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Various sources of uncertainty can arise in metal forming processes, or their numerical 
simulation, or both, such as uncertainty in material behavior, process conditions, and 
geometry. Methods from the domain of uncertainty quantification can help assess the 
impact of such uncertainty on metal forming processes and their numerical simulation, and 
they can thus help improve robustness and predictive accuracy. In this paper, we compare 
stochastic methods and interval methods, two classes of methods receiving broad attention 
in the domain of uncertainty quantification, through their application to a numerical 
simulation of a sheet metal forming process.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Various sources of uncertainty can arise in metal forming processes, or their numerical simulation, or both, such as un-
certainty in material behavior, uncertainty in process conditions including friction properties, and uncertainty in geometrical 
properties. Here, uncertainty can refer to manufacturing variability in material behavior, process conditions, and geometry, 
or it can refer to the imperfect representation or incomplete knowledge of these properties in a numerical simulation. The 
presence of such sources of uncertainty can raise the challenge of taking into account such uncertainty in the design, the 
control, the optimization, the maintenance, and so forth of metal forming processes, as well as in their numerical simulation.

In the domains of uncertainty quantification and computational mechanics, new methods for the analysis and manage-
ment of uncertainty are under development, see, for instance, [1–12]. These developments are very rich, and two classes of 
new methods receiving broad attention are the stochastic methods and the interval methods. On the one hand, stochastic 
methods represent uncertainty by means of probability distributions, and they rely on the probability theory to determine 
the impact of sources of uncertainty on quantities that depend on them. On the other hand, interval methods represent 
uncertainty by means of intervals, and they rely on interval arithmetic, or optimization theory, or both to determine the 
impact of sources of uncertainty on quantities that depend on them. Around these core tasks of representing uncertainty 
and determining the impact of sources of uncertainty on quantities that depend on them, research in uncertainty quan-
tification and computational mechanics builds new methods for accounting for uncertainty in design, control, optimization, 
maintenance, and many other engineering tasks. These new methods from the domains of uncertainty quantification and 
computational mechanics can be usefully applied to the analysis and management of uncertainty in metal forming processes 
and their numerical simulation.
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In this paper, we compare the stochastic and interval methods through their application to a numerical simulation of 
a sheet metal forming process. Our intent is to provide some insight into how stochastic and interval methods handle the 
core tasks of representing uncertainty and determining the impact of sources of uncertainty on quantities that depend 
on them. The integration of these core tasks in new methods for design, control, optimization, maintenance, and other 
engineering tasks under uncertainty is beyond the scope of this paper. Further, we note that whereas we had already 
applied in two previous papers [9,13] stochastic methods to a metal forming problem with uncertain material properties, 
we apply here stochastic and interval methods to a metal forming problem involving not only uncertain material properties 
but also uncertain friction and geometrical characteristics.

This paper is organized as follows. First, in Secs. 2 and 3, we provide concise overviews of the stochastic and interval 
methods. Then, in Sec. 4, the core of this paper, we compare them in the context of the quantification of uncertainty in a 
numerical simulation of a sheet metal forming process.

2. Stochastic methods

Let us assume that we consider a mechanical problem that lends itself well to a representation in terms of a trans-
formation of input parameters into a quantity of interest. Specifically, let us assume that there are a finite number, 
say d, of vector-valued input parameters, which we denote by x1, . . . , xd , with x1 = (x1

1, . . . , x
1
s1

) of dimension s1 up to 
xd = (xd

1, . . . , x
d
sd

) of dimension sd , that are transformed through a function, which we denote by f , into a scalar quantity of 
interest, which we denote by y:

y = f (x1, . . . , xd) (1)

please note that in these expressions, the superscripts serve to index the vector-valued input parameters. For example, in 
a mechanical problem involving a metal forming process, one of the vector-valued input parameters, say x1, could collect 
material properties, another vector-valued input parameter, say x2, could collect friction properties, another vector-valued 
input parameter, say x3, could collect geometrical properties, and so forth; the quantity of interest y could represent a 
property of the deformed piece such as a magnitude of a residual stress or a displacement component at a certain location; 
and the function f could represent how this quantity of interest depends on these vector-valued input parameters in this 
metal forming process or a numerical simulation of it.

Let us assume that the vector-valued input parameters are uncertain. Within this context, we discuss below some of the 
key concepts of how stochastic methods allow the uncertainty in the vector-valued input parameters to be represented, its 
impact on the quantity of interest to be determined, and a sensitivity analysis to be carried out.

We note that this section provides only a concise overview; we refer the reader to [2,4,5,7–12] and references therein 
for more comprehensive texts. Further, we note that although we consider for the sake of conciseness a context involving 
uncertain scalars and vectors, stochastic methods are not limited to uncertain scalars and vectors and can readily deal with 
uncertain matrices, fields, functions, operators, and other quantities.

2.1. Characterization of uncertainty

Stochastic methods account for sources of uncertainty in a mechanical problem by representing them by using prob-
ability distributions. As such, the application of stochastic methods typically begins with identifying suitable probability 
distributions for these sources of uncertainty from available information, a task called the characterization of uncertainty.

In the present context, stochastic methods entail the representation of the uncertain vector-valued input parameters by 
(vector-valued) random variables, which we denote by X1 = (X1

1, . . . , X1
s1

) up to Xd = (Xd
1, . . . , Xd

sd
); please note that it is 

customary in the probability theory [14] to denote random variables by using uppercase letters. We denote their probability 
distributions by πX1 = π(X1

1 ,...,X1
s1

) up to πXd = π
(Xd

1,...,Xd
sd

)
, respectively:

X1 ∼ πX1 , . . . , Xd ∼ πXd (2)

here, with 1 ≤ j ≤ d, we denote by X j ∼ πX j that X j is distributed according to πX j , by which the probability theory under-
stands that πX j is a function that assigns to any meaningful subset B j of Rs j the probability πX j (B j) that the value taken 
by X j is in B j . From the mechanical point of view, if the uncertainty refers to manufacturing variability, the probability 
distributions πX1 , . . . , πXd can be interpreted as describing frequencies of occurrence of values of the uncertain vector-
valued input parameters; and if the uncertainty refers to an imperfect representation or incomplete knowledge, they can be 
interpreted as describing plausabilities of values of the uncertain vector-valued input parameters.

We assume that the partitioning of the input uncertainty into the uncertain vector-valued input parameters is such that 
these uncertain vector-valued input parameters are represented appropriately by mutually statistically independent random 
variables, by which the probability theory understands that the joint probability distribution π(X1,...,Xd) of X1, . . . , Xd is the 
product of the probability distributions πX1 , . . . , πXd :

π 1 d = π 1 × . . . × π d (3)
(X ,...,X ) X X
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From the mechanical point of view, if the uncertainty refers to manufacturing variability, this assumption means that we 
assume the value taken by one of the uncertain vector-valued input parameters to not affect frequencies of occurrence of 
values of others; and, if the uncertainty refers to an imperfect representation or incomplete knowledge, it means that we 
assume the value taken by one of them to not affect plausabilities of values of others.

Stochastic methods typically build on methods from mathematical statistics and information theory [15] to infer suitable 
probability distributions from available information. In a mechanical problem, information can be available in the form of 
minimum and maximum values for properties of materials guaranteed by providers of these materials, data sets containing 
values of properties as they occurred in series productions, expert opinions on levels of uncertainty, physical or mechanical 
constraints, and many other possible sources of information. In the present context, the application of stochastic methods 
requires the inference of πX1 , . . . , πXd from available information. The particular way in which this inference can be carried 
out can be expected to depend strongly on the particular type of available information, which is why we do not attempt to 
provide a general overview here, but we limit ourselves to providing a concrete example later in Sec. 4.

2.2. Propagation of uncertainty

Stochastic methods rely on the probability theory to assess the impact of sources of uncertainty on quantities that 
depend on them in a mechanical problem: once probability distributions are assigned to the sources of uncertainty, the 
probability theory is invoked to transform these probability distributions of the sources of uncertainty into the probability 
distribution for quantities of interest, a task called the propagation of uncertainty.

In the present context, stochastic methods entail the representation of the quantity of interest by a random variable Y
that is defined as the image of the random variables X 1, . . . , Xd under the function f and whose probability distribution πY

is thus the image of the joint probability distribution π(X 1,...,Xd) of the random variables X1, . . . , Xd under the function f :

Y ∼ πY with Y = f (X1, . . . , Xd) (4)

The probability theory constructs this transformation of probability distributions as follows: πY is the probability distribution 
that assigns to any meaningful subset B of R precisely the probability that π(X1,...,Xd) assigns to the subset of values of 
R

s1 × . . . ×R
sd that f maps into values in B:

πY (B) = π(X1,...,Xd)({(x1, . . . , xd) ∈R
s1 × . . . ×R

sd : f (x1, . . . , xd) ∈ B}) (5)

From the mechanical point of view, if the uncertainty refers to manufacturing variability, πY can be interpreted as de-
scribing the frequencies of occurrence of values of the quantity of interest as they arise as a consequence of the frequencies 
of occurrence of values of the uncertain vector-valued input parameters; and, if the probability refers to an imperfect rep-
resentation or incomplete knowledge, πY can be interpreted as describing the plausabilities of values of the quantity of 
interest as they are implied by the plausibilities of values of the uncertain vector-valued input parameters.

Insight into the impact of the uncertainty in the vector-valued input parameters on the quantity of interest can be 
gleaned from the statistical descriptors of Y . The mean, which we denote by mY , provides a nominal value:

mY =
∫
R

y dπY (y) =
∫
R

s1

. . .

∫
R

sd

f (x1, . . . , xd)dπX1(x1) . . . dπXd (xd) (6)

that is, the mean mY is the mathematical expectation of the random variable Y . The variance, which we denote by σ 2
Y , 

provides a measure of the amount of uncertainty induced in the quantity of interest:

σ 2
Y =

∫
R

(y − mY )2dπY (y) =
∫
R

s1

. . .

∫
R

sd

(
f (x1, . . . , xd) − mY

)2
dπX1(x1) . . . dπXd (xd) (7)

that is, the variance σ 2
Y is the mathematical expectation of the square of the deviation of the random variable Y about the 

mean mY . And a confidence interval [yα, yα] associated with a confidence level of α with 0 ≤ α ≤ 1, where the subscript 
serves to indicate the confidence level, is an interval to which πY assigns a probability exceeding α:

πY ([yα, yα]) =
∫
R

s1

. . .

∫
R

sd

1[yα,yα ]
(

f (x1, . . . , xd)
)
dπX1(x1) . . . dπXd (xd) ≥ α (8)

where 1[yα,yα ] is the indicator function such that 1[yα,yα ](y) is equal to 1 if y is in [yα, yα] and equal to 0 otherwise. 
Here, the second equality in (6), the second equality in (7), and the equality in (8) hold because of the probability theory’s 
“change of variables” theorem relating integrals with respect to a probability distribution to integrals with respect to an 
image of it.

We note that although πY is defined unequivocally by stating that it is the image of π(X1,...,Xd) under f , there is in 
general no closed-form expression for πY as a function of π(X1,...,Xd) and f ; in general, numerical simulation must be relied 
upon to obtain an approximation to πY and its statistical descriptors, as we will discuss later in this section.
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2.3. Sensitivity analysis

Several types of stochastic sensitivity analysis can be used, such as methods involving variance analysis, methods in-
volving differentiation, and methods involving scatter plots and regression, correlation, and elementary effect analysis [16]. 
Variance-based sensitivity analysis is particularly well-established. This method allows sources of uncertainty in a mechan-
ical problem to be ranked in an order that reflects their significance in inducing uncertainty in quantities that depend on 
them, and it is our focus next.

In the present context, variance-based sensitivity analysis entails determining for each uncertain vector-valued input 
parameter a so-called significance index. To obtain the definition of these significance indices, variance-based sensitivity 
analysis considers for each uncertain vector-valued input parameter the least-squares-best approximation of the function f
with a function of only this uncertain vector-valued input parameter:

f ∗
X j = arg min

g∗
X j

∫
R

s1

. . .

∫
R

sd

∣∣ f (x1, . . . , xd) − g∗
X j (x j)

∣∣2
dπX1(x1) . . . dπXd (xd), 1 ≤ j ≤ d (9)

These least-squares-best approximations define an expansion of f in terms of so-called main effects and interaction effects 
as follows:

f (x1, . . . , xd) = mY + f X1(x1)︸ ︷︷ ︸
main effect

of X1

+ . . . + f Xd (xd)︸ ︷︷ ︸
main effect

of Xd

+ f(X1,...,Xd)(x1, . . . , xd)︸ ︷︷ ︸
interaction effect

of X1, . . . , Xd

(10)

in which mY still denotes the mean of Y as defined in (6), the main effects f X1 , . . . , f Xd are obtained by substracting mY

from the least-squares-best approximations f ∗
X1 , . . . , f ∗

Xd , that is,

f X j (x j) = f ∗
X j (x j) − mY , 1 ≤ j ≤ d (11)

and the interaction effect f(X1,...,Xd) collects the remainder. The significance indices are then obtained by first moving in 
the expansion in (10) the mean mY to the left-hand side and then squaring and integrating both sides:∫

R
s1

. . .

∫
R

sd

∣∣ f (x1, . . . , xd) − mY
∣∣2

dπX1(x1) . . . dπXd (xd)

︸ ︷︷ ︸
=σ 2

Y

=
∫
R

s1

∣∣ f X1(x1)
∣∣2

dπX1(x1)

︸ ︷︷ ︸
=v X1

+ . . . +
∫
R

sd

∣∣ f Xd (xd)
∣∣2

dπXd (xd)

︸ ︷︷ ︸
=v Xd

+
∫
R

s1

. . .

∫
R

sd

∣∣ f(X1,...,Xd)(x1, . . . , xd)
∣∣2

dπX1(x1) . . . dπXd (xd)

︸ ︷︷ ︸
=v

(X1,...,Xd)

(12)

Please note that there are no double product terms since the main and interaction effects are obtained through least-
squares-best approximations and are hence orthogonal functions. Thus, the expansion of the function f into main and 
interaction effects leads to a corresponding expansion of the variance σ 2

Y of Y , whose terms are precisely the significance 
indices of variance-based sensitivity analysis. Specifically, recalling that the variance σ 2

Y of Y provides a measure of the 
amount of uncertainty induced in the quantity of interest, variance-based sensitivity analysis interprets v X j with 1 ≤ j ≤ d
as the portion of the amount of uncertainty in the quantity of interest that is explained as stemming from the j-th uncer-
tain vector-valued input parameter. By ranking the significance indices v X1 , . . . , v Xd by order of magnitude, the dominant 
uncertain vector-valued input parameters can be identified.

We note that although the definition of the significance indices involves least-squares-best approximations and a func-
tional expansion, numerical approximations to these significance descriptors can be obtained without explicitly constructing 
these least-squares best approximations and this functional expansion, as we will discuss later in this section.

2.4. Implementation

The implementation of the characterization of uncertainty often requires optimization methods. Indeed, methods from 
mathematical statistics and information theory [15] often take the form of selecting parameterized candidate probability 
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distributions for the sources of uncertainty and then seeking to fit them to available information by optimizing their free 
parameters.

A reference method for the implementation of the propagation of uncertainty is the Monte Carlo method [17]. When 
the uncertainty quantification involves a numerical simulation of the mechanical problem, this method requires running the 
numerical simulation for many different values of its input parameters, which can be computationally expensive. One way 
of alleviating the complexity relies on surrogate modeling, see, for instance, [2,4,5] for polynomial chaos collocation and 
projection methods and [18] for methods involving Gaussian processes, whose construction can be justified in a context of 
Bayesian inference. This approach entails constructing a surrogate model that mimics the input-output relationship in the 
mechanical problem and using it subsequently as a substitute for runs with the numerical simulation in the Monte Carlo 
method; as such, the complexity can be expected to shift to the construction of the surrogate model, whose subsequent use 
in the Monte Carlo method can be expected to entail virtually no overhead.

The implementation of a variance-based sensitivity analysis can be based either on methods that seek to approximate 
the least-squares-best approximations and the functional expansion involved in the definition of the sensitivity indices 
[19,20] or on methods that reinterpret these least-squares-best approximations as conditional expectations to enable the 
significance indices to be evaluated directly by using the Monte Carlo method [21].

3. Interval methods

As in the previous section, let us assume that we consider a mechanical problem that lends itself well to a representation 
in terms of a transformation of vector-valued input parameters into a quantity of interest as in (1). And let us assume again 
that the vector-valued input parameters are uncertain.

Within this context, we discuss below the representation of the uncertain vector-valued input parameters by using 
intervals and the determination of the corresponding interval for the quantity of interest.

We note that this section provides only a concise overview; we refer the reader to [1,3,6] and references therein for 
more comprehensive treatments.

3.1. Characterization of uncertainty

Interval methods account for sources of uncertainty in a mechanical problem by representing them by ranges of possible 
values, that is, by intervals.

In the present context, interval methods represent the components of the uncertain vector-valued input parameters by 
intervals, which we denote by

[x1
1, x1

1], . . . , [x1
s1

, x1
s1

], . . . , [xd
1, xd

1], . . . , [xd
sd

, xd
sd

] (13)

3.2. Propagation of uncertainty

In the present context, interval methods entail the representation of the quantity of interest by the so-called solution set{
y ∈R : y = f (x1, . . . , xd), x j

i ∈ [x j
i , x j

i ], 1 ≤ i ≤ s j, 1 ≤ j ≤ d
}

(14)

that is, the set of values of the quantity of interest that are the image under the function f of values of the vector-valued 
input parameters when their components are constrained to belong to the intervals. In practice, interest is often restricted 
to finding only the range of values of the quantity of interest, that is, the smallest interval that contains the solution set, if 
it exists:

[y, y] with y = min
x j

i ∈[x j
i ,x

j
i ]

1≤i≤s j
1≤ j≤d

f (x1, . . . , xd) and y = max
x j

i ∈[x j
i ,x

j
i ]

1≤i≤s j
1≤ j≤d

f (x1, . . . , xd) (15)

Thus, the impact of the uncertainty in the vector-valued input parameters on the quantity of interest is determined by two 
optimization problems that provide the minimum and maximum values of the quantity of interest when the vector-valued 
input parameters are constrained to belong to the intervals.

3.3. Implementation

A reference method for the implementation of the propagation of uncertainty consists in the solution to the optimization 
problems in (15) by using optimization methods. When the uncertainty quantification involves a numerical simulation of 
the mechanical problem, this method requires running the numerical simulation for different values of its input parameters 
and, depending on the optimization method, the computation of gradients, Hessians, or other information. One way of 
alleviating the complexity relies on surrogate modeling, and, as in the case of stochastic methods, complexity can then be 
expected to shift to the construction of the surrogate model.
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Fig. 1. Numerical simulation and problem setting: schematic representation of the forming operation.

When the uncertainty quantification involves a numerical simulation of the mechanical problem, the propagation of 
uncertainty can be implemented alternatively by using interval arithmetic; however, this method is intrusive in that it 
requires modifications to the source code of the numerical simulation; please see [3,6] and references therein for further 
details.

4. Illustration

4.1. Context

In series productions of formed parts, metal forming processes are applied repeatedly to deform pieces of metal with 
nominally identical material behavior, under nominally identical process conditions, and with nominally identical geometri-
cal characteristics. However, as a manifestation of manufacturing variability, even though they are nominally identical, the 
pieces of metal may exhibit variability in their material behavior, and the process conditions and the geometrical character-
istics may exhibit variability as well; hence, each time that it is repeated, a metal forming process may yield a permanently 
deformed piece of metal of a different shape. In this illustration, we compare stochastic and interval methods through their 
application to a study of manufacturing variability in a particular forming operation.

4.2. Numerical simulation and problem setting

We set up in our in-house code METAFOR [22,23] a numerical simulation of a forming operation wherein a sheet is bent 
along a straight line (Fig. 1): a portion of the sheet is clamped and the complementary portion is bent downwards by a 
punch that descends until a rectangular angle is imposed, after which the punch ascends again; in such a forming operation, 
the sheet does not keep its rectangularly deformed shape after removing the punch; instead, it slightly springs back. We 
used a two-dimensional plane-strain large-displacement large-strain elastoplasticity formulation with a Krupkowski law for 
the hardening material behavior of the sheet and a Coulomb law for the frictional contact between the sheet and the tools. 
We used a penalty relaxation of the contact conditions, Enhanced Assumed Strain finite elements for the discretization of 
space [24], and generalized alpha time integration.

We assumed a real forming operation involved in a real series production to be accurately represented by this numer-
ical simulation. We assumed the dominant manifestations of manufacturing variability in this real forming operation to 
correspond to uncertainty in the parameters rm (ultimate yield stress) and n (hardening exponent) of the Krupkowski law 
σy = k(ε0 + εp)n with k = rm exp(n)/nn relating the yield stress σy to the plastic strain εp, to uncertainty in the friction 
coefficient μ of the Coulomb law, and to uncertainty in the size of the horizontal gap g between the vertical edges of 
the sheet holder/die and the punch (Fig. 1) in the numerical simulation. We assumed all other characteristics to exhibit 
only negligible manufacturing variability in the real forming operation, and, correspondingly, we assigned fixed values to 
all other properties in the numerical simulation: we used a Young modulus of 210 GPa, a Poisson coefficient of 0.3, and 
a value of ε0 = 5 × 10−4 for the remaining parameter involved in the Krupkowski law; we used a value of 1 mm for the 
thickness of the sheet in its undeformed configuration, a shoulder radius of 3 mm, and a punch radius of 1 mm, and we 
assumed the sheet to be clamped along its left edge and the sheet holder to be in contact with the upper surface of the 
sheet in the undeformed configuration and to maintain its position; and we used a mesh whose elements are squares of 
size 1/6 mm × 1/6 mm in the undeformed configuration. We assumed interest to be in determining the impact of the 
manufacturing variability in the angle with which the sheet bends upwards again in the real forming operation, and, cor-
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Table 1
Stochastic method: data set.

j (rm j [MPa], n j [−]) j (rm j [MPa], n j [−]) j (rm j [MPa], n j [−])
1 (659.91, 0.1646) 10 (648.46, 0.1618) 19 (651.01, 0.1666)
2 (647.43, 0.1640) 11 (661.53, 0.1659) 20 (655.41, 0.1654)
3 (676.39, 0.1593) 12 (653.14, 0.1624) 21 (659.26, 0.1668)
4 (634.24, 0.1517) 13 (660.54, 0.1549) 22 (616.74, 0.1610)
5 (647.75, 0.1639) 14 (648.61, 0.1588) 23 (660.02, 0.1552)
6 (665.09, 0.1585) 15 (660.69, 0.1597) 24 (665.92, 0.1633)
7 (645.72, 0.1567) 16 (636.02, 0.1553) 25 (646.70, 0.1623)
8 (640.88, 0.1593) 17 (630.33, 0.1592)
9 (632.71, 0.1512) 18 (640.21, 0.1593)

respondingly, we viewed the numerical simulation as a function f that maps any value ((rm, n), μ, g) into a corresponding 
value y = f ((rm, n), μ, g) of the springback angle (Fig. 1):

y︸︷︷︸
springback angle

= f︸︷︷︸
numerical simulation

(
(rm,n)︸ ︷︷ ︸
material

, μ︸︷︷︸
process

, g︸︷︷︸
geometry

)
(16)

and we applied stochastic and interval methods to determine the impact of the sources of uncertainty on the springback 
angle.

4.3. Stochastic method

4.3.1. Characterization of uncertainty
The application of the stochastic method entailed the representation of the uncertain ultimate yield stress and hardening 

exponent, the uncertain friction coefficient, and the uncertain gap by random variables, and we thus began with assigning 
probability distributions to them.

For the random ultimate yield stress and the hardening exponent, which we denote by Rm and N , respectively, we 
elaborated an example of the inference of the probability distribution from available information. We assumed the available 
information to consist of two sources. Specifically, we assumed the first source to be a data set {(rm j, n j), 1 ≤ j ≤ m} of 
m = 25 samples of the ultimate yield stress and the hardening exponent that occurred in the real forming operation in the 
series production (Table 1); such a data set could have been obtained by representatively withdrawing m = 25 sheets used in 
the real forming operation in the series production and submitting a sample taken from each one of them to a tensile test. 
We assumed the second source to consist of minimum and maximum values of the ultimate yield stress and the hardening 
exponent guaranteed by the provider of the metal used in the real forming operation in the series production: we assumed 
minimum and maximum values of the ultimate yield stress and of the hardening exponent of 600 MPa and 700 MPa and of 
0.14 and 0.22, respectively. We obtained the probability distribution by selecting a parametrized probability density function 
(PDF) and fitting its parameters to the available information. Specifically, we selected the truncated bivariate gamma PDF

ρ(Rm,N)(rm,n) = c︸︷︷︸
normalization

constant

×1[rm,rm](rm)1[n,n](n)︸ ︷︷ ︸
truncation

×ρ�1�2(rm,n;α1, β1,α2, β2,ρ)︸ ︷︷ ︸
bivariate gamma PDF [25]

(17)

To clarify the link with the notion of probability distribution that we used in Sec. 2, please note that, within the probability 
theory, the PDF ρ(Rm,N) is a representation of the probability distribution π(Rm,N) that assigns to any meaningful subset B
of values of the ultimate yield stress and the hardening exponent the probability π(Rm,N)(B) = ∫∫

B ρ(Rm,N)(rm, n) drm dn. 
We took into account the data set by fitting to it the parameters α1, β1, α2, β2, and ρ of the bivariate gamma PDF, 
whose expression can be found in [25]. We used the method of maximum likelihood, a popular data-fitting method from 
mathematical statistics, which led to the optimization problem

(α1, β1,α2, β2,ρ) = arg max
α̃1,β̃1,α̃2,β̃2>0

−1<ρ̃<1

m∏
j=1

ρ�1�2(rm j,n j; α̃1, β̃1, α̃2, β̃2, ρ̃)︸ ︷︷ ︸
likelihood of parameter values α̃1, β̃1,
α̃2, β̃2, and ρ̃ given data point (rm j ,n j)

(18)

as a solution to which we obtained the shape parameters α1 = 2346 and α2 = 1330, the scale parameters β1 = 0.2770 MPa
and β2 = 1.205 × 10−4, and the correlation coefficient ρ = 0.3408. And we took into account the minimum and maximum 
values of the ultimate yield stress and the hardening exponent by setting [rm, rm] = [600, 700] MPa and [n, n] = [0.14, 0.22]. 
Fig. 2 shows a contour plot of the PDF thus obtained, which highlights a good fit with the data set and consistency with 
the minimum and maximum values of the ultimate yield stress and the hardening exponent.
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Fig. 2. Stochastic method: contour plot of PDF assigned to the random ultimate yield stress and the hardening exponent (solid lines), data set (dots), and 
minimum and maximum values of the ultimate yield stress and the hardening exponent (dashed lines).

Fig. 3. Stochastic method: PDF assigned to the random friction coefficient.

Fig. 4. Stochastic method: PDF assigned to the random gap.

To the random friction coefficient, denoted by M , we assigned a truncated beta probability distribution with PDF

ρM(μ) = c︸︷︷︸
normalization

constant

×1[μ,μ](μ)︸ ︷︷ ︸
truncation

×ρB(μ;α,β)︸ ︷︷ ︸
beta PDF

(19)

with [μ, μ] = [0, 0.3], α = 1440, and β = 12960 (Fig. 3), and to the random gap, denoted by G , we assigned a uniform 
probability distribution with PDF

ρG(g) = c︸︷︷︸
normalization

constant

×1[g,g](g) (20)

with [g, g] = [0.95, 1.05] mm (Fig. 4). We note that the constant c denotes the normalization constant in (17), (19), and 
(20) but has a different value in each one of these equations. The value μ = 0 can be interpreted as ideally lubricated 
contact between the sheet and the tools, the value μ = 0.3 can be interpreted as very dry frictional contact between the 
sheet and the tools, and the values of the gap contained between 0.95 mm and 1.00 mm correspond to values for which 
the gap is narrower than the thickness of the sheet, thus requiring thinning of the sheet. Other than these interpretations, 
the assignment of these probability distributions is rather arbitrary; we could have elaborated examples to show how they 
could have been inferred from available information, but we did not do so for the sake of brevity.
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Thus, the characterization of uncertainty led to the PDFs ρ(Rm,N) , ρM , and ρG that serve in the stochastic method as 
descriptions of the frequencies of occurrence of values of the variable properties of the material behavior, the process 
conditions, and the geometry in the real forming operation.

4.3.2. Surrogate model
Next, we built a surrogate model to serve as a substitute for the numerical simulation in the propagation of uncertainty 

and the sensitivity analysis.
We used the nonintrusive stochastic projection method [4,5,9,11,12]. Our application of this method led us to begin with 

defining a grid of combinations of values of the ultimate yield stress and the hardening exponent, the friction coefficient, 
and the gap {((rmi, n j), μk, g�), 1 ≤ i, j, k, � ≤ r}, in which rmi = (rm + rm)/2 + ξi(rm − rm)/2, n j = (n + n)/2 + ξ j(n − n)/2, 
μk = (μ + μ)/2 + ξk(μ − μ)/2, and g� = (g + g)/2 + ξ�(g − g)/2, with ξ1, . . . , ξr the nodes of the r-node Gauss–Legendre 
quadrature rule when the domain of integration is taken as [−1, 1]. Then, we ran the numerical simulation for each one 
of these combinations of values to obtain the corresponding values of the springback angle {yijk� = f ((rmi, n j), μk, g�), 1 ≤
i, j, k, � ≤ r}. Finally, we solved a least-squares optimization problem to fit to the training data thus obtained a surrogate 
model in the form of a multivariate polynomial y = f p((rm, n), μ, g) = ∑p

α+β+γ +δ=0 cαβγ δ rα
m nβ μγ gδ ; we note that in

y = f p︸︷︷︸
surrogate model

(
(rm,n),μ, g

)
(21)

the superscript p is not an exponent but serves to distinguish the surrogate model from the numerical simulation, as well as 
to emphasize its truncation at a polynomial degree of p; for the well-posedness of the least-squares optimization problem, 
the value of p must be selected such that p < r.

We obtained all results to follow with r = 5 and p = 3; for r = 5, we had to run the numerical simulation 625 = 54

times. These values are a compromise between the computational cost of the runs of the numerical simulation and the 
accuracy of the surrogate model; at the expense of a higher computational cost entailed by an increased number of runs of 
the numerical simulation, accuracy can be improved by increasing r and p.

We used the surrogate model to gain some insight into the dependence of the springback angle on the ultimate yield 
stress and the hardening exponent, the friction coefficient, and the gap (Fig. 5). We can observe that the dependence on the 
ultimate yield stress and the hardening exponent is fairly linear and that the dependence on the friction coefficient and the 
gap is more nonlinear. Further, we can observe that the springback angle depends most significantly on the gap, especially 
for values of the gap between 0.95 mm and 1.00 mm, thus suggesting that the springback angle is significantly influenced 
by the thinning that the sheet must undergo for these values of the gap.

4.3.3. Propagation of uncertainty
Subsequently, the stochastic method entailed the representation of the springback angle by a random variable Y that 

is defined as the image of the random ultimate yield stress and the hardening exponent (Rm, N), the random friction co-
efficient M , and the random gap G under the numerical simulation f . We applied the Monte Carlo method to obtain an 
approximation to the PDF of the random springback angle and statistical descriptors of it, whereby we used the surrogate 
model f p as a substitute for the numerical simulation f . We thus began with using random number generation meth-
ods [17] to generate independent sets of ν independent samples from the PDFs ρ(Rm,N) , ρM , and ρG , which we denote as 
follows:

{(rm�,n�), 1 ≤ � ≤ ν}, {μ�, 1 ≤ � ≤ ν}, {g�, 1 ≤ � ≤ ν} (22)

Then, we used the surrogate model to map each combination of samples into a corresponding sample of the random 
springback angle,

yp
� = f p(

(rm�,n�),μ�, g�

)
, 1 ≤ � ≤ ν (23)

to obtain the corresponding set of independent samples of the random springback angle, which we denote as follows:

{yp
� , 1 ≤ � ≤ ν} (24)

Finally, we applied methods from mathematical statistics to deduce approximations to the PDF of the random springback 
angle and statistical descriptors of it. We applied the kernel density estimation method to obtain the approximation to the 
PDF, we applied the usual estimation methods to obtain approximations to the mean and the variance, and we determined 
an approximation to a confidence interval associated with a confidence level of 95% by seeking an interval that contains 
95% of the samples:

mp,ν
Y = 1

ν

ν∑
yp

� , (σ
p,ν

Y )2 = 1

ν

ν∑
(yp

� − mp,ν
Y )2,

1

ν

ν∑
1[yp,ν

95%,yp,ν
95%](yp

� ) ≥ 95% (25)

�=1 �=1 �=1
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Fig. 5. Stochastic method: use of the surrogate model to gain insight into the dependence of the springback angle on the ultimate yield stress and the 
hardening exponent, friction coefficient, and the gap.

Fig. 6. Stochastic method: PDF of the random springback angle.

The superscripts p and ν serve to indicate the use of the surrogate model as a substitute for the numerical simulation and 
the approximation entailed by the use of only ν samples in the Monte Carlo method, respectively.

We obtained all results to follow with ν = 106 samples. We chose to use ν = 106 samples by repeating the application 
of the Monte Carlo method for increasing values of ν and monitoring the convergence of the results.

We obtained for the random springback angle the PDF shown in Fig. 6. It is predominantly the dependence of the 
springback angle on the gap (Fig. 5(c)) that explains the peak in the vicinity of 0.04 rad (Fig. 6): the rather flat dependence 
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Fig. 7. Stochastic method: significance of uncertainty in material behavior (v p,ν
(RM,N)

), uncertainty in process conditions (v p,ν
M ), and uncertainty in geometry 

(v p,ν
G ) in inducing uncertainty in the springback angle.

of the springback angle on the gap for values between about 1 mm and 1.025 mm results in combinations of values of 
the ultimate yield stress and the hardening exponent, the friction coefficient, and the gap being mapped with significant 
probability into values of the springback angle in the vicinity of 0.04 rad. Further, we obtained a mean value of mp,ν

Y =
0.0522 rad, a variance of (σ p,ν

Y )2 = 1.4439 ×10−4 rad2, and a 95%-confidence interval of [yp,ν
95%, yp,ν

95%] = [0.0378, 0.0766] rad.
Thus, the propagation of uncertainty led to a PDF for the random springback angle that serves in the stochastic method 

as a prediction for the frequencies of springback angle value occurrences implied by the frequencies of value occurrences of 
the variable properties of the material behavior, the process conditions, and the geometry in the real forming operation.

4.3.4. Sensitivity analysis
Finally, we carried out a variance-based sensitivity analysis to rank the sources of uncertainty in order of significance.
We based our implementation on the method that enables the significance indices to be evaluated directly by using 

the Monte Carlo method [21], a method that we had already mentioned in Sec. 2.4. To obtain an approximation v p,ν
(RM,N)

to the significance index v(RM,N) , our application of this method entailed the generation of one set {(rm�, n�), 1 ≤ � ≤ ν}
of ν independent samples from the PDF ρ(Rm,N) , two independent sets {μ�, 1 ≤ � ≤ ν} and {μ̃�, 1 ≤ � ≤ ν} of ν indepen-
dent samples from the PDF ρM , and two independent sets {g�, 1 ≤ � ≤ ν} and {g̃�, 1 ≤ � ≤ ν} of ν independent samples 
from the PDF ρG , followed by the computation of v p,ν

(RM,N) as v p,ν
(RM,N) = 1

ν

∑ν
�=1 f p((rm�, n�), μ�, g�) f p((rm�, n�), μ̃�, ̃g�) −

( 1
ν

∑ν
�=1 f p((rm�, n�), μ�, g�))(

1
ν

∑ν
�=1 f p((rm�, n�), μ̃�, ̃g�)); to obtain v p,ν

M and v p,ν
H , we proceeded analogously.

We obtained the values v p,ν
(RM,N) = 1.4654 × 10−6 rad2, v p,ν

M = 1.3220 × 10−7 rad2, and v p,ν
G = 1.4296 × 10−4 rad2, which 

correspond to v p,ν
(RM,N)

/(σ
p,ν

Y )2 = 1.01%, v p,ν
M /(σ

p,ν
Y )2 = 0.01%, and v p,ν

G /(σ
p,ν

Y )2 = 99.01% (Fig. 7).
Thus, the sensitivity analysis indicates that the amount of uncertainty in the springback angle stems predominantly from 

the uncertainty in the gap, followed by the uncertainty in the ultimate yield stress and the hardening exponent, and lastly 
the uncertainty in the friction coefficient, thus suggesting that in the real forming operation, efforts to reduce the variability 
in the springback angle should focus on reducing the variability in the gap.

4.3.5. Implementation details and computational cost
We implemented the stochastic method in Matlab, with use of the statistics toolbox for random number generation and 

kernel density estimation.
The construction of the surrogate model required 625 runs of METAFOR with a total computational cost of about 20 

single-core CPU hours. Because the surrogate model was cheap to evaluate, the computational cost of the rest of the stochas-
tic method was less than 2 minutes on a single CPU core.

4.4. Interval method

4.4.1. Characterization of uncertainty
We represented the uncertain ultimate yield stress and the hardening exponent by the intervals [rm, rm] = [600, 700] MPa

and [n, n] = [0.14, 0.22], the uncertain friction coefficient by the interval [μ, μ] = [0, 0.3], and the uncertain gap by the in-
terval [g, g] = [0.95, 1.05] mm. The bounds of these intervals are precisely the minimum and maximum values used in the 
preceding application of the stochastic method. Interval methods lend themselves less well to taking into account a data set 
such as the one that was part of the available information in the preceding application of the stochastic method.

Thus, the characterization of uncertainty led to the intervals [rm, rm], [n, n], [μ, μ], and [g, g] that serve in the interval 
method as descriptions of the ranges of values of the variable properties of the material behavior, the process conditions, 
and the geometry in the real forming operation.

4.4.2. Surrogate model
We reused the surrogate model that we had already built in the application of the stochastic method.
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4.4.3. Propagation of uncertainty
We determined an approximation to the induced interval for the springback angle by solving the optimization problems 

yp = min f p((rm, n), μ, g) and yp = max f p((rm, n), μ, g) under the constraints that rm, n, μ, and g belong to the intervals 
[rm, rm], [n, n], [μ, μ], and [g, g], respectively, whereby the superscript p serves to indicate that we used the surrogate 
model as a substitute for the numerical simulation in the optimization.

We obtained the values [yp, yp] = [0.0264, 0.1011] rad; it should be noted that this interval obtained here in the ap-

plication of the interval method is wider than the 95%-confidence interval [y p,ν
95%, yp,ν

95%] = [0.0378, 0.0766] rad obtained 
previously in the application of the stochastic method.

Thus, the propagation of uncertainty led to an interval for the springback angle that serves in the interval method as 
a prediction for the range of values that the springback angle may take as a consequence of the ranges of values of the 
variable properties of the material behavior, the process conditions, and the geometry in the real forming operation.

4.4.4. Implementation details and computational cost
We implemented the interval method in Matlab, with use of the optimization toolbox to solve the two optimization 

problems. Specifically, for each one of the two optimization problems, we carried out a global search followed by a local 
search. The global search consisted in first using random number generation methods to generate a very large number of 
106 combinations of values of the ultimate yield stress, the hardening exponent, the friction coefficient, and the gap in the 
intervals, then using the surrogate model to evaluate the corresponding values of the springback angle, and finally identify-
ing that combination of values at which either the minimum or the maximum value of the springback angle was attained. 
The local search consisted in using the combination of values thus obtained as the initial guess in a local optimization 
method, whereby we used the active-set method provided by the Matlab function fmincon and whereby we again used the 
surrogate model as a substitute for the numerical simulation. It should be noted that accuracy could be improved by using 
in the local search the numerical simulation itself instead of the surrogate model, but we did not do so in this work.

We reused the surrogate model whose construction had required 625 runs of METAFOR with a total computational cost 
of about 20 single-core CPU hours. As in the case of the application of the stochastic method, because the surrogate model 
was cheap to evaluate, the computational cost of the rest of the interval method beyond the construction of the surrogate 
model was very low, and it amounted to less than 1 minute on a single CPU core.

5. Conclusion

We compared stochastic methods and interval methods through their application to a numerical simulation of a sheet 
metal forming process:

• Both stochastic and interval methods are able to account for uncertainty in material behavior, uncertainty in process 
conditions including friction properties, and uncertainty in geometrical properties. However, they describe such sources 
of uncertainty by using different types of representation that call for different types of information to be available to be 
accurately defined: stochastic methods use probability distributions that represent frequencies of occurrence or degrees 
of plausibility, and interval methods use intervals that represent ranges of values.

• Both stochastic and interval methods are able to provide insight into the impact that sources of uncertainty can have on 
quantities that depend on them in a metal forming process or a numerical simulation of it, even when this dependence 
exhibits significant nonlinearity. However, they provide different types of insight in a manner that is consistent with 
their different way of representing sources of uncertainty.

• Within the context of stochastic methods, there exists a well-established type of sensitivity analysis that allows sources 
of uncertainty to be ranked in order of significance and dominant ones to be identified.

• When the implementation of stochastic or interval methods is built around the construction of a surrogate model, 
the computational cost can be expected to be dominated by the construction of this surrogate model, and when the 
surrogate model is cheap to evaluate, the rest of the implementation can be expected to entail only little overhead.

This paper was focused on the representation of uncertainty and the determination of the impact of sources of uncer-
tainty on quantities that depend on them. Future work could investigate the integration of stochastic and interval methods 
in new methods for accounting for uncertainty in design, control, optimization, and maintenance of metal forming processes.
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