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The initial plastic anisotropy parameters are conventionally determined from the Lankford 
strain ratios defined by rψ = ε

pψ
22

ε
pψ
33

(ψ being the direction of the loading path). They are 
usually considered as constant parameters that are determined at a given value of the 
plastic strain far from the early stage of the plastic flow (i.e. equivalent plastic strain 
of εp

eq = 0.2%) and typically at an equivalent plastic strain in between 20% and 50% of 
plastic strain failure (or material ductility). What prompts to question about the relevance 
of this determination, considering that this ratio does not remain constant, but changes 
with plastic strain. Accordingly, when the nonlinear evolution of the kinematic hardening 
is accounted for, the Lankford strain ratios are expected to evolve significantly during the 
plastic flow.
In this work, a parametric study is performed to investigate the effect of the nonlinear 
kinematic hardening evolution of the Lankford strain ratios for different values of the 
kinematic hardening parameters. For the sake of clarity, this nonlinear kinematic hardening 
is formulated together with nonlinear isotropic hardening in the framework of anisotropic 
Hill-type (1948) yield criterion. Extension to other quadratic or non-quadratic yield criteria 
can be made without any difficulty. This parametric study is completed by studying the 
effect of these parameters on simulations of sheet metal forming by large plastic strains.

© 2018 Published by Elsevier Masson SAS on behalf of Académie des sciences. This is an 
open access article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Notation

– RFF: Rotating frame formulation,
– TIP: Thermodynamics of the irreversible processes
– First-rank tensor or vector: �x, xi ,
– Second-rank tensor: x, xij ,
– Fourth-rank tensor: x, xijkl ,
– Second-rank identity tensor: 1, δi j ,
– Fourth-rank symmetric identity tensor: I , Ii jkl = 1

2 (δikδ jl + δilδ jk),
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– Fourth-rank symmetric deviatoric identity tensor: ID, ID
i jkl = 1

2 (δikδ jl + δilδ jk) − 1
3 δi jδkl ,

– Transpose of second-rank tensor: xᵀ , (xij)
ᵀ = x ji ,

– Symmetric and skew-symmetric parts of second-rank tensor: x = [x]S + [x]A

[x]S = 1

2

(
x + xᵀ

)
, [x]A = 1

2

(
x − xᵀ

)
,

– Hydrostatic part of second-rank tensor: [x]H = 1
3 tr(x)1,

– Deviatoric part of second-rank tensor: [x]D = x − [x]H,
– Inverse of second-rank tensor: x−1, x−1

i j ,

– Inverse of fourth-rank tensor: x−1, x−1
i jkl ,

– Time derivative of second-rank tensor: ẋ, ẋi j ,
– Simple contraction of two second-rank tensors: zi j = xik ykj ,
– Double contraction of two second-rank tensors: z = x : y = xij y ji ,
– Tensorial product of two second-rank tensors: z = x ⊗ y, zi jkl = xij ykl ,
– The trace of the second-rank tensor (1st invariant): xI = tr(x) = xkk ,
– Second invariant of the second-rank tensor: xI I = [tr2(x) − tr(x2)]/2,
– Determinant of the second-rank tensor (3rd invariant): det(x),
– Rotated second-rank tensor (with rigid body rotation Q ): x̄ = Q ᵀ.x.Q , x̄i j = Q ki Q lj xkl ,
– Rotated fourth-rank tensor between isocline and current configurations: x̄ = (Q ᵀ ⊗ Q ) : x : (Q ⊗ Q ᵀ), or x̄i jkl =

Q ri Q sj Q pk Q qlxi jkl .

1. Introduction

Lightweight structural components, needed for many industrial sectors as automotive and aerospace industries, require 
advanced High Strength Materials (AHSM) such as steels and aluminum alloys. However, because of their low ductility 
at room temperature, the forming of such types of materials by deep drawing presents several difficulties. Among these 
difficulties, we find springback, which appears at the end of the deep drawing operation, when the stamping tools are 
removed. Considerable efforts have been made to predict numerically, with the best accuracy, the springback in sheet metal 
forming. For a better numerical prediction of the springback, several factors have been studied. Among them, the most 
important one is the development of constitutive equations to predict the plastic flow under various loading paths as 
can be found in [1–11]. The mechanical responses of the high-strength materials under complex loading paths as reverse 
loading–unloading–reloading must be considered for accurate springback simulations involving accurate modeling of the 
plastic flow and the related various types of work hardening as well as initial and induced anisotropies. In fact, the metal 
sheets subjected to deep drawing locally exhibit complex loading paths due mainly to bending–unbending. Therefore, the 
behavior of the material under loading–unloading–reverse loading must be accurately predicted, in addition to the material 
behavior under usual monotonic simple (1D) loading paths. Because these strain properties cannot be captured by traditional 
isotropic hardening models, the current tendency is to consider kinematic hardening models. A better description of the 
stress–strain responses under reverse loading was then proposed by Armstrong and Frederick [12], introducing a non-linear 
description of the kinematic hardening with the addition of a dynamic recovery terms. This model has been improved 
further by Chaboche [13] to describe the ratcheting effects during cyclic loading. Teodosiu et al. [14,15] used a kinematic 
hardening based on a tensor description of dislocation structures growing under the change of loading paths or change of 
strain path to better reflect the microscopic changes that occur during plastic flow.

Various kinematic hardening models have been implemented to be used in the FEM simulations of sheet metal forming 
in order to predict as accurately as possible the formability and springback phenomena [3,4,7–11,16–22]. Other approaches 
have been developed based on classical nonlinear kinematic hardening combined with the distortion of the subsequent 
yield surfaces [23–30]. More recently, without using the concept of kinematic hardening, a uniform yield surface based on 
an anisotropic hardening (HAH) was proposed by Barlat et al. [1,2].

Moreover, considering kinematic hardening in the context of anisotropic plastic flow brings out the issue of identification 
of the anisotropy parameters. Indeed, the latter are conventionally determined using either the Lankford (strain) and/or 
stress ratios [17,20,31–41]. When making this identification, it is usual to assume that these coefficients are constant during 
plastic flow. This assumption is valid for models taking into account isotropic hardening. However, when accounting for 
kinematic hardening, this assumption is no longer valid, as it has been shown in the work by Wu et al. [21].

In this paper, the sensitivity of Lankford strain ratios evolution according to kinematic hardening parameters and its 
impact on the simulation of thin sheets forming processes is parametrically studied. In the second section, the theoretical 
framework for the formulation, under large plastic strains, of the anisotropic elastic–plastic constitutive equations accounting 
for nonlinear mixed (isotropic and kinematic) hardening is presented. In this context, the anisotropy of the plastic flow and 
that of the yield function are unified by the same anisotropy parameters. In the third section an exhaustive sensitivity 
analysis of the evolution of Lankford ratios with respect to the kinematic hardening parameters is performed through a 
parametric study.
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Table 1
State and associated variables.

Phenomena State variables Associated variables

Elastoplasticity εe
i j or ε

p
i j σi j

Kinematic hardening αi j Xi j

Isotropic hardening r R

2. Presentation of the plastic anisotropic constitutive equations with kinematic hardening

This model is defined in the framework of large plastic strain assumption for which elastoplastic kinematics is defined 
using the classical multiplicative decomposition of the total gradient Fij into elastic F e

i j and plastic F p
i j parts, i.e. Fij = F e

ik F p
kj

[42–47]. To satisfy the objectivity requirement including plastic anisotropy, the RFF (Rotated Frame Formulation) is used, for 
which all the mechanical variables and their evolution equations are formulated on an intermediate locally rotated “isocline” 
configuration. This specific configuration conserves the initial orientation of material directions, which are defined by the 
rigid body rotation tensor Q ij with respect to the actual configuration [17,48,49], so that all the tensorial fields defined on 
the actual configuration (like tensors σi j , εe

i j , αi j , Xij, . . .) are transported using the tensor Q ij to and from the intermediate 
“isocline” configuration by x̄i j = Q ki xkl Q lj . If the assumption of small elastic strains, which is verified for most metallic 
materials, is adopted, then this leads to the additive decomposition of the total strain rate tensor according to [17,48,49]:

Dij = ε
e J
i j + Dp

i j (1)

In this work, the framework of thermodynamics of irreversible processes (TIP) is used to define the overall constitutive 
equations of anisotropic elastoplastic model under isothermal conditions. All phenomena considered are represented by a 
pair of state variables. As showed in Table 1, the following pairs of state variables are introduced: (i) (εe

i j, σi j) represents the 
elastoplastic flow; (ii) (αi j, Xij) represents the kinematic hardening depicting the translation of the yield surface center, and 
(iii) (r, R) represents the isotropic hardening depicting the change in the cross section of the yield surface.

In this framework of isothermal time-independent plasticity, the Helmholtz free energy Ψ = Ψ (εe
i j, αi j, r), positive and 

convex function of all the strain-like state variables in the strain space, is taken as a state potential [48,50,51]. Assuming 
that the plastic strain and the hardening have no effect on the initial isotropic elastic properties of the material, the state 
potential can be additively decomposed as follows:

ρΨ = ρΨ e + ρΨ p = 1

2
εe

mnΛmnpqε
e
pq + 1

3
Cαmnαmn + 1

2
Q r2 (2)

The stress-like variables are easily derived from the state potential according to:

σi j = ∂ρΨ

∂εe
i j

= 2μeε
e
i j + λeε

e
kkδi j (3)

Xij = ∂ρΨ

∂αi j
= 2

3
Cαi j (4)

R = ∂ρΨ

∂r
= Q r (5)

Note that Eqs. (3)–(5) are extracted from the Clausius–Duhem inequality (combination of the first and second principles 
of thermodynamics) together with the residual dissipation inequality Φ = σi j Dp

i j − Xijα̇i j − Rṙ ≥ 0 to be fulfilled by all 
the constitutive equations (thermodynamic admissibility). In this inequality, the stress-like variables are given by the state 
relations (3)–(5), while their associated flux variables (Dp

i j , α̇i j , and ṙ) have to be derived from a dissipation potential in 
such a manner that the above Clausius–Duhem inequality is identically satisfied. To achieve that, and in order to introduce 
nonlinear kinematic and isotropic hardenings in the framework of non-associative plasticity, a yield function f (σi j, Xij, R)

and a plastic potential F (σi j, Xij, R) are introduced, both positive and convex functions of their main arguments in the stress 
space [48,52,53]. From these functions, the well-known evolution relationships are obtained by the generalized normality 
rule.

In this study, the quadratic Hill [38] yield function is used:

f (σkl, Xkl, R) = ‖σkl − Xkl‖H − R − σy = 0 (6)

F (σkl, Xkl, R) = ‖σkl − Xkl‖H − R + 3a

4C
Xkl Xkl + b

2Q
R2 (7)

where ‖σ − X‖H =
√

(σ D
i j − Xij)Hijkl(σ

D
i j − Xij) is the classical quadratic anisotropic Hill [38] equivalent stress characterized 

by a purely deviatoric operator Hijkl having six anisotropy parameters F , G, H, L, M , and N . The parameters a and b govern 
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the nonlinearity of the kinematic and isotropic hardening, respectively. Note that a huge number of equivalent stresses have 
been proposed in the literature in order to better describe initial and induced anisotropies [34,35,39,54–60]. Note that in 
the context of the non-associative normality rule, the equivalent stresses in plastic potential and yield criterion are not the 
same [17,61–66]. This last assumption gives an important freedom to better describe plastic anisotropy, but this induces a 
more important number of material parameters. For example, in [17], the same Hill [38] equivalent stresses have been used, 
but with two different anisotropic operators giving 12 material parameters instead of 6 parameters in the present case. For 
the sake of simplicity and to make easy the parametric study, in this paper we limit ourselves to non-associative plasticity 
theory, but with the associative normality rule by taking the same stress norm as in Eqs. (6) and (7).

By applying the well-known normality rule, the following flux variables, which define the evolution of the dissipative 
phenomena, can be easily derived [48,51,53]:

Dp
i j = λ̇

∂F

∂σi j
= λ̇

Hijkl(σ
D
kl − Xkl)

‖σ − X‖H
= λ̇np

i j with np
i j = Hijkl(σ

D
kl − Xkl)

‖σ − X‖ (8)

α̇i j = −λ̇
∂F

∂ Xij
= λ̇

(
np

i j − aαi j
) = Dp

i j − λ̇
2

3Xsat
Xij (9)

ṙ = −λ̇
∂F

∂ R
= λ̇(1 − br) = λ̇

(
1 − R

Rsat

)
(10)

where Xsat = C/a and Rsat = Q /b are asymptotic values, under simple tension, of the kinematic and isotropic internal 
stresses, respectively, representing the saturation of these two hardening phenomena. The plastic multiplier λ̇ in Eqs. (8), 
(9) and (10) is determined using the consistency condition ḟ = 0 if f = 0, giving in final:

λ̇ = 2μenp
kl Dkl

(2μe + 2
3 C)np

kln
p
kl − C

Xsat
np

kl Xkl + Q − Q
Rsat

R
(11)

3. Identification methodology of plastic anisotropy parameters

Classically, the determination of the anisotropic plastic parameters F , G, H, L, M , and N is done using either Lankford 

or strain ratios (rψ = ε
pψ
22

ε
pψ
33

and rb = Dp
22

Dp
11

), or stress ratios (Sψ = σψ

σ 0 ) measured using several tensile tests along the direc-

tion ψ with respect to the material anisotropic directions, and equi-biaxial tensile test. Note that these two ratios cover 
the different anisotropies: while Lankford ratios describe plastic flow anisotropy, the stress ratios concern the yield surface 
anisotropy. These two different parameters are unified in the context of standard associative plasticity. However, this unifica-
tion poses problems if the experimentally measured parameters reflect different anisotropies. Precisely, this fact is originally 
the precursor of non-associative plasticity models leading to separate plastic flow and yield stress anisotropies as can be 
found in [17,61–66]. Although this constitutes an important open problematic, we focus in this paper on another important 
identification problem. We assume that the unification of the yield surface and plastic flow anisotropies is proved.

The problem that attracts our attention is the fact that the Lankford ratios (rψ = ε
pψ
22

ε
pψ
33

and rb = ε
p
22

ε
p
11

) are experimen-

tally measured at large plastic strains (i.e. between 20% to 50% failure strain) and used in the identification of anisotropic 
parameters with often neglecting their expected dependencies with respect to especially kinematic hardening.

Based on Eqs. (4), (8), and (9), without neglecting the hardening effect and considering a plane stress state, the expres-
sions of the Lankford ratios for the case of a tensile test (with the tensile stress σ11 = σ ) realized along direction ψ with 
respect to material anisotropic directions are given by:

rψ = ε
pψ

22

ε
pψ

33

= −[(G + H)(σ cos2 ψ − X11) − H(σ sin2 ψ − X22) − G(X11 + X22)] sin2 ψ

G(σ cos2 ψ − X22) + F (σ sin2 ψ − X11)

− [(H + F )(σ sin2 ψ − X22) − H(σ cos2 ψ − X11) − F (X11 + X22)] cos2 ψ

G(σ cos2 ψ − X22) + F (σ sin2 ψ − X11)

+ 2N(σ cosψ sinψ − X12) cosψ sinψ

G(σ cos2 ψ − X22) + F (σ sin2 ψ − X11)
(12)

In Eq. (12), Xij are the kinematic hardening components with respect to the local (R, T , N) material frame. These compo-
nents can be considered with non-zero initial values, and their evolutions are obtained by combining equations (4), (8), and 
(9) giving:

Ẋi j = λ̇

(
2

Cnp
i j − 2

Caαi j

)
= 2

C Dp
i j − λ̇aXij = 2

C Dp
i j − λ̇C

Xij (13)

3 3 3 3 Xsat
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Fig. 1. An example of kinematic hardening stresses generated by the rolling process. (a) Equivalent plastic strain (kinematic hardening strain S D V 7 = α11) 
during the rolling process. (b) Evolution of the kinematic stress tensor components during the rolling process.

Note that the initial hardening state appearing in Lankford’s ratios (Eq. (12)) before plastic strain occurs is generated by 
prior metal forming processes, as rolling of a metallic sheet. An example of rolling process simulation for 50% thickness 
reduction is provided in Fig. 1. In Fig. 1a is shown the homogeneous distribution of the kinematic hardening strain α11 at 
the end of the rolling process. The temporal evolution of the kinematic hardening stress components in point A (see Fig. 1a) 
is drawn in Fig. 1b. From this figure, it is observed that the most significant components of the kinematic hardening tensor 
with respect to the rolling material frame are X11 and X33. Accordingly, the deviatoric back stress tensor after rolling can 
be reduced to the following form:

[Xij] = X0

⎛
⎝ 1 0 0

0 0 0
0 0 −1

⎞
⎠ (14)

Attention is now focused on the particular orientations ψ = {0◦, 45◦, 90◦}, for which Eq. (12) reduces to:

r0 = H(σ − X11) + F X11 + (H + 2F )X22

G(σ − X22) − F X11
(15)

r45 = N(σ − 2X12) − (G + F ) σ
2 + (2G + F )X11 + (G + 2F )X22

G(σ − 2X22) + F (σ − 2X11)
(16)

r90 = H(σ − X22) + (2G + H)X11 + G X22

−G X22 + F (σ − X11)
(17)

It is worth noting that, when neglecting the kinematic hardening effect, Eq. (12) reduces to:
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Table 2
Virtual material parameters.

E (GPa) υ σy (MPa) C (MPa) Xsat (MPa) Q (MPa) Rsat (MPa)

70 0.3 100 100 < C < 10 000 10 < Xsat < 100 1000 100

Table 3
Virtual anisotropic parameters.

F G H L M N

Aniso1 0.20 0.40 0.60 1.00 1.00 1.00
Aniso2 0.42 0.62 0.38 2.60 2.60 2.60
Aniso3 0.74 0.55 0.45 1.23 1.23 1.23

rψ = ε
pψ
22

ε
pψ
33

= (4H + G + F − 2N) cos4 ψ + (2N − 4H − F − G) cos2 ψ + H

(G − F ) cos2 ψ + F
(18)

When neglecting kinematic hardening in Eq. (18), the strain ratios reduce to the following well-known classical forms:

r0 = H

G
, r45 = N

G + F
− 1

2
, r90 = H

F
(19)

4. Parametric study of the effect of the kinematic hardening parameters on strain ratio evolution

This investigation aims to analyze the effect of kinematic hardening on Lankford’s ratios based on the use of the virtual 
values of material parameters defined in Tables 2 and 3. Typical evolutions of the kinematic back stresses versus the equiva-
lent plastic strain predicted by the model using these virtual parameters are shown in Figs. 2b and 2c. The three anisotropy 
parameters of Table 3 are chosen such as to obtain a strain ratio greater than rψ

iso = 1 for Aniso1, less than rψ

iso = 1 for Aniso3 
and oscillating around rψ

iso = 1 for Aniso2, as shown in Fig. 2a. These evolutions reflect a strong initial anisotropy for zero 
plastic strain according to Eqs. (15) and (16).

In this parametric study, we analyze the sensitivity of the material’s response to the following parameters:

• kinematic hardening modulus C : 100 (MPa) < C < 10 000 (MPa),
• saturated stress level Xsat: 10 (MPa) < Xsat < 300 (MPa),
• kinematic hardening fraction %X : 0% ≤ %X = Xsat/(Xsat + Rsat) ≤ 100%,
• initial kinematic hardening fraction %X0: 0 ≤ %X0 = (X0/Xsat) ≤ 10%.

The lower and upper bounds for these parameters are chosen in such a manner that the targeted phenomena (anisotropy, 
Lankford’s ratios variation) are significantly exhibited. Indeed, the evolutions of Lankford’s ratio versus εp

eq and ψ according 
to Eq. (12) for the three considered anisotropies for the kinematic hardening fraction %X are given in Figs. 3 to 5. In these 
figures are provided the evolutions of Lankford’s ratios with respect to plastic strain and material orientation ψ as well as 
their dependencies on kinematic hardening parameters for Aniso1 (Fig. 3), Aniso2 (Fig. 4), and Aniso3 (Fig. 5). These figures 
clearly show an increasing effect of the kinematic hardening fraction on the evolution of Lankford’s ratios as the parameter 
%X increases. Indeed, for %X = 0%, no effect is observed on the evolution of Lankford’s ratios, which remains constant when 
the plastic strain increases as expected from Eq. (15). The effect remains small when the kinematic hardening amount is 
small (case %X = 5% or even %X = 50% in Figs. 3b, 4b, and 5b), leading to justify the classical assumption of constant 
Lankford ratios. However, when the kinematic hardening amount is high (%X = 95%), significant changes of the Lankford 
ratios evolution are observed (Figs. 3c, 4c, and 5c).

The effect of the kinematic hardening modulus C on the Lankford ratios is depicted in Figs. 6–8 for a fixed proportion 
of kinematic hardening (%X = 50%). The increase of the kinematic hardening modulus C leads to an increase in the slope of 
Lankford ratios evolution. For example, for Aniso1 (Fig. 6) when C = 100 MPa, the decrease of r90 (maximum) is quasilinear 
between 3.0 and 2.7 (Fig. 6a) for an equivalent plastic strain of 33%, while for C = 10,000 MPa this decrease is observed 
between 3.0 and 2.0 (Fig. 6c) for an equivalent plastic strain of about 9%. However, for Aniso3 (Fig. 8) when C = 100 MPa, 
r45 (maximum) increases slightly between 0.45 and 0.49 (Fig. 8a) for an equivalent plastic strain of 33%, while for C =
10,000 MPa, r45 increases abruptly between 0.45 and 0.65 (Fig. 8c) for an equivalent plastic strain of about 9%.

The parameter Xsat plays a similar role as that of %X , and defines also the saturation level of the Lankford ratios, as can 
be remarked from Figs. 9–11. As shown by these figures, when Xsat increases, the evolution of the Lankford ratio increases, 
and its saturation is reached for greater plastic strain values.

Finally, the initial state of kinematic hardening, described by the parameter %X0, leads to an important increase of 
Lankford ratios near zero plastic strain (see Figs. 12–14). Due to the form of the initial state of kinematic hardening (see 
Fig. 1), Lankford’s ratios mainly increase in the transverse orientation according to the rolling direction (i.e. for orientations 
45◦ ≤ ψ ≤ 90◦).
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Fig. 2. Responses of the model using the virtual values of the material parameters in Table 2. (a) Strain ratios evolutions according to material orientation 
ψ of the three considered anisotropies for zero plastic strain (εp

eq = 0). (b) Effect of varying parameter C on the evolution of the kinematic hardening back 
stress according to the plastic strain with fixed saturated value Xsat = 100 MPa. (c) Effect of varying parameter Xsat on the evolution of the kinematic 
hardening back stress according to the plastic strain with fixed parameter C = 1000 MPa.
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Fig. 3. Effect of the kinematic hardening fraction %X on the evolution of rψ for the Aniso1 case with taking constant the remaining parameters C =
1000 MPa, Xsat = 100 MPa, and %X0 = 0%.
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Fig. 4. Effect of the kinematic hardening fraction %X on the evolution of rψ for the Aniso2 case with taking constant the remaining parameters C =
1000 MPa, Xsat = 100 MPa, and %X0 = 0%.
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Fig. 5. Effect of the kinematic hardening fraction %X on the evolution of rψ for the Aniso3 case with taking constant the remaining parameters C =
1000 MPa, Xsat = 100 MPa and %X0 = 0%.
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Fig. 6. Effect of the kinematic hardening modulus C on the evolution of rψ for the Aniso1 case with taking constant the remaining parameters Xsat =
100 MPa, %X = 50%, and %X0 = 0%.
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Fig. 7. Effect of the kinematic hardening parameter C on the evolution of rψ for the Aniso2 case with taking constant the remaining parameters Xsat =
100 MPa, %X = 50%, and %X0 = 0%.
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Fig. 8. Effect of the kinematic hardening parameter C on the evolution of rψ for the Aniso3 case with taking constant the remaining parameters Xsat =
100 MPa, %X = 50%, and %X0 = 0%.
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Fig. 9. Effect of the kinematic hardening parameter Xsat on the evolution of rψ for the Aniso1 case with taking constant the remaining parameters C =
1000 MPa, %X = 50%, and %X0 = 0%.
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Fig. 10. Effect of the kinematic hardening parameter Xsat on the evolution of rψ for the Aniso2 case with taking constant the remaining parameters 
C = 1000 MPa, %X = 50%, and %X0 = 0%.
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Fig. 11. Effect of the kinematic hardening parameter Xsat on the evolution of rψ for the Aniso3 case with taking constant the remaining parameters 
C = 1000 MPa, %X = 50%, and %X0 = 0%.
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Fig. 12. Effect of the initial kinematic hardening fraction %X0 on the evolution of rψ for the Aniso1 case with taking constant the remaining parameters 
C = 1000 MPa, Xsat = 100 MPa, and %X = 50%.
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Fig. 13. Effect of the initial kinematic hardening fraction %X0 on the evolution of rψ for the Aniso2 case with taking constant the remaining parameters 
C = 1000 MPa, Xsat = 100 MPa, and %X = 50%.
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Fig. 14. Effect of the initial kinematic hardening fraction %X0 on the evolution of rψ for the Aniso3 case with taking constant the remaining parameters 
C = 1000 MPa, Xsat = 100 MPa, and %X = 50%.
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Fig. 15. Summary of the effect of the kinematic hardening parameters on the Lankford ratios.

The results of this parametric study are summarized in Fig. 15, where the effect of each kinematic hardening parameters 
(C , %X , Xsat, %X0) on the evolution of Lankford’s ratios is highlighted.

In the light of these results, one can conclude that accounting for kinematic hardening significantly reduces the impact 
of initial anisotropy, as clearly shown by the results displayed in Figs. 3–5. For Aniso1, defined by strain ratios greater than 
rψ

iso = 1 (see Figs. 3, 6, and 9), a decrease in the Lankford ratio mainly impacts the maximum values associated with the 
neighborhood of orientation ψ = 90◦ . The same tendency is observed for the case of Aniso2 (see Figs. 4, 7, and 10), for 
which it is observed that the decrease of the Lankford ratios mainly impacts the maximum values associated with the 
neighborhood of orientation ψ = 45◦ . In addition, for this case, we observe also a high increase of strain ratios having less 
than rψ

iso = 1 minimum values located on the neighborhood of orientation ψ = 0◦ . However, for the case of Aniso3, for 
which all the strain ratios values are less than rψ

iso = 1, it is observed an important increase of the values for the minimum 
values situated in the neighborhood of orientation ψ = 50◦ (see Figs. 5, 8, and 11).

In Fig. 16 we displayed, for the three considered anisotropies, the sensitivity of the average Lankford ratio r̄ψ (average 
relative to the orientation ψ : r̄ψ = 1

90

∫ ψ=90
ψ=0 r(ψ)dψ ) to kinematic hardening parameters. For the three arbitrary chosen 

anisotropies, it is observed that the increase of the kinematic hardening parameters (%X , C , and Xsat) systematically induces 
a decrease in the average Lankford ratio for Aniso1 and Aniso2 as well as an increase for Aniso3. In Fig. 16a, we observe 
that an increase of the kinematic hardening modulus C leads to an increase in the average evolution of the Lankford ratios 
(increase for Aniso1 and Aniso2, and decrease for Aniso3). It is also observed that these evolutions reach a saturation level 
starting from C higher than 2000 MPa (C two times greater than the isotropic hardening modulus Q = 1000 MPa).

Fig. 16b shows also that the increase of the kinematic hardening saturation value Xsat contributes to average Lankford 
ratio evolution. A saturation stage starting from Xsat > 200 MPa (i.e. Xsat two times greater than the initial yield stress value 
σy = 100 MPa) is also observed. From Fig. 16c it is noted, as expected, that the increase of kinematic hardening amount 
from 0% to 100% continually induces an evolution of the average Lankford ratio, which seems to tend to the isotropic strain 
ratio value rψ

iso = 1.
Accordingly, it can be concluded that the evolution of kinematic hardening tends to annihilate the effect of the initial 

plastic anisotropy. Conversely, considering the initial state of kinematic hardening, having previous eigendirections quite 
different from those induced in tensile test, tends to accentuate the initial anisotropy (Fig. 16d). In this figure, we observe 
that when considering an initial state with 10% kinematic hardening, the average Lankford value becomes twice greater.

5. Conclusions

The main goal of this paper was to study the effect of kinematic hardening on the determination of initial anisotropy 
parameters. Particularly, we analyzed the effect of kinematic hardening on the Lankford ratios’ evolution. This latter is often 
used at large plastic strain to determine the initial anisotropy parameters without taking care of its possible evolution 
with the increase of plastic strains. We have considered, for the sake of simplicity, a Hill [38] anisotropic plastic model 
in the framework of standard non-associative plasticity theory with mixed non-linear kinematic and isotropic hardenings. 
Through a parametric study, we have shown that accounting for kinematic hardening induces an important effect on the 
Lankford ratios’ evolutions. We found that the evolution of kinematic hardening reduces the severity of initial anisotropy, 
and conversely that its initial state increases it. This suggests the need to completely review the way of the identification 
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Fig. 16. Effect of the kinematic hardening parameters on the average Lankford ratio r̄ψ .
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of anisotropic parameters in the presence of kinematic hardening. The evolution of Lankford ratios with the plastic strain 
should be considered, and not only its singular values for particular strains.

On the other hand, this analysis on the sensitivity of the evolution of Lankford’s ratio with respect to kinematic hardening 
parameters suggests a new way of exploring the tensile test in the identification of kinematic hardening parameters. Indeed, 
it is well known that the identification of the kinematic hardening parameters necessarily needs the realization of cyclic 
tests, usually cyclic shear tests in the case of metallic thin sheets. If we can identify the kinematic hardening parameters 
just by using the tensile test, this will allow considerable economy in experimental tests.
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