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The Finite Element Model Updating (FEMU) technique is an inverse method that enables 
to arrive at a complete solution to the problem of diffuse necking of a thick tensile 
specimen. Conventionally, FEMU relies on the identification of a phenomenological strain 
hardening law that inherently limits the accuracy of the method due to the predefined 
character of the adopted strain hardening law. A high-resolution multi-linear post-necking 
strain hardening model enables to describe more generically the actual strain hardening 
behaviour. A numerical concept study is used to scrutinise the identification of such a 
model using FEMU. It is shown that, unlike progressive identification strategies, a global 
identification strategy followed by a smoothing operation based on area conservation yields 
sufficiently accurate results. To study the experimental feasibility, the latter strategy is used 
to identify the post-necking strain hardening behaviour of a thick S690QL high-strength 
steel. To this purpose, a notched tensile specimen was loaded up to fracture, while the 
elongation was measured using Digital Image Correlation (DIC). It is shown that the global 
identification strategy suffers from experimental noise associated with DIC and the load 
signal.

© 2018 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

In recent years, fracture mechanics is gaining more interest from industry. For example, the line pipe industry aims at an 
accurate estimation of the amount of deformation high-strength steel can undergo before failure occurs [1–3]. Also the auto-
motive industry is interested in studying the ductile fracture behaviour of advanced high-strength metals [4] during forming 
[5] and joining [6]. Finite Element modelling strategies are used to predict and understand ductile fracture phenomena. It is 
well known that this requires the knowledge of the strain hardening behaviour beyond the onset of necking.

To obtain the flow curve beyond the onset of necking, the strain hardening behaviour in the pre-necking region ob-
tained using the conventional method can be extrapolated. However, no guidelines are available to correctly extrapolate the 
pre-necking stress–strain curve. Some attempts consist in extrapolating the found phenomenological model, which approx-
imates best the pre-necking strain hardening behaviour [7]. Extrapolation, however, is disputable because the post-necking 
yield curves are obtained without any information from the targeted deformation phase. Hence, this procedure can lead to 
different and potentially very unsafe results [8,9].
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To tackle this problem, several authors have used inverse methods such as Finite Element Model Updating (FEMU) to 
characterise the stress–strain curve beyond the point of maximum uniform elongation [7,10–12]. The FEMU approach iden-
tifies a phenomenological strain hardening law which limits the procedure to fit a prescribed analytical function to the 
actual strain hardening behaviour of the material. Consequently, FEMU merely yields a best fit resulting in unavoidable 
errors due to the material’s actual strain hardening behaviour. A more flexible strain hardening law can be obtained by 
a combination of analytical functions [9,13,14]. Even though these combined functions could potentially result in a better 
approximation of the strain hardening behaviour, a predefined analytical function is still fitted. Moreover, the user is always 
confronted with the difficult choice between different functions to obtain the best fit for the material under investigation.

To solve the inflexibility of phenomenological strain hardening laws to accurately describe the full plastic strain range, 
the possibility of characterising a generic analytical function has been investigated in this paper. Because FEMU will be 
used, the function should consist out of a minimum number of parameters to limit the computational cost. Therefore, the 
easiest method is to characterise a piecewise linear function, also referred to as a multi-linear function. Kajberg et al. [11]
identified a multi-linear function composed out of four linear functions over a plastic equivalent strain (εeq

pl ) range of 0.8. 
Because a linear function is fitted over a large strain interval, the accuracy of such an approximation is disputable for a wide 
range of metals. Furthermore, a constraint was applied to limit the strain hardening behaviour to a monotonously positive 
decreasing slope, which additionally limits the flexibility. Koc et al. [7] progressively identified a multi-linear function. 
The latter procedure starts with the identification of one linear function, followed by one-by-one addition of other linear 
functions. However, only two linear functions are identified over an εeq

pl interval of 0.66, whereof the accuracy is again 
questionable.

In this paper, the inverse identification of a high-resolution multi-linear post-necking strain hardening model is inves-
tigated. First, different identification strategies are evaluated using a numerical concept study. Finally, the experimental 
feasibility of the proposed identification strategy is studied by identifying the post-necking strain hardening behaviour of a 
10-mm-thick S690QL High Strength Steel (HSS).

2. Methodology and numerical concept study

2.1. Inverse procedure

FEMU has been widely applied to identify the elastoplastic material properties of sheet metal using phenomenological 
strain hardening laws [11,15–17]. The basic idea of this procedure is to minimise the discrepancy between experimentally 
measured and numerically computed surface strains while adapting the material parameters. The surface strains are often 
measured using Digital Image Correlation (DIC) [18].

In this work, the aim is to extract the strain hardening behaviour from the diffuse neck during a tensile test using 
FEMU. Comparing the experimentally measured and numerically computed surface strain fields over the entire surface of 
the specimen would result in redundant information because only the strain fields over the necking region will change 
during a tensile test in the post-necking area. Moreover, comparing both strain fields at exactly the same location is a 
difficult problem to cope with [15]. The latter issue can be solved by using a notched tensile test coupon as shown in Fig. 1. 
The deformation will localise in the vicinity of the red dashed lines shown in Fig. 1. As such, instead of using full-field 
surface data, the average displacement in the X-direction has been extracted on the red dashed lines. The Y position of the 
extraction lines has been chosen close to the local necking zone to have more sensitivity to the post-necking parameters, 
resulting in a more accurate identified strain hardening behaviour. In this work, the extraction lines are at 1 mm above and 
below the centre of the specimen. The local engineering strain e is calculated as:

e = extu − extl

L0
(1)

with extu and extl being the averaged displacements at the upper and lower extraction lines, respectively, and L0 the 
original length between the two extraction lines (represented as the red dashed lines in Fig. 1). The local engineering strain 
e is merely defined here to have a local measure that can be used in the cost function. Indeed, the difference between 
the measured and numerically computed local engineering strain, eexp and enum respectively, is used in the following cost 
function to minimise:

C(p)e =
m∑

i=1

(
eexp − enum)2 (2)

with m the number of load steps and p the parameter vector containing the unknown parameters in the strain-hardening 
model. In case of a multi-linear strain hardening model, the unknown parameters are the slopes of the linear functions. The 
length of the vector p depends on the resolution of the model, i.e. the interval in terms of plastic equivalent strain spanned 
by a single linear function.

Identifying the post-necking strain hardening behaviour requires a displacement-driven FE simulation to exclude plastic 
instability problems. Consequently, not only the local strain e can be minimised in the FEMU procedure, but also the force 
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Fig. 1. Notched specimen.

can be included in the cost function to minimise. Decomposing the general cost function in two separate cost functions 
reads as:

C(p) = C(p)e + C(p)F (3)

with C(p)e and C(p)F the cost functions formed by the local strain component and force, respectively. Because both the 
force and strain have a different order of magnitude, they are normalised by their experimental value to have the same 
weight in the general cost function from Eq. (3):

C(p)e =
m∑

i=1

(
eexp

i − enum
i

eexp
i

)2

(4)

C(p)F =
m∑

i=1

(
F exp

i − F num
i

F exp
i

)2

(5)

with F exp
i the experimental force and F num

i the numerical computed force at load step i.
To scrutinise different identification strategies numerically, a tensile test has been simulated in Abaqus/Standard [19] on 

a 10-mm-thick S690QL notched specimen. The reference strain hardening behaviour used in the FE simulation is a p-model 
[9] that reads as:

σeq =
⎧⎨
⎩

K (ε
eq
pl + ε0)

n if ε
eq
pl ≤ εmax

K (εmax + ε0)
n + Q

[
1 − e−p(ε

eq
pl −εmax)

]
if ε

eq
pl > εmax

(6)

with σeq the equivalent von Mises stress, ε0 the initial deformation, n the hardening exponent, εmax the maximum uniform 
strain obtained from a tensile test using a dog bone specimen, p the post-necking strain hardening parameter and Q can 
be calculated as:

Q = Kn(ε0 + εmax)
n−1

p
(7)

Those parameters have been identified in [12] for the S690QL grade and can be seen as the solid black line in Fig. 2. In 
the FE simulation, equidistant load steps are chosen with an εeq

pl interval of approximately 0.0015. That approximates a DIC 
measurement where images are taken every second using a cross head speed of 1 mm/min.

In the next paragraphs, the virtually generated experimental data is used to assess the accuracy of three identification 
strategies in retrieving the reference strain hardening behaviour.
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Fig. 2. Identification of a multi-linear function.

2.2. Progressively characterising a multi-linear function

Progressively identifying a multi-linear function has a minimal computation time and has therefore been studied numer-
ically at first. To initiate, a single linear function is identified. Reaching a minimum, a second parameter is added following 
with one-by-one addition of a linear function each time a minimum has been reached. While identifying a second and an 
additional linear functions, only the last added linear function has been subjected to identification, which is in contrast with 
the work of Koc et al. [7], where all parameters remained subjected to identification. The proposed approach could result 
in a substantial reduction of the computation time because the FE simulation can restart every time from the last identified 
strain increment. Additionally, less FE iterations are needed to calculate the sensitivity matrix, because only one parameter 
is subjected to identification.

Adopting this approach results in the green dashed line plotted in Fig. 2. Each load step is visualised as a green circle. It 
can be seen that the reference strain hardening law is accurately identified up to an εeq

pl value of 0.02. Beyond this point, 
an increasing oscillation of linear functions is observed. Hence, the identification procedure has been stopped at the point 
where the deviation to the reference hardening law is improbable.

There are three main reasons for the increasing oscillation, all of which related to the number of plastically deforming 
elements in the FE simulations. First, during the initial linear function identification, all plastically deforming elements in 
the FE simulation are in the currently identified εeq

pl interval. This results in a best fit to the reference strain hardening law. 
While identifying the following, second linear function, this function needs to compensate for the error made by the first 
linear function. Because less elements have an εeq

pl value inside the second identifying εeq
pl interval than during the first 

one, less elements need to compensate for the error made during the first interval. This phenomenon is plotted as the red 
dashed line in Fig. 3, where a decreasing number of elements, of which their εeq

pl value lies inside the currently identified 
ε

eq
pl interval, is visualised as a function of εeq

pl . As a result, the parameter compensation is enlarged with decreasing numbers 
of elements inside the identifying εeq

pl interval, leading to the observed increasing parameter oscillation.
Second, while identifying the second and following linear functions, more elements are deforming plastically. The new 

plastically deforming elements deform first according to the first identified linear function. Consequently, an increasing 
amount of elements are present in the εeq

pl intervals former to the identifying interval, which enhances the error and results 
in another reason for increasing compensation. This phenomenon is shown as the solid black line in Fig. 3, and is the second 
reason for the enhancing error made during the former intervals, resulting in an increasing oscillation.

Finally, the plastically deforming elements inside each identifying linear function are not always evenly distributed within 
a plastic equivalent strain interval. Therefore, the weight of the linear function is not averaged over the characterising εeq

pl

interval. The distribution of some identified linear functions is plotted in Fig. 5 with the normalised εeq
pl range [−0.5; 0.5]

of the identifying linear function on the x-axis. It can be inferred that for the first linear function the number of elements 
is more or less evenly distributed. Such distribution would yield a proper identification as schematically shown in Fig. 4A. If 
the distribution in the second linear function is evenly distributed, also the second linear function will be identified properly, 
as schematically shown in Fig. 4B. Unlike the first linear function, the sixth linear function exhibits a decreasing amount 
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Fig. 3. Amount of FE elements within an ε
eq
pl interval.

Fig. 4. Characterising difference between an evenly and non-evenly distributed linear function.

of elements at the end of the interval, see Fig. 5. In the latter case, the highest weight of the linear function is located 
on the onset of the linear function, which would result in the red linear function shown in Fig. 4C. The characterisation of 
the seventh linear function will have to compensate for the errors made previously, especially if the distribution is again 
non-evenly distributed. The latter would result in an erroneous identification, as shown in Fig. 4D.

To limit the oscillation, the strain hardening behaviour has been limited to perfect plasticity. This is an acceptable limita-
tion since most materials do not exhibit softening. The result of this limitation can be observed in Fig. 2 as the blue dashed 
line. At small plastic strains, the reference hardening law is well approximated, while at larger strains, the error increases.

2.3. Progressively characterising a multi-linear function for each FE element separately

In this section, each FE element can have a different strain hardening behaviour. Consequently, a multi-linear function 
has been progressively identified for each FE element separately. The final strain hardening behaviour can be obtained by 
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Fig. 5. Distribution of the plastically deforming elements inside a linear function to characterise.

Fig. 6. Identification of a multi-linear function with different element properties.

averaging all the separate linear functions according to the number of elements imposed with a specific strain hardening 
behaviour. Further, to exclude a negative slope of a linear function, a constraint of perfect plasticity has been employed.

To initiate, an equal multi-linear function is characterised for all the FE elements up to point 1 in Fig. 6. Next, a perfect 
plastic function is identified (from point 1 up to 2) followed by an increasing strain hardening identification plotted as 
the dotted blue line. Because only some FE elements deform plastically within this εeq

pl interval (after point 2), only these 
elements are imposed with the increasing function. Subsequently, they retain their perfect plasticity value during the rest 
of the identification process. The FE elements that did not deform plastically in that εeq

pl interval retain their perfect plastic 
behaviour up to another increasing strain hardening is identified, as can be observed at point 3. However, at this point, 
an unrealistic strain hardening behaviour is identified, which can be attributed to the number of plastically deforming FE 
elements, as explained in section 2.2.

It can be concluded that progressively identifying a multi-linear function, or any other function via FEMU, will result in 
the identification of an oscillating strain hardening behaviour.
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2.4. Globally characterising a multi-linear function

In this section, a multi-linear function consisting out of eight linear functions will be identified simultaneously, denoted 
as a global approach. Kajberg et al. [11] used this approach; however, in this section, no constraints and more linear func-
tions over a smaller εeq

pl -interval will be used to have a more accurate approximation of the reference strain hardening 
behaviour. Only the post-necking deformation will be subjected to identification to limit the number of unknown parame-
ters. The pre-necking region can be obtained from the reference strain hardening behaviour in the numerical concept study, 
while during an actual experiment, the conventional method on a dog bone can be used.

The generally and in previous sections used optimisation algorithm for FEMU, namely Levenberg–Marquardt [7,12,15], is 
not adequate for identifying eight parameters simultaneously. Therefore, a Nelder–Mead algorithm will be used [20]. This 
minimisation algorithm is used to find the local minimum of a function with n variables. It is based on the comparison of 
function values at the n + 1 vertices of a generalised simplex, where the vertex can expand and contract till a minimum is 
found. The main disadvantage is that more iterations are needed to reach a minimum, while it is possible to identify more 
parameters simultaneously in comparison with the Levenberg–Marquardt algorithm. To minimise the number of iterations, 
an Adaptive Nelder–Mead Simplex (ANMS) algorithm [21] has been implemented and used in this work.

The identification procedure starts at an εeq
pl of 0.05, which is the point of maximum uniform elongation [12]. To have 

a good initial guess for the multi-linear function, the procedure starts with the characterisation of one linear function over 
the entire identifying εeq

pl interval, visualised as the dotted green line in Fig. 7. Next, the linear function has been divided 
into eight equidistant linear functions. Then, the procedure minimises simultaneously the eight linear functions, whereof 
the result is visualised as the red dashed line in Fig. 7. It can be seen that the function does not follow a smooth path, 
instead an oscillating curve around the reference curve has been characterised.

To reduce the oscillation, a smoothing operation can be applied, which is based on area conservation [22]. The method 
preserves the integral of the function, while iteratively smoothing the multi-linear function, which consists of m vectors 
p(ε

eq
pl , σ). The endpoint vectors are not modified by this method, which is an advantage for the starting vector, but a 

disadvantage for the ending vector due to the large deviation to the former linear functions. Therefore, the ending vector 
has been ignored during the smoothing procedure. Further, the smoothing operation proposed by Kuprat et al. [22] is only 
valid for vectors whereof the coordinates have the same order of magnitude. In case of a stress–strain curve, there is a 
substantial difference in order of magnitude between the stress and strain values. Therefore, they have been normalised 
by their Root Mean Square (RMS) value before starting the smoothing procedure, as can be found in Eq. (8). After the 
smoothing operation, the normalised smoothed vectors have been multiplied by their initial RMS values, shown in Eq. (14). 
Underneath, the modified algorithm is summarised.

1. Calculate the RMS value pRM S
2. Normalise all p:

pn
i = pi

pi,RM S
(8)

3. Do (i = 0, .., m − 4) up to convergence:
(a) Calculate the unit normal n̂ whereby ⊥ is a counterclockwise rotation of 90 degrees:

n̂ = (pn
i+3 − pn

i )
⊥

‖(pn
i+3 − pn

i )
⊥‖ (9)

with p⊥ = (−σ , εeq
pl )

(b) Calculate the area of the squad Ai :

Ai = 1

2

[
(pn

i+3 − pin)⊥(pn
i+2 − pin) + (pn

i+2 − pin)⊥(pn
i+1 − pin)

]
(10)

(c) Calculate the new height h:

h = −3

2

Ai

‖(pn
i+3 − pin)⊥‖ (11)

(d) Calculate the two new positions of pn
i+1 and pn

i+2:

pn
i+1 = 2

3
pn

i + 1

3
pn

i+3 + hn̂ (12)

pn
i+2 = 1

3
pn

i + 2

3
pn

i+3 + hn̂ (13)
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Fig. 7. Global identification of a multi-linear function using a p-model as reference strain hardening model.

Fig. 8. Global identification of a multi-linear function using a random function as the reference strain hardening model.

4. Recalculate the normalised positions to the actual values:

psmooth
i = pn

i pi,RMS (14)

The smoothed multi-linear function can be seen in Fig. 7 as the blue dash-dotted curve, where a satisfying agreement 
can be found with the reference curve.

To examine the level of adaptability of the global approach, a random strain hardening, which is plotted as the black 
solid line in Fig. 8, has been characterised. First, a single linear function has been identified, visualised as the green dotted 
line. Next, a multi-linear function has been identified and can be seen as the red dashed line in Fig. 8. Finally, the blue 
dash-dotted line represents the finally obtained smoothed multi-linear function. A satisfying agreement has been found 
using the proposed method and two different strain hardening behaviours. It can be concluded that the proposed method 
could be generic for the strain hardening identification of a large collection of materials.
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Table 1
Specification of the DIC parameters in ROI A.

DIC implementation Specification

Matching criteria ZNSSD
Interpolation Bicubic Interpolation
Transformation Affine
Subset 21 pixels
Step 1 pixel
Displacement resolution 6.33 · 10−4 pixels

Strain Smoothing Bilinear Interpolation
Strain window size 7 Datum points
Strain resolution 1.14 · 10−3

Fig. 9. Identification of a multi-linear function on a notched specimen of 10-mm-thick S690QL.

3. Experiments

3.1. Benchmark of the strain hardening behaviour

The global identification approach presented in section 2.4 identifies a multi-linear function starting from the point of 
maximum uniform elongation. Therefore, the strain hardening behaviour prior to that point needs to be known. Therefore, 
a tensile test has been performed on a dog bone specimen machined from a 10-mm-thick S690QL grade. A Zwick Z250 
tensile equipment has been used with a load capacity of 250 kN equipped with wedge grips. The test was displacement 
driven with a constant cross head speed of 0.5 mm/min to obtain a quasi-static tensile test. During the tensile test, a stereo 
DIC setup has been employed to obtain the surface displacement fields. The optimal settings for the DIC parameters can be 
found in Table 1. From the synchronised DIC measurement and load cell, the strain hardening behaviour can be calculated; 
it is shown in Fig. 9 as the solid black line.

To have an approximation for the post-necking strain hardening behaviour, a Bridgman experiment has been performed 
on a round bar specimen [23]. The corrected strain hardening behaviour is shown as the dashed black line in Fig. 9. It should 
be noted, however, that the Bridgman correction method can include substantial errors in the corrected strain hardening 
behaviour due to some difficult measurable parameters [12,24].

3.2. Global identification of a high-resolution multi-linear post-necking hardening model

Having measured the strain hardening behaviour prior to necking, the global identification procedure from section 2.4
can be applied on a 10-mm-thick S690QL HSS notched specimen. The tensile test has been performed using the same 
equipment and conditions as those mentioned in section 3.1.
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Fig. 10. Result of including noise in the numerical data during the global identification of a multi-linear function on a p-model strain hardening law.

Because DIC [18] is used to obtain the displacement fields, the displacement components near the grips have been 
extracted along the X and Y directions. Next, they are applied as boundary condition in a displacement-driven FE simula-
tion [12]. This FE simulation is then used in the FEMU procedure to identify the multi-linear function.

First, a linear function has been identified and is shown as the green dotted line in Fig. 9. Next, a multi-linear function 
has been identified and can be seen as the red dashed curve. Applying the proposed smoothing method on this curve 
results in the blue dash-dotted curve, which is an unrealistic strain hardening behaviour compared to the strain hardening 
behaviour obtained with the Bridgman correction method.

It can be inferred from Fig. 9 that the identified linear strain hardening function is a strongly oscillating curve, which 
has also been found in the numerical concept study. The oscillation magnitude, however, is substantially larger than in the 
numerical concept study of section 2.4. The latter is scrutinised in the next section.

3.3. Analysis of the oscillating curve

The numerical concept study on the global approach did not include noise associated with the DIC measurement and 
the analogue force output of the tensile equipment. Nevertheless, both are present during an actual experiment and could 
potentially lead to the oscillating curves. Therefore, DIC and force signal noise have been added to the numerical concept 
study. First, DIC noise has been added to the numerical displacement data which has been obtained from the experiment 
from section 3.2. A Gaussian noise distribution has been measured, with a mean value of −9.636 · 10−4 mm and a standard 
deviation of 5.6 · 10−4 mm. The global identification result is plotted in Fig. 10 as the blue dotted line. It can be seen that 
including the DIC noise amplifies the oscillation of the characterised multi-linear function.

Next to the DIC noise, noise on the force output signal is also present during an actual experiment. To obtain this noise 
distribution, 1000 data points have been measured, while the force level was preserved on the tensile equipment. Three 
different force levels have been measured, of which all the measurements revealed a normal distribution with a mean value 
of 112.25 N and a standard deviation of 597.51 N. As an example, the distribution of the force at 20 kN, together with the 
calculated normal distribution is plotted in Fig. 11.

This noise has been added to the numerical force signal in the numerical concept study. The characterised function in-
cluding DIC and force signal noise is plotted as the green dash-dotted line in Fig. 10. The same tendency can be found 
between the oscillation of the numerically characterised green dash-dotted line from Fig. 10 and the experimentally charac-
terised green dashed line from Fig. 9. It can be concluded that noise underlies the experimentally characterised oscillation 
of the multi-linear function.

4. Conclusion

Different approaches for the identification of a multi-linear post-necking strain hardening model have been scrutinised 
in a numerical concept study. First, progressively characterising a multi-linear function failed, because compensating the 
error made in the preceding linear functions was enhanced by the decreasing number of elements in the εeq

pl interval under 
identification. Furthermore, the non-evenly distribution of the plastically deforming FE elements inside some of the εeq
pl
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Fig. 11. Measurement of the noise on the force output signal.

intervals also resulted in an increasing oscillation of the multi-linear function. Constraining the multi-linear functions to a 
minimum of perfect plasticity did not resolve the oscillating problem.

The numerical concept study showed that a global identification approach in which all linear functions are simultane-
ously identified yields sufficiently accurate results. Application of this approach to an actual experiment, however, resulted 
in a strongly oscillating strain hardening behaviour. It has been shown that the DIC and force signal noise underlay this 
problem. We conclude that the global identification of a high-resolution multi-linear post-necking strain hardening model 
using FEMU will be difficult to apply experimentally, because noise will always be present during an actual experiment.
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