold rolling [31,32], while the β fibre 
will tend to transform to the cube orientation [107], which is detrimental to the anisotropy r and should be minimised.

The current implementation does not feature full coupling between the multiscale model, the facet model and the FE 
code. As such, this has already been demonstrated using the general purpose facet model by Gawad et al. [84], and the 
scope of the research presented here was rather to focus on the implementation of a 2D variant of the facet method and its 
application to the parametric study of ASR. This of course implies that, in the present work, anisotropy is not updated during 
the simulation of deformation. This limitation would be problematic if multiple rolling passes were simulated, as would 
be the case in a commercial production environment, where the large strains developed would be expected to modify the 
texture and anisotropy very significantly. In the present case, it may be considered that the single reduction does not induce 
such large anisotropy changes that the trends observed above are invalidated.

From a more general simulation perspective, the facet model is seen to be an effective method of capturing the 
anisotropic plasticity predicted by CP models – in Fig. 8, it is clear that the analytic facet function accurately reproduces 
the discrete CP model results after calibration by virtual tests. It can be emphasised that the discrete points shown as the 
open circles in Fig. 8 are drawn from a vastly larger superset than those used in the calibration, which are themselves much 
more sparse and broadly distributed over the stress space.

It is important to reiterate that the facet method is not limited to statistical CP models such as the alamel model 
used here, but in fact would work in much the same way with more sophisticated and computationally heavy plasticity 
models such as CPFEM or CPFFT. The particular 2D stress space formulation of the facet model presented here can be rapidly 
calibrated with as few as η = 100 virtual tests, which makes it suitable for use in a fully coupled multiscale modelling 
framework.

4. Conclusions

A parametric study was presented, which employs an anisotropic constitutive law in order to study the effect of 
anisotropic plasticity on the deformation field, and thus the evolution of the texture during the ASR process. A version 
of the facet method is presented where a facet function is restricted to the subspace of the stress and strain rate space 
relevant for 2D FEA. It is shown that such an approach can accurately reproduce the plastic anisotropy predicted by CP mod-
els (in this case, the alamel model). It is expected that any plasticity model for which a convex yield surface exists and can 
be probed with virtual testing can be used with this approach.

In the results presented here, it is seen that the plastic anisotropy of the material undergoing ASR most strongly influences 
the deformation field and the texture evolution at high levels of process asymmetry (high values of roll radius ratio). It is 
seen that the anisotropy of a sharp cold-rolled type (β fibre) texture appears more beneficial than that of a recrystallisation 
(cube)-type texture. There is a less clear influence of anisotropy on the formation of texture gradients, and the ratio of 
roll-radius-to-sheet-thickness is a dominant process parameter, which agrees with earlier findings [106]. The results suggest 
that, from the point of view of promoting texture changes, it may be most beneficial to carry out ASR in the latest stages 
of cold rolling where the texture will tend to have developed a strong β fibre and where the roll-radius-to-sheet-thickness 
ratio will tend to be highest due to the reduced thickness of the sheet.
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