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This paper introduces a numerical method able to deal with a general bi-fluid model 
integrating capillary actions. The method relies first on the precise computation of the 
surface tension force. Considering a mathematical transformation of the surface tension 
virtual work, the regularity required for the solution on the evolving curved interface 
is weakened, and the mechanical equilibrium of the triple line can be enforced as a 
natural condition. Consequently, contact angles of the liquid over the solid phase result 
naturally from this equilibrium. Second, for an exhaustive representation of capillary 
actions, pressure jumps across the interface must be accounted for. A pressure enrichment 
strategy is used to properly compute the discontinuities in both pressure and gradient 
fields. The resulting method is shown to predict nicely static contact angles for some test 
cases, and is evaluated on complex 3D cases.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Capillary-driven flows of matter are involved in a wide range of industrial and natural phenomena [1] [2] [3]. Capillary 
effects can be depicted as a force per unit length applied at an interface between two phases and originate from the 
unbalanced forces at the molecular scale on either sides of this interface [4]. Globally [5] [6] [7], three phases can be 
involved in capillarity: solid, liquid, and vapour phases. Due to the complexity in tracking experimentally capillary effects, 
a large number of numerical studies have been proposed to investigate industrial cases of capillary flows in porous and 
fibrous media [8] [9] [10] [11].

The present study focuses on a strategy to compute capillary effects within the context of the simulation of some man-
ufacturing processes for high-performance composites. More especially, Liquid Resin Infusion (LRI) processes are targeted, 
they consist in the infiltration of a low-viscosity resin into dry fibrous preforms under a low-pressure gradient due to vac-
uum pulling only (<1 bar) [12] [13]. Some previous works have settled a numerical strategy to model this type of process at 
the macroscopic scale of the equivalent homogeneous media, i.e. where the fibrous preforms are not fully described across 
the scales [12] [14] [15]. The robustness of this approach has been demonstrated industrially [15], but some recent experi-
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mental measurements from Pucci et al. [16] have shown that capillary effects may rule the LRI processes to a great extent. 
Capillary pressures identified in [16] for industrial resin–fibre couples were measured up to 0.3 bar, that is to say one third 
of the highest pressure differential that can be employed in out-of-autoclave processes such as LRI. Besides, it is known that 
voids appearing during the infusion process are controlled by the competition between both capillary action and viscous 
dissipation at the microscopic scale [17]. Accounting for this competition at the scale of the equivalent medium would rely 
on identified laws and parameters that would hide the complexity of the void creation, migration, and combination [18]. In 
an attempt to grasp these very local phenomena, the present work aims at setting a robust numerical framework modelling 
of the capillary effects at the scale of the fibers.

Overall, modelling capillarity faces two main challenges related to the moving and changing liquid–vapour interface: the 
surface tension combines with the flow front curvature to yield the capillary driving force, and physical discontinuities must 
be captured across this interface. In the corresponding strongly non-linear problem, the fluid front has to accommodate to 
verify at the same time the fluid bulk and interfacial equilibria, plus minimise the local surface tension–curvature energy. 
A linearisation is then mandatory, but still, computing properly the corresponding driving force and discontinuities on the 
moving curved liquid–vapour interface is a considerable task that can be taken up only by combining stable numerical 
techniques.

First, regarding the fluid front description, a level-set method [19] is used here to follow and capture this interface. 
It has the advantage to carry a direct representation of the interface. Then, normal vectors and curvatures are explicitly 
known without any further reconstruction step, unlike the Volume Of Fluid (VOF) technique [20] for instance. Also, this 
method takes into account topological changes naturally; this is a crucial feature for the study of voids merge and split. 
When computing the surface tension driving force, a mathematical transformation weakens the regularity required on the 
interface, since the curvature no longer appears in the problem. Furthermore, the mechanical equilibrium at the junction 
between solid, liquid, and vapour phases, is subsequently enforced as a natural condition [21], without explicitly considering 
the contact angle of the liquid over the solid phase. Not prescribing the contact angle is a first step toward a dynamic contact 
angle representation and permits to rely only on intrinsic properties of the three phases.

The second numerical difficulty comes from the discontinuity of the stress tensor across the fluid–vapour interface. Since 
viscosities of both liquid and vapour are different, the normal derivatives of the velocity are also discontinuous across the 
interface [22], and so is the pressure according to the fluid momentum balance. Also, for the same reason, the density 
contrast between both fluids will induce a pressure gradient jump. Both jumps have to be properly computed since, as 
shown in the literature [23], errors in the pressure field lead to spurious velocities and then to a degradation of the interface 
[24] [25]. Various techniques have been proposed in the literature to account for these jumps [26] [27] [28]. Following [29]
and Coppola-Owen et al. [30], E-FEM are used here, which consists in enlarging the space of solution for the pressure but 
with no change in the size of the algebraic system to be solved.

The last technical issue in capillary modelling is the coupling between the flow front motion and the flow mechanical 
equilibrium, i.e. the level-set problem and the Stokes equation for the fluid. A fully decoupled staggered strategy is proposed 
for this.

The paper is organised as follows. In Section 2, the mathematical formulation is introduced for the Stokes equations 
and the corresponding boundary conditions. Section 3 is devoted to the associated weak formulation that is discretised in 
space and time in Section 4. Section 5 sets the level-set method and the reparametrisation technique used. The staggered 
coupling approach is described in Section 6. Finally, some simulations of capillary rise of liquid compared with analytic and 
semi-analytic solutions are presented in Section 7. Based on the observed numerical results some conclusions are finally 
drawn in Section 8.

2. Mathematical formulation

Let � ⊂ R
3 be a bounded domain subdivided into two sub-regions denoted �L(t) for the liquid and �V(t) for the 

vapour phase with � = �V(t) ∪ �L(t), as shown in Fig. 1. The interface between these two fluids is denoted �LV(t) =
∂�V(t) ∩ ∂�L(t), also depending on time. Through the paper, the case of a liquid meniscus forming against a rigid wall, 
as depicted in Fig. 1, will be used as a baseline for illustrating the method and concepts. In this configuration, the rigid 
wall (Solid) is defined as a boundary of the computational domain. This boundary can be subdivided into two interfaces 
�SL = �L ∩ Solid and �SV = �V ∩ Solid. Each of the three interfaces �i , for i ∈ {SL,SV, LV}, has a normal ni and two tangents 
t1

i and t2
i , along with one in-going tangent T i normal to its contour (see Fig. 1). Finally, the line at the junction between 

the three phases (liquid, solid, vapour) is called the triple line and is denoted L(t) = �SL ∩ �SV ∩ �LV.

2.1. Governing equations

In the present work, every fluid is considered as Newtonian, and the corresponding stress tensor is then given by

σ = −p I + 2με̇(v), with ε̇(v) = 1

2

(∇v + ∇vᵀ)
(1)

with v the velocity, p the pressure and μ the constant viscosity of the fluid (i.e. μ = μL , ∀x ∈ �L and μ = μV , ∀x ∈ �V). 
Assuming that the fluids are incompressible, both momentum balance and mass conservation equations yield the Stokes 
equations:
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Fig. 1. Schematic of the capillary system – a liquid meniscus against a rigid wall.

Fig. 2. Boundary condition for a meniscus facing a vertical wall in 2D.

∇ · σ + ρ g = 0

∇ · v = 0
(2)

with g the gravity and ρ the fluid density, which depends on the position in the domain (ρ = ρL , ∀x ∈ �L and ρ = ρV , 
∀x ∈ �V). At the interface �LV between both fluids, the stress vector equilibrium reads

− (σ LV · nLV + σ L · nL)�LV
= [σ · n]�LV

= −∇α(γLVtα
LV) (3)

where classically the jump is denoted [·]�LV
and n = nL = −nLV is the outgoing normal to the fluid surface. ∇α is the 

derivative with respect to the surface coordinate α with an implicit sum on α = {1, 2} representing the two tangents. In 
two dimensions, the surface gradient is reduced to the derivative of the curvilinear abscissa. γLV is the surface tension 
between the liquid and vapour phases. Developing Eq. (3) yields the more usual expression

[σ · n]�LV
= −γLVCn − (∇αγLV)tα

LV (4)

where the first term expresses the Laplace’s law, with C the curvature, while the second term, accounting for surface tension 
gradients, is the Marangoni term. This study is based on Eq. (3), taking into account both Laplace’s law and Marangoni’s 
effect, and making it possible, as it will be seen, to enforce naturally the mechanical equilibrium at the triple junction.

2.2. Boundary conditions

The boundary of the domain � is split into three zones depending on the boundary conditions applied, namely Neumann, 
Dirichlet, and boundary conditions applied on the rigid wall: ∂� = �N ∪�D ∪�SL ∪�SV, as illustrated in Fig. 2 for the specific 
case of a meniscus in 2D.

• The classical Dirichlet and Neumann boundary conditions for our case are v = v̄ on �D and σ · n = −Pextn on �N, 
respectively. Notice that, for the sake of simplicity, all the velocity components are assumed to be imposed in this sec-
tion. However, in the “Numerical experiments” section, the Dirichlet condition will be applied either to all the velocity 
components, or only to the tangential or normal components, depending on the location on the boundary �D.

• On the solid wall, the surface tension generates a tangent velocity, which may induce friction and can be cast as:

v · nSL = 0 and σ · nSL = −βSL v + ∇α(γSLtα
SL) on �SL

v · nSV = 0 and σ · nSV = −βSV v + ∇α(γSVtα
SV) on �SV

(5)

because one part of the wall is in contact with the liquid and the other part is in contact with the vapour. The coefficient 
β is a friction coefficient depending on the surrounding fluid (β = βSL, ∀x ∈ �SL and β = βSV, ∀x ∈ �SV) aiming at 
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accounting for the dynamic sub-scale effects [31]. Choosing β = 0 leads to a free slip condition, governed only by the 
capillary effects on the wall. Introducing this friction changes the dynamic, but has no effect on the steady-state solution 
that is targeted here.

At the triple line L(t), which is the intersection between the three phases (solid, liquid, vapour) such as depicted in Fig. 1, 
the mechanical equilibrium reads

γSLT SL + γSVT SV + γLVT LV = Rsolid (6)

It is assumed that the reaction of the solid Rsolid has no tangent component (Rsolid = Rsolidns , with ns the normal to the 
solid which is equal to nSL or nSV at the triple line – see Fig. 1). The fluid normal velocity vanishes because the solid is 
rigid, v ·ns = 0. This approximation is in good accordance with an article by Sauer [32], where the solid reaction is cancelled 
considering the scale of observation chosen in this study. Therefore, only the projection of Eq. (6) in the tangent direction 
of the solid is used.

Finally, the final problem of two immiscible fluids against a rigid wall (see Fig. 1, also) can be expressed as follows:

μ	v − ∇p = −ρg in �

∇ · v = 0 in �

σ · n = −Pextn on �N

[σ · n]�LV
= −∇α(γLVtα

LV) on �LV(t)

v · nSL = 0 and σ · nSL = −βSL v + ∇α(γSLtα
SL) on �SL(t)

v · nSV = 0 and σ · nSV = −βSV v + ∇α(γSVtα
SV) on �SV(t)

γSLT SL + γSVT SV + γLVT LV = Rsolidns and v · ns = 0 on L(t)

v = v on �D

(7)

3. Weak formulation

In order to solve the previous system of equations (7) using the Finite Element Method (FEM), the weak form of this 
system has first to be established. Let us introduce the function spaces based on the Lesbesgues L2(�) and Sobolev H1(�)

spaces

W = {ξ ∈ (H1(�))3 | ξ = v̄ on �D, ξ · n = 0 on �SL ∪ �SV}
Q = {ζ ∈ L2(�) |

∫
�

ζ dV = 0} (8)

Following the Galerkin approach, both impermeability of the wall and Dirichlet boundary conditions are included in the 
definition of the approximation space W (essential boundary condition). Let the space W0 be a restriction of W such that 
W0 = {ξ ∈ (H1(�))3 | ξ = 0 on �D, ξ · n = 0 on �SL ∪ �SV}, from which the velocity test function will be chosen. Weighting 
the Stokes equations (2) by the test functions, and after integrations by parts, one obtains:

−
∫
�

p∇ · w dV +
∫
�

μ∇v : ∇w dV −
∫
�

q∇ · v dV =
∫
�

ρg · w dV +
∫

∂�L∪∂�V

σ · n · w dS

︸ ︷︷ ︸
(9)

for any test function w ∈W0 and q ∈Q.
Let us now work out the natural boundary conditions, the last term in the weak formulation (Eq. (2)), to detail the 

contributions of the remaining conditions. The integral contribution over the domain boundary can be split into three terms, 
as depicted in Fig. 1: respectively, the liquid boundary ∂�L, the vapour boundary ∂�V, and the liquid–vapour interface �LV. 
On both fluid boundaries, Dirichlet as well as Neumann conditions apply, such as illustrated in Fig. 2 for a 2D case. Then, 
considering that the test functions w vanish over �D, the initial integral on the boundaries turns into integrals on the three 
interfaces �i , with i ∈ {SL,SV, LV} plus the boundary where Neumann conditions prevail.∫

∂�L∪∂�V

σ · n · w dS

=
∫

σ · n · w dS +
∫

σ · n · w dS −
∫

(σLV − σL) · n · w dS −
∫

Pextn · w dS

(10)
∂�L\�LV ∂�V\�LV �LV �N
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Fig. 3. Meniscus facing a wall in 2D with boundary of each interface.

Consequently, the boundary condition corresponding to a potential friction over the wall on �SL and �SV (Eq. (5)), and the 
jump of normal stress across the interface �LV (Eq. (3) are weakly imposed. This crucial contribution finally reads∫

∂�L∪∂�V

σ · n · w dS

=
∫

�SL

(−βSL v + ∇α(γSLtα)
) · w dS +

∫
�SV

(−βSV v + ∇α(γSVtα)
) · w dS +

∫
�LV

∇α(γLVtα) · w dS

−
∫
�N

Pext n · w dS

(11)

It is classical in the literature to perform an integration by parts on the term ∇α(γ tα) [33] [34] in order to ease 
the computation, because the derivative is reported on the test function. Surface tension and surface energy terms are 
transformed into∫

�i

∇α(γit
α
i ) · w dS =

∫
∂�i

γi T i · w dl −
∫
�i

γi(I − ni ⊗ ni) : ∇w dS, with i ∈ {LV,SL,SV} (12)

Applying this integration for the three interfaces, as suggested by Bruchon [21], has the advantage to weakly impose the 
mechanical equilibrium at the triple line, which is the last natural boundary condition. ∂�i represents the boundary of the 
interface �i , with i ∈ {SL,SV, LV}, corresponding to points in 2D, whereas it becomes lines in 3D. Each term 

∫
∂�i

γi T i · w dl
can be split into a contribution on the triple line L(t) and the complementary region ∂�i \ L(t), as shown in Fig. 3 for a 2D 
case. Then summing over i the first term in Eq. (12) leads to:∫

∂�SV

γSVT SV · w dl +
∫

∂�SL

γSLT SL · w dl +
∫

∂�LV

γLVT LV · w dl

=
∫

L(t)

(γSVT SV + γSLT SL + γLVT LV) · w︸ ︷︷ ︸
=Rsolidns ·w

dl

︸ ︷︷ ︸
=0

+
∑

i∈{SL,SV,LV}

∫
∂�i\L(t)

γi T i · w dl (13)

The first term of Eq. (13) corresponds to the contribution of each interface at the triple line, whereas the second term is 
the contribution on the remaining boundary of each interface, typically the positions a, b, and c in Fig. 3 for a 2D case. Due 
to the restriction on the test function, the boundary tangent term vanishes if a Dirichlet boundary condition is prescribed 
at these points. In Eq. (13), the surface tensions equilibrium over the triple line is verified because the wall is assumed to 
be rigid (w · nS = 0 on L(t)). But for soft solids this term is mandatory, and can even prevail in some circumstances [35].

Finally, the weak form of the Stokes equation for two fluids in contact with a wall is:
find v ∈ W and p ∈ Q such that

−
∫
�

p∇ · w dV +
∫
�

μ∇v : ∇w dV −
∫
�

q∇ · v dV +
∫

�solid

βv · w dS

=
∫
�

ρg · w dV −
∫
�

γ (I − n ⊗ n) : ∇w dS −
∫
�N

Pext w · n dS +
∫

∂�\L

γ T · w dl
(14)

for any test functions w ∈W0 and q ∈Q, with
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∫
�solid

βv · w dS =
∑

j∈{SL,SV}

∫
� j

β j v · w dS

∫
�

γ (I − n ⊗ n) : ∇w dS =
∑

i∈{SL,SV,LV}

∫
�i

γi(I − ni ⊗ ni) : ∇w dS

∫
∂�\L

γ T · w dl =
∑

i∈{SL,SV,LV}

∫
∂�i\L(t)

γi T i · w dl

(15)

4. Discretisation

In order to establish the finite element formulation, the space and time discretisation of the global problem formulated 
in Eqs. (14)–(15) is described in this section.

4.1. Space discretisation

Let the computational domain � be discretised by a structured or unstructured mesh, Th , made up of triangles in 2D 
and tetrahedrons in 3D. Velocity v and pressure p fields are approximated respectively by vh and ph , which are both con-
tinuous and piecewise linear functions (P1/P1 approximation). Because the piecewise linear approximation for pressure and 
velocity is not stable for the Stokes problem, a stabilisation technique is required in order to circumvent the Ladyzhenskaya–
Babuska–Brezzi (LBB) condition. The stabilisation used here belongs to the Variational Multiscale Method (VMS) framework, 
formalised by Hughes [36] [37], and is more precisely the Algebraic SubGrid Scale (ASGS) derived by Codina [38]. From the 
VMS method, both velocity and pressure are decomposed into a computable component, the finite element solution, and a 
subgrid component. The specificity of the ASGS method is to choose the subgrid component for the velocity related to the 
finite element residual of the momentum balance equation, whereas the subgrid component of the pressure is related to 
the finite element residual of the mass balance equation. Hence, on a mesh element e:

v |e ≈ vh |e − τ e
q ∇ph |e + τ e

q ρ|e g

p|e ≈ ph |e − τ e
v ∇ · vh |e

(16)

with the coefficients τ e
v = h2

e
μ , τ e

q = μ, and he the mesh size of element e. An integration by parts is performed on the finite 
element residual for the velocity, as explained in [38]. This stabilisation is widely used [39] and is a proven method that 
has been successfully employed for our various processes controlled by fluid flows [40] [2] [41].

Another consequence of the continuous approximation of both pressure and velocity is that classical Galerkin-based FE 
are intrinsically not able to capture a discontinuous solution. As explained earlier, both the surface tension and the change in 
density may lead to discontinuities in pressure and pressure gradient, respectively. It is crucial to compute accurately these 
jumps, otherwise the front of the fluid degenerates, independently of the method used to capture it. Few strategies are 
proposed in the literature to overcome this issue. It is possible to take advantage of the known pressure discontinuity from 
the Laplace law, remove the discontinuity, and during a post-processing stage add it back [26]. A different idea is to place 
additional unknowns on the interface at each time step (X-FEM method) [27] [28], and thus increase the pressure space 
dimension. Yet, this method increases the size of the system and the connectivity has to be updated during computations. 
Also, a strategy has to be used to circumvent the problem of the system’s ill-conditioning [42]. The last method exposed 
in the literature consists in adding some degrees of freedom to enrich the approximation space, but condense them prior 
to solving the algebraic system (E-FEM) [30]. Following Ausas et al. [29], two degrees of freedom are needed to capture 
the pressure jump. Also, Coppola-Owen et al. [30] proved that one complementary degree of freedom is sufficient for 
representing the pressure gradient jump that originates from the density contrast between both phases. The asset of the 
E-FEM used in this paper is that the size of the system remains unchanged since the three added degrees of freedom are 
condensed prior to assembly.

Furthermore, to compute accurately the contribution of the diffusion and gravity terms in the elements cut by the 
interface, a special attention has to be paid to adapt the quadrature rules. More precisely, each tetrahedron (triangle in 
2D) cut by the interface is virtually divided into six sub-tetrahedrons (three sub-triangles) to which are applied the same 
integration rule as the non-cut elements [2]. Since one integration point is required to integrate the linear contributions, and 
considering a viscosity and density constant in each phase, only one integration point is required into each sub-element.

4.2. Time discretisation

The time is sequenced into increments, the superscript (·)n denotes a quantity at time n, and 	t = tn+1 − tn is the time 
step between two increments. The weak form of the global equilibrium (Eq. (14)) requires to compute the driving force 
term associated with surface tension at time tn+1
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∫
�n+1

γ (I − n ⊗ n)n+1 : ∇w ds (17)

This non-linear problem of a moving interface with a surface tension force acting on it implies the use of small time steps 
to cope with potential severe non-linearities. A precise approximation of the position of the interface and its normal is 
required; otherwise, the interface degenerates rapidly. To overcome this difficulty, it is possible to use a semi-implicit time 
treatment on the surface tension term [43]. The position of the interface at time tn+1 is approximated by its position known 
at time tn plus the distance travelled during the time increment, 	t vn+1. This prediction of the interface position is then 
used to compute the surface tension’s contribution.

Let id be the identity function id : R
3 → R

3 with id(x) = x. Then the time discretisation of the surface tension term 
reads ∫

�n+1

γ (I − n ⊗ n)n+1 : ∇w ds =
∫

�n+1

γ ∇�idn+1 : ∇w dS

≈
∫
�n

γ ∇�(idn + 	t vn+1) : ∇w dS

=
∫
�n

γ (I − n ⊗ n)n : ∇w dS + 	t

∫
�n

γ
(∇vn+1(I − n ⊗ n)n) : ∇w dS

(18)

with ∇� the surface gradient operator. This discretisation was proposed by Bänsch [44], based on previous work by Dziuk 
and coworkers for the Laplace–Beltrami operator [45] [46]. Groß et al. [47] performed an error analysis and showed a 
O (

√
h) error bound for this approximation. The second term in the previous equation (18) is a dissipation term that acts as 

a stabilisation term.

5. Level-set method

The level-set method introduced by Osher et al. [19] has the advantage to give an implicit representation of the interface 
between the vapour and the liquid phases. The level set is a time-dependent scalar function, φ(x, t), representing the signed 
distance to the front of fluid. The implicit representation of the interface is given by �LV(t) = {x | φ(x, t) = 0}. To follow the 
physics modelled, the level-set function is convected using a transport equation, with the considered velocity v

∂φ

∂t
+ v · ∇φ = 0 (19)

In order to solve the above hyperbolic equation, one needs an initial condition φ(x, 0) and a Dirichlet boundary condition 
on the inflow boundary ∂�in = {x ∈ ∂� | v ·n < 0}. The equation is solved with a Finite Element Method using the same grid 
as for the fluid problem. The level-set function φ is consequently approximated by φh , a continuous and piecewise linear 
function. As the standard Galerkin approximation is not stable for the hyperbolic equation (19), we use the Streamline 
Upwind Petrov–Galerkin (SUPG) approach developed by Brooks and Hughes [48]. Then, the discrete test function φ̃∗

h is 
chosen on an element e as

φ̃∗
h|e = φ∗

h |e + τ e v |e · ∇φ∗
h |e

where φ∗
h is the standard piecewise linear test function, and the stabilisation coefficient is defined as

τ e = 1

2

he

|v |e|
with |v |e| the norm of the average velocity on the element e. The SUPG method creates an ‘up-wind’ effect by adding 
diffusion in the direction of the convective velocity. Finally, for the time discretisation, a Crank–Nicolson scheme [49] is 
used with a quadratic convergence error.

The signed-distance property ‖∇φ‖ = 1 is not conserved by the convection of φ with the velocity field v . Consequently, 
sharp gradients may develop at the interface. In that case, the SUPG is not able to stabilise the convective term and the 
level set may get severely distorted. To recover the unitary gradient property, the Hamilton–Jacobi equation is solved [50]⎧⎨

⎩
∂ϕ

∂τ
+ sign(φ)(‖∇ϕ‖ − 1) = 0

ϕ(x, τ = 0) = φ(x, t)
(20)

with τ a fictive time and sign(φ) a sign function that could be defined from Peng [51] as
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sign(φ) = φ√
φ2 + ||∇φ||2h2

e

(21)

Introducing the convective velocity vr = sign(φ)
∇ϕ

||∇ϕ|| and F = sign(φ) makes it possible to get the Hamilton–Jacobi equation 
(20) back to a transport equation such as Eq. (19) with a right-hand side

∂ϕ

∂τ
+ vr · ∇ϕ = F (22)

The previous equation should be solved until reaching the steady-state solution. In our simulations, only three pseudo-time 
steps are enough to control the gradient of the level-set function in the vicinity of the interface. Finally, the non-linearity of 
the Hamilton–Jacobi equation is removed by considering the velocity v r at the previous pseudo-time step. Accordingly, this 
equation can be solved exactly in the same way as the level-set transport equation (19).

6. Temporal coupling strategy

The time sequence used in the presented simulations consists in computing successively velocity–pressure fields and 
then updating the level-set function, once and only once in a time step: at a time tn+1, Stokes equations are solved using 
the geometry evaluated at tn . The corresponding staggered algorithm is given in Algo. 1. The symbol 

∑
e in the Stokes 

equations stands for the summation over all the mesh elements e, and is involved in the terms resulting from the ASGS 
stabilisation technique.

Algorithm 1 Staggered algorithm for Stokes and level-set problems.

Require: φ0
h and v0

h , the initial values

for all tn+1 ∈]0, T ] do
• Step 1 find vn+1

h ∈Wh and pn+1
h ∈ Q h such that

−
∫
�h

pn+1
h ∇ · wh dV +

∫
�h

μn∇vn+1
h : ∇wh dV −

∫
�h

qh∇ · vn+1
h dV +

∫
�solid,h

βvn+1
h · wh dS

+
∑

e

τ e,n
q

∫
e

∇ · vn+1
h ∇ · wh dV −

∑
e

τ e,n
v

∫
e

∇pn+1
h ∇qh dV

=
∫
�h

ρn g · wh dV −
∫
�n

h

γ (I − n ⊗ n)n : ∇wh dS

− 	t

∫
�n

h

γ
(
∇vn+1

h (I − n ⊗ n)n
)

: ∇wh dS +
∫

∂�h\L

γ T · wh dl −
∑

e

τ e,n
v

∫
e

ρg · ∇qh dV

for any test functions wh ∈W0
h and qh ∈ Qh .

• Step 2 find φh ∈ Sh such that

∫
�h

φn+1
h − φn

h

	t
φ̃∗

h dV + 1

2

∫
�h

vn+1
h · ∇φn+1

h φ̃∗
h dV = − 1

2

∫
�h

vn
h · ∇φn

h φ̃∗
h dV

with φ̃∗
h = φ∗

h + τk vn+1
h · ∇φ∗

h for any test functions φ∗
h ∈ S0

h

• Step 3 Reinitialisation step: solve the Hamilton–Jacobi (22).
end for

7. Numerical experiments

The purpose of this section is to validate the proposed method through numerical experiments compared with analytical 
and semi-analytical solutions, and also experimental measurements. The main cases considered are a capillary rise of a 
liquid against a wall with a known analytical solution, and a meniscus rising between two walls with a semi-analytical 
solution in 2D and 3D. The focus is set on the position of the interface at equilibrium and the corresponding contact 
angle. Therefore, for these simulations the friction coefficient for the solid is removed for both fluids (βSL = βSV = 0). For 
comparison with some experiments by Pucci et al. [52], the solid is made of cellulose, the liquid is diiodomethane, and the 
vapour phase is air. The surface energies and surface tension of these phases have been characterised by Pucci et al. [52]
and are summarised in Table 1.
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Table 1
Input values for the model.

Solid/vapour – γSV Solid/liquid – γSL Liquid/vapour – γLV

Surface tension energy (N/m ) 54.7e−3 25.9e−3 50.8e−3

Vapour Liquid

Viscosity (Pa s) 1.71e−5 2.76e−3
Density (kg/m3) 1.292 3.325e3

Fig. 4. 2D meniscus against a wall – computational domain and boundary conditions; initially the interface is placed horizontally at y = 1
2 .

Fig. 5. Meniscus against a wall (left-hand side of the domain), comparison between the Finite Element solution (green curve) and the analytical solution 
(blue dots).

7.1. Meniscus facing a vertical wall

The first 2D numerical test is a meniscus facing a vertical wall in a unitary domain, as depicted in Fig. 4. Initially, the 
interface is placed horizontally at y = 1

2 . The fluid can flow in and out of the domain � through the top and bottom faces. 
A Neumann condition is applied on the bottom edge to balance the weight of the two fluids acting along −y . The left-hand 
side of the domain represents the solid boundary with two surface energies (γSV, γSL), and the interface between vapour 
and liquid has one constant surface tension γLV – see Table 1.

The analytical expression of the static solution is given by de Gennes et al. [5]

x − x0 = κ−1 cosh

(
2κ−1

y

)
− 2κ−1

(
1 − y2

4κ−2

)1/2

(23)

where x0 is the abscissa such that the previous equation (23) yields y(x = 0) = √
2κ−1(1 − sin θc)

1/2, the ordinate of the 
triple point at equilibrium. The capillary length κ−1 is a characteristic of the ratio between capillary and gravitational 
effects. For the present case, κ−1 =

√
γLV
ρL g ≈ 0.12 cm and represents the distance over which capillary effects are significant. 

Therefore, a homogeneous Dirichlet boundary condition can be applied on the right-hand-side edge (x, y) = (1, y) of the 
domain, as shown in Fig. 4.

For the baseline case of a coarse structured mesh made of 49×49 elements, the simulation is run on a single-core 
processor and takes 240 s. The mesh contains 2,500 nodes. Two hundred increments are performed with a time step 
	t = 2.5e−6 s, which corresponds to the final time 5e−4 s. At the equilibrium state, the computed profile correlates well 
with the analytical curve, as shown in Fig. 5. It should be noted that Fig. 5 is a close look on the interface, revealing very low 
scatters between FE and analytical solutions. As explained in Section 3, the contact angle is a consequence of mechanical 
equilibrium, which is weakly satisfied at the triple point. From the Young–Laplace equation, the contact angle computed 
for the chosen data in Table 1 is 55.4◦ , and our simulation gives a contact angle of 54.7◦ for a mesh size of 0.02 cm, 
corresponding to an error of 1.26%.

The convergence of the simulations can be assessed in terms of the error on the meniscus shape as a function of the 
mesh size. This is reported in Table 2 where the average projection in the x-direction between the computed and theoretical 
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Table 2
Convergence of the meniscus shape when refining the mesh – mean absolute value 
	x = 1

N

∑N
i=1 |xi

theo − xi
num|, with N the number of discretisation points in the inter-

val x ∈ [0,0.4].

Mesh size (cm) h = 0.02 h = 0.01 h = 0.005

	x (cm) 4.1e−3 3.8e−4 7.6e−5

Table 3
Absolute error on the pressure field as a function of the mesh density – 	press =

1
Nm

∑Nm
i=1 |ptheo − pcomp|, with Nm the number of mesh nodes.

Mesh size (cm) h = 0.02 h = 0.01 h = 0.005

	press (bar) 4.13e−7 6.12e−8 1.42e−8

Fig. 6. Meniscus against a wall – pressure profile at three positions x.

menisci is summarised (meshes are structured, as shown in the background of Fig. 5). It can be verified that, with the 
proposed formulation, meshing with linear elements leads to an abscissa error of the order of a few percents of the mesh 
size.

Moreover, the pressure field is of major interest, since the jumps in pressure and pressure gradient must be grasped 
properly in the computations. Fig. 6 represents the position in the y-direction as a function of the pressure profile. In the 
liquid, the density is higher than in the vapour; this leads to different slopes, lower in the liquid (under �LV interface) 
than in the vapour phase (over �LV interface). The pressure field is well characterised by a pressure jump arising from the 
curvature of the interface, and a gradient pressure jump coming from the change in density. Actually, 98% of the pressure 
jump is numerically recovered at the triple point on the finest mesh (95% on the coarse mesh), which is the point with 
the highest curvature. A lower ratio for the two other positions is due to the structured mesh. A local refinement would 
lead to a better result, but is not mandatory in the simple case. Both pressure and gradient of pressure jumps are correctly 
described with the enrichment introduced [29] [30]. Overall, the pressure field computed can be also compared with the 
theoretical pressure field with respect to the mesh size. The data reported in Table 3 permit to verify that this field also is 
well captured by the method.

Eventually, the velocity field yields some information on the ability of the method to compute a clean (regular) velocity 
field, even in the neighbourhood of the triple point. The velocity at the first increment is plotted in Fig. 7a. The initial contact 
angle is equal to 90◦ . This non-equilibrium state creates a velocity of magnitude 2.2e3 cm/s at the triple point, which brings 
the system toward the equilibrium state. At the end of the computation, the maximum velocity has a magnitude of 6.3 cm/s, 
i.e. 0.3% of the maximum velocity, which can be considered as representative of the equilibrium state (see Fig. 7b). It can 
be verified that very few spurious velocities are present, which are inherent to the interface approximation [23] – velocity 
and pressure spaces are able to capture the physics. But these spurious velocities have no significant effect on the interface 
development.

In Fig. 8, the position (ordinate) plotted against time for various time steps does not show any significant effect of the 
choice of the time step. The position at each time step is very close for the four tested time steps. Finally, the change over 
time in the triple point position is plotted for different time steps in Fig. 8. The curves appear to be superimposed, even for 
the first time increments – closeup in Fig. 8: the results do not depend on the time step, at least in the considered range. 
This justifies the staggered Algorithm 1.
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Fig. 7. Meniscus against a wall (left-hand side of the domain), velocity field magnitude in [cm/1e−5 s] at (a) the first and (b) the last increment of the 
simulation.

Fig. 8. Ordinate of the triple line during time with four different time steps.

Fig. 9. Computational domain and boundary conditions for a meniscus between two vertical walls.

7.2. Meniscus between two vertical walls

The second case aims at assessing the ability to deal with two menisci, but more importantly at evaluating the interaction 
between these menisci. This new case is an extension of the first one (same materials considered), with a second vertical 
wall placed such that the distance between both walls (0.1 cm) is lower than the capillary length (≈0.12 cm), i.e. both 
menisci should interact during the capillary rise. This second wall is placed on the right-hand side of the domain and the 
rest of the boundary conditions remain unchanged, as presented in Fig. 9. In 2D, the computational cost is still acceptable, 
the whole domain can be computed without exploiting the inherent symmetry of the problem.

The expected scenario is that one meniscus will form on either side of the domain, then both menisci will interact and 
merge in order to minimise the global energy. The new merged meniscus increases, since the liquid will be sucked between 
the walls. When the surface tension force is balanced by the weight of the liquid under the meniscus, the equilibrium 
position is reached. Unfortunately, no analytical solution is known for this position of the meniscus at equilibrium. However, 
a semi-analytical solution can be computed, the shape of the meniscus at equilibrium can be derived from the equilibrium of 
the forces or from a minimisation of the total energy of the system. Both methods are detailed in the following sub-sections 
for deriving this semi-analytical solution.
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Fig. 10. Comparison of the shape of the meniscus between two vertical walls. The FEM solution is compared with the solutions from the fixed point method 
and the gradient method.

7.2.1. Validation by the fixed point iterative method – equilibrium of the forces
The meniscus force balance is

−γ
y′′(x)(

1 + y′(x)2
)3/2

+ ρ g y(x) = 0 (24)

with y(x) the height of the meniscus at position x giving the gravity contribution, and y′′(x)(
1+y′(x)2

)3/2 the curvature in 2D, 

which yields the surface-tension force. A fixed point iterative method is used to solve Eq. (24), linearised by considering the 
length of the interface ds = √

1 + y′(x)2 at the previous iteration. The resulting equation is solved using finite differences 
in one dimension, with the boundary conditions y′(0) = −1/ tan θc and y′(0.1) = 1/ tan θc, with θc = 55.4◦ as the contact 
angle.

7.2.2. Validation by the gradient method – minimisation of the total energy
The second approach consists in minimising the total energy of the system. The potential energy is equal to 

y(x) ρ g y(x)
2 dx, and the surface tension energy reads γ ds, with ds the elementary curvilinear abscissa. Thus the global 

energy for the system is:

E(y, y′) =
1∫

0

[
1

2
ρL g y(x)2 + γ

√
1 + y′(x)2

]
dx (25)

The equilibrium shape of the meniscus will minimise this energy under the boundary conditions already expressed for the 
first method y′(0) = −y′(0.1). The problem to be solved reads:

min
{

E(y, y′) ; y′(0) = −1/ tan θc and y′(0.1) = 1/ tan θc
}

(26)

The minimisation problem is discretised using finite differences and solved using a gradient method as long as the average 
variation of the unknown is small enough (< 1e−18).

7.2.3. Results
The FE simulation is carried out using a structured mesh, with a mesh size of 2e−5 m in the x-direction and 5e−5 m 

in the y-direction, corresponding to 5,000 nodes. 1,000 increments are performed with a time step dt = 1e−6 s. As shown 
in Fig. 10, the FEM solution matches the solution from both fixed point and gradient methods based, respectively, on the 
force equilibrium and the total energy minimisation. The pointwise absolute error between the FEM solution and the fixed 
point method is the one represented by the blue dashed curve in Fig. 10, with values between 1e−5 cm and 1e−4 cm, 
corresponding to a maximum of 0.7% of the meniscus height. The contact angle is also verified, even if weakly prescribed 
in our formulation, it is equal to 56.6◦ , versus 54.4◦ for the semi-analytical solution. The velocity when the system is 
considered at equilibrium, has a magnitude of 1.4 cm/s, which represents 0.05% of the maximum initial velocity.

7.2.4. Extension to 3D
The test case of a meniscus between two vertical walls is a 2D case. In order to assess the robustness of the method, 

it can be extended to 3D by extrusion of the domain in the z-direction. The domain considered in the y-direction is 
reduced, y ∈ [0, 0.5], and the initial interface is placed at y = 0.15. This change aims at reducing the computation cost. 
1,000 increments are computed on the unstructured mesh with 32,235 nodes and a time step dt = 1e−6 s.
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Fig. 11. Finite Element simulation of a meniscus between two walls at four times of the simulation. The first wall (foreground) is represented by its mesh 
and the second wall (background) is opaque, with pressure contours. The velocity is represented by the magenta arrows (‖v‖max = 2.6e3 cm/s for (a) and 
‖v‖max = 6.4 cm/s for (d)) and the liquid–vapour interface is represented by the green surface.

Fig. 12. Comparison of the shape of the meniscus between two vertical walls in three dimensions; one slice in the middle of the domain is analysed. The 
FE solution is compared with the solution from both fixed point and gradient methods.

Fig. 11a represents the initial position of the meniscus between both vertical walls, with a velocity field that will move 
the interface. The velocity field is homogeneous, with large magnitudes, since the meniscus is far from its equilibrium 
position: ‖v‖max = 2.6e3 cm/s. In Fig. 11b–c, the interface is rising, adopting a curved shape, because menisci on each wall 
interact. Finally, in Fig. 11d, the equilibrium position is considered as being reached with a maximum velocity of 6.4 cm/s, 
which is negligible compared to the initial maximum velocity.

Following the first 2D analyses, the flow front position can be measured in 3D. Fig. 12 shows a good agreement between 
the Finite Element solution and the semi-analytical one from the equilibrium of forces and the minimisation of the total en-
ergy. In three dimensions, the error is larger than in 2D, due to a coarser mesh: the characteristic mesh size he = 4.0e−3 cm 
in 3D, while in 2D, the size of element he is equal to 2.0e−5 and 5.0e−5 cm in, respectively, the x- and y-directions. The 
static contact angle is recovered by the numerical simulation with an excess of 3%: it is approximately 57.2◦ for a targeted 
theoretical angle of 55.4◦ computed from the parameters chosen for surface tension and surface energies.

The 3D numerical experiment is intrinsically more challenging, in terms of interface management (element split) for 
instance, but more especially since the contact point in 2D becomes here a contact line between the three phases with 
normal/tangent vectors to deal with in space. Still, the method is robust as verified with the position of the meniscus and 
the contact angle, which are in close agreement with the semi-analytical solutions.

7.3. Cluster of tubes

The last case presented is a 3D simulation of a liquid rising inside a cluster of tubes (Fig. 13). The problem configuration 
consists in ten vertical parallel glass tubes attached to a fixed horizontal plate, which are placed in contact with a pool 
of water. The exact position of the tubes is given in Appendix (Fig. 16). The 3D character of this problem is obviously 
challenging, with a further complexity introduced by the curved solid–fluid interfaces to deal with. The tubes are made of 
glass, the liquid is water and the vapour is air. The input physical data for the three phases in interaction are reported in 
Table 4. There does not exist any known solution for such cases, and going towards reality is the aim of robust numerical 
modelling approaches.
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Fig. 13. Cluster of tubes – computational domain and boundary conditions.

Table 4
Input data for the simulation of the cluster of tubes.

Solid/vapour – γSV Solid/liquid – γSL Liquid/vapour – γLV

Surface energy tension (N/m) 60.93e−3 30.03e−3 72.8e−3

Vapour Liquid

Viscosity (Pa s) 1.71e−5 1e−3
Density (kg/m3) 1.292 1e3

Fig. 14. Mesh for the cluster of tubes.

Fig. 15. Equilibrium position of the front of fluid.

As displayed in Fig. 13, boundary conditions are applied on each face of the bounding box of the discretised domain. 
The capillary length for this case is κ−1 ≈ 0.27 cm, which represents less than one third of the distance from any tube to 
the closest wall. Consequently, on the four lateral faces of the domain, the velocity is prescribed as homogeneous Dirichlet 
conditions, i.e. v = 0, since the tubes are far enough from these boundaries. The velocity at the top and bottom of each 
tube is prescribed as null in the z-direction. This choice aims at removing the tangent term from equation (13) and has no 
influence on the steady state solution, since the velocity vanishes at equilibrium. Finally, a fluid pressure corresponding to 
hydrostatic pressure is prescribed at the contact with water (bottom face), and a zero pressure is prescribed on the top face.

The mesh, presented in Fig. 14, is refined in three regions (denoted 1, 2, 3 in the figure), in order to put the unknowns 
in strategic locations. The first region corresponds to the interface location outside the cluster. The second one is the 
intra-cluster region. This refinement aims to describe with a greater precision the front of fluid in regions with a high degree 
of curvature. Finally, the third region corresponds to the expected equilibrium position. This position has been inferred from 
a first computation using a coarser mesh. Hundred increments are performed with a time step of dt = 5e−6 s on the mesh 
from Fig. 14 containing 91,701 nodes.

The equilibrium position of the meniscus is shown in Fig. 15. The transparent grey tubes in the center represent the 
glass tubes, and the interface between the air and water is the green surface. The liquid underneath is coloured in light 
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blue. The maximal velocity at the beginning is at the triple line with a value of 3.3e−2 cm/s, when at the end the maximal 
value is 5.7e−3 cm/s. One can verify that the fluid has risen between the tubes separated by a distance smaller than the 
capillary length. On the edge of the cluster, a standard meniscus is formed with the pool of water and vanishes on the 
domain edges.

8. Conclusion

An original numerical method has been proposed in this paper to simulate capillary effects within the framework of con-
tinuum mechanics for two-fluid flows. This method relies on several key features. Following our previous studies on infusion 
process simulation [14] [15], the Stokes system is solved in velocity/pressure by using a FE-P1/P1 approximation, stabilised 
with an ASGS method. A level-set technique is used to capture the liquid–vapour interface evolution. The transport equation 
is solved by a SUPG-FE method, with a linear approximation of the level-set function and a Hamilton–Jacobi formulation 
for the redistanciation step. Concerning the specific tension-surface-driven problem, pressure enrichment at the interface 
permits to capture both pressure and gradient pressure jumps [29] [30]. An original formulation of the mechanical problem 
at liquid/vapour, liquid/solid, and vapour/solid interfaces leads to a weakening and a natural prescription of the mechanical 
equilibrium at the contact line [21]. As for the time discretisation, a semi-implicit treatment on the surface tension term 
[44] yields a stabilisation that removes to a large extent the time step dependency.

Various numerical tests have permitted to verify the robustness of the method, first in 2D for a simple meniscus with 
analytical solution and also for combining menisci with semi-analytical solutions. Then in 3D a rising meniscus was suc-
cessfully represented, and eventually a capillary rising in a cluster of tubes was considered. The contact angle was properly 
recovered, thanks to the contact line mechanical equilibrium weakly imposed into the formulation. The discontinuities across 
the interface were correctly described, avoiding any spurious velocities. The robustness of the method has been successfully 
tested against a challenging 3D case with multiple curved interfaces.

The proposed method requires only one mesh for both fluid and level-set problems, with no further refinement to capture 
discontinuities. Each problem has its own formulation and stabilisation, and is solved successively in the staggered approach 
using a time step which is not restrained by the discretisation. Further work will focus on the application of this method 
to void formation in LRI processes and to the dynamic stage of wicking, provided sufficient experimental data are made 
available.

Appendix A

Fig. 16. Position of the tubes.
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