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An extension of the classical parabolized stability equations to flows strongly dependent 
on the two cross-stream spatial directions and weakly dependent on the streamwise 
one is applied to model the large-scale structures present in twin-jet configurations. The 
existence of these unsteady flow structures, usually referred to as wavepackets, has been 
demonstrated in the literature for both subsonic and supersonic round jets, along with 
their relation to the generation of highly directional noise emitted in the aft direction. 
The present study considers twin-jet configurations with different separations at high 
Reynolds number and subsonic conditions. The existing instability modes for the twin-
jet mean flow, their dependence on the separation of the two jets, and the interaction 
between the wavepackets originating from the two jets is investigated here. Arising from 
the axisymmetric mode for single round jets, two dominant modes are found for twin jets: 
a varicose one, relatively insensitive to jets’ proximity, but likely to be efficient in radiating 
noise; a sinuous one, whose amplification is strongly dependent on the jets’ distance, and 
which can be expected to produce weaker acoustic signatures.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Jet noise reduction is a technological problem that has received continuous effort since the appearance of commercial 
jet airliners in the early 1950s. Modern commercial aircrafts feature very high-bypass-ratio turbofans that are considerably 
quieter than the early-day jet engines. However, mission requirements and architecture of tactical fighters impose high 
exhaust speed and limited nozzle cross-section area, demanding alternative noise reduction strategies. In addition to a deep 
understanding of the underlying physics, the development of noise reduction mechanisms requires efficient and reliable 
models for noise prediction that could be used in the design and optimization cycle of passive devices, or as reduced-order 
models for active control devices. With a view of achieving this objective, simple models that relate the properties of the 
turbulent jet mean flow with the noise radiated to the far-field are sought for here.
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Following the seminal works of Mollo–Christensen [1], the relation between the dominant components of the far-field 
noise radiated by high-speed jets and large-scale fluctuations in the turbulent mixing region, coherent over several nozzle 
diameters, has been the subject of growing research [2]. Evidence amassed in the last decades show that, indeed, radiated 
sound is highly directional for both subsonic and ideally-expanded supersonic jets [3–5]. While temporal intermittency is 
a characteristic of both far- and near-field pressure fluctuations, the radiated sound is found to be highly correlated with 
large-scale, low-frequency fluctuations in the mixing region, and with the very few azimuthal modes, for single isolated 
jets [6–8]. The existence of coherent structures in turbulent jets was first identified by Crow and Champagne [9], and their 
resemblance to instability waves for harmonically-forced supersonic jets suggested the use of linear instability analysis for 
modeling them [10,11]. The presence of wavepackets in subsonic natural high-speed jets was finally demonstrated over the 
last decade [12–14], as well as the ability of linear stability calculations to model them faithfully. In particular, parabolized 
stability equations (PSE) were demonstrated to deliver a notable agreement with simulation and experimental near-fields for 
both subsonic and supersonic jets, at a very low computational cost [15,16,13,14,17,18]. Alternative methodologies, based on 
the comparatively more expensive two-dimensional eigenmode problems, have been used to compute global wavepackets in 
the time and frequency domains [19–21]. More recently, one-way linearized equations have been proposed as an improved 
method for modeling the wavepacket using a parabolic integration, which overcomes some of the limitations known for 
PSE [22].

With few exceptions, most of the tactical fighters developed since the 1960s feature fuselage-embedded twin-jet engines. 
Additionally, multi-tube nozzles have been investigated as possible jet noise suppressors. Experiments on these configura-
tions showed that twin-jet configurations can result in a reduction of the far-field noise with respect to the equivalent 
isolated jet [23,24]. By varying the spacing between the nozzles, two different mechanisms leading to noise suppression 
were identified. The first one is related to the interaction between the turbulent mixing region of each jet, which can 
modify and reduce the sound sources, and only occurs for closely-spaced nozzles. The second one is due to the acoustic 
shielding that one jet exerts on the sound emitted from the other one. Although noise reduction occurs at all jet spacings, 
it is only important in the plane defined by the jet centers.

This paper is concerned with the modeling of the coherent structures present in twin-jet configurations as instability 
wavepackets. As opposed to single round jets, instability analyses for twin jets are scarce in the literature, which is partially 
explained by the mathematical complexity of the latter. The mean turbulent flow corresponding to isolated round jets is 
axisymmetric, which enables the introduction of azimuthal Fourier modes and requires spatial discretization on the radial 
direction alone. Bipolar coordinates were used by Morris [25] and Green and Crighton [26] to study the inviscid instability 
of two axially-homogeneous parallel jets. They identified the counterparts of the different azimuthal Fourier modes known 
for single jets and classified them according to the symmetries about the jet-center plane and the plane normal to it. Jet 
interactions were found to be important only when the distance between jets was below ∼ 3 times the nozzle diameter.

An extension of the standard parabolized stability equations is used in this paper for modeling the wavepackets in 
subsonic turbulent twin jets. First introduced by Blackburn and Sherwin [27], the three-dimensional parabolized stability 
equations (3D PSE) are applicable to mean flows with a strong variation of its properties on the cross-stream plane and 
a mild downstream variation. Separation of scales for the time-periodic disturbances results in a downstream-marching 
problem analogous to the standard PSE, but allowing disturbances of arbitrary shape along the cross-stream plane. An 
ad hoc locally-parallel stability problem is derived based on the 3D PSE operators to provide the adequate near-nozzle 
initial conditions. The computed solutions implicitly account for the interaction of the wavepackets on each jet, including 
the possible mutual stabilization or destabilization. The methodology is applied to a tailored mean flow, constructed by 
superposition of the axial velocity fields measured experimentally for a single round jet with Mach number M j = 0.4 and 
Reynolds number Re = 4.2 × 105, based on jet exit velocity and nozzle diameter [14,28]. The analyses performed herein 
are focused on the frequency range in which the highly-directional turbulent-mixing noise was found to be dominant in 
subsonic single round jets. In terms of the Strouhal number St = f D/U j defined by the frequency f and the jet exhaust 
velocity U j and diameter D , the frequency range is St = [0.25 − 0.65]. Additionally, linear stability computations aiming to 
model the wavepackets recovered maximum amplifications and amplitudes for this range, both for subsonic and supersonic 
regimes (e.g., [12,13,19,14,2,20,21]).

The rest of the paper is organized as follows. Sections 2.1 and 2.2 introduce the 3D PSE approach and the spatial 
locally-parallel stability eigenvalue problem associated with it, while 2.3 briefly presents the numerical techniques used. 
The construction of the mean flows is discussed in section 3.1. Results from the locally-parallel stability at the near-nozzle 
section and the 3D PSE computations are respectively presented in sections 3.2 and 3.3. Finally, some discussion of the 
results and conclusions close the paper.

2. Methodology

The total turbulent flow field is separated into a mean (i.e. time-averaged) flow and temporal fluctuations q(x, t) =
q̄(x) +q′(x, t), where x = (x, y, z)ᵀ is the vector or coordinates in a Cartesian system, t is the time and q = (u, v, w, ρ, p, T )ᵀ

is a vector containing all the fluid variables of interest: the velocity components u, v, w in the x, y, z directions respectively, 
density ρ , pressure p and temperature T . Physical quantities are made dimensionless using the jet diameter D , and the 
free-stream sound speed c∞ and density ρ∞ . Pressure is scaled with ρ∞c2∞ and temperature with (γ − 1)T∞ , where γ is 
the ratio of specific heats. The jet Mach number is defined as M j = U j/c∞ , with U j being the exit velocity. The statistical 
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stationarity of the turbulent flow allows for the introduction of Fourier modes for frequency ω = 2πM j St (St being the 
Strouhal number), as

q′(x, t) =
∑
ω

q̆ω(x)e−iωt + c.c. (1)

where c.c. stands for the complex conjugate.

2.1. Three-dimensional parabolized stability equations

Based on the multiple-scale approach and originally devised for the study of Tollmien–Schlichting waves on transitional 
boundary layers, PSE accounts for a slow divergence of the mean flow properties and has been shown to deliver results 
comparable to those of direct numerical simulations for convectively unstable laminar and transitional flows [29,30]. More 
recently, PSE has been extensively used as a model for the spatial evolution of large-scale coherent wavepackets present in 
single round turbulent jets, commonly known as wavepackets [15,16,13,14,17,18], and a good agreement has been found 
with coherent structures educed either from experiments or large eddy simulations, at least up to the end of the potential 
core.

The fluctuations q̆ω(x) are decomposed into a shape function q̃ω , which is also slowly varying along the streamwise 
direction x, and a rapidly varying wave-like part:

q̆ω = Aω(x) q̃ω(x, y, z) = Aω(x0)exp

⎛
⎝i

xˆ

x0

αω(ξ)dξ

⎞
⎠ q̃ω(x, y, z) (2)

The complex quantity αω = αr + iαi is a streamwise wavenumber, for which a slow variation with x is assumed as well. 
The streamwise coordinate x0 is the location where the PSE integration is initialized, typically a cross-section close to the 
nozzle lip for jets. Upon introduction of (2) into the linearized compressible Navier–Stokes, continuity and energy equations, 
and neglecting terms involving second-order derivatives of the fluctuations on x, one arrives at the system of equations

L
∂q̃ω

∂x
= Rq̃ω (3)

where the linear operators L and R depend on the mean flow quantities and their first and second spatial derivatives, 
wavenumber α, frequency ω, physical parameters Re, M j , Pr, γ , and spatial differentiation operators on the cross-stream 
directions: Dy, Dz, Dyy, Dyz and Dzz .

The decomposition (2) and the governing equations (3) do not define uniquely the solution, as the spatial wave growth 
can be absorbed into the shape function or the complex amplitude. Following Herbert [31], the following normalization 
condition is imposed in order to eliminate the exponential dependence from q̃ω:

¨

�

q∗
ω

∂q̃ω

∂x
dy dz = 0 (4)

where ∗ denotes complex conjugation and � is the cross-stream domain.
The parabolized stability equations (3) constitute a downstream-marching problem along the slow coordinate x. Conse-

quently, it requires inlet conditions for the shape functions q̃ω and wavenumber αω at some location x0. Common practice 
is to derive a locally-parallel linear stability analysis, consistent with the PSE matrices, and employ its results in the deter-
mination of the inlet conditions. When high-fidelity experimental or numerical simulation data is available, this approach 
provides a theoretically-founded technique for the determination of representative amplitudes and phases [17,28].

2.2. Locally-parallel linear stability analysis

The matrix operators involved in the PSE approximation are used here to derive a locally-parallel stability eigenvalue 
problem (EVP), which is obtained by assuming dα/dx ≈ 0 and ∂q̆ω/∂x ≈ iαq̆ω [17]. From this approximation, one arrives at 
the following EVP:

iα Lq̂ω = R q̂ω (5)

Operators R and L are the same as in (3), but particularized for α = dα/dx = 0. For a given cross-stream plane x
and real frequency ω, the solution to (5) delivers a set of complex eigenvalues αn and their corresponding eigenfunctions 
q̂n(y, z). For unbounded mean flows like the present ones, classical theory [32,33] shows the existence of a fixed number 
of continuous branches, related to the uniform flow surrounding the jets, in addition to an indefinite number of discrete 
eigenmodes associated with localized mean flow shear. The numerical solution to (5), based on the spatial discretization of 
the linear operators (described in the next subsection) results into a discretized representation of the continuous branches.



D. Rodríguez et al. / C. R. Mecanique 346 (2018) 890–902 893
2.3. Numerical methods

The numerical resolution of both the PSE (3) and local stability EVP (5) requires the spatial discretization of the two-
dimensional linear operators R and L in the cross-stream yz planes. It is well known that the computational cost associated 
with the memory storage and the operational time of these multi-dimensional operators become prohibitive if standard 
methods for one-dimensional problems are used [34,35]. Based on our own previous experiences [36], we developed a new 
stability code that combines variable-stencil high-order finite differences and sparse algebra, exploiting the banded struc-
ture of the differentiation matrices. In this work, a 7-point stencil is used, which results in the optimal balance between 
convergence of results and computational cost [37].

A rectangular domain is considered for the cross-stream planes � = [−y∞, y∞] × [−z∞, z∞]. A coordinate transforma-
tion is used to concentrate points for the two spatial directions in the central region of the computational domain, where 
the jets are located:

η = η∞
sinh (a(ξ − 1/2))

sinh (a/2)
(6)

where η is the mapped coordinate in the physical domain (e.g., y or z), ξ is the coordinate in the computational domain 
(ξ = [0, 1]), η∞ is the maximum (positive and negative) value of η, and a is a real number that controls the clustering of 
points. The value a = 2.5 is used in the present calculations.

The Cartesian coordinate system allows for the use of standard finite differences for the independent differentiation on 
y and z, resulting in the differentiation matrices Dy and Dz for first-order derivatives and Dyy and Dzz for second-order 
derivatives. The same stencil is used for first- and second-order differentiation matrices, which allows for the control of the 
matrix structure, required for the efficiency of the sparse implementation. The cross-differentiation matrix is then obtained 
as Dyz =Dy ×Dz .

After discretization of the linear operators, the EVP (5) is solved using a sparse in-house implementation of the shift-
and-invert Arnoldi algorithm [38,39]. First, the EVP is formally transformed into

(R − iσ L)−1L q̂ = μ q̂ (7)

where μ = −i (α − σ)−1 and the subscript ω drop for simplicity of notation. The shift parameter σ is used to control the 
center of the eigenvalue window, such that the eigenvalues closer to σ are the first to converge. Arnoldi’s algorithm requires 
the resolution of a number of linear problems, which is accomplished using the MUMPS package [40].

The spatial discretization of the linear operators describing the PSE (3) is identical to the one for the EVP. Parabolized 
stability equations are a spatial-marching problem that is integrated along the streamwise direction using an implicit Euler 
scheme. This solution technique is known to present convergence problems due to the residual ellipticity of PSE, associated 
with the upstream-propagating wave solutions in the operators [41]. In practice, this limits the minimum step size that can 
be used to obtain stable solutions. Andersson et al. [42] proposed a stabilization procedure that enables the use of smaller 
step sizes, by means of adding a term proportional to the truncation error of the implicit scheme:

L
∂q̃ω

∂x
= R q̃ω + s R

∂q̃ω

∂x
(8)

where s is a positive real number. The minimum step size for a stable integration can be estimated as

�xmin ≥
(
αr + ωM2

j

1 − M2
j

)−1

− 2 s (9)

The fixed values �x = 0.25 and s = 0.1, determined for the stable integration of the lowest frequency considered, are 
used for all the calculations presented here. Increasing the value of s up to s = 1 did not produce noticeable differences in 
the computed wavepacket evolution.

Matrix equation (8) is recast in the form of (3) by introducing the operator L̃ = L − s R.
The solution q̃i+1 at the axial step xi+1 is obtained from the knowledge of the solution at a previous station q̃i by solving 

the linear system

L̃i+1

(
q̃i+1 − q̃i

�x

)
= Ri+1q̃i+1 (10)

where �x = xi+1 − xi . Since operators R and L̃ depend on the mean flow quantities, they also depend on the streamwise 
station. The linear systems (10) are also solved using MUMPS. In order to adjust the value of αi+1 so that the normalization 
condition (4) is satisfied, the solution to the linear system is iterated together with

α
(k+1)
i+1 = α

(k)
i+1 − i

�x

˜
�

q̃∗
i+1(q̃i+1 − q̃i)dy dz˜
�

q̃∗
i+1q̃i+1dy dz

(11)

where k is the iteration index, until α is converged up to a tolerance of 10−5.
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Fig. 1. Twin-jet mean flow configuration and geometry: (left) Nozzle-lip cross-stream plane y − z; (right) transversal plane x − z showing the streamwise 
evolution of the jet shear layers.

Fig. 2. Axial velocity for the twin-jet flow, as a function of the streamwise coordinate. The solid lines correspond to the coordinates of a nozzle (y, z) =
(0, h/2), and the dashed lines to the symmetry plane (y, z) = (0, 0). The different curves correspond to h/D = 1.25, 1.5, 1.75 and 2, increasing in the 
direction of the arrows. The thick solid line is the centerline velocity for one isolated jet.

3. Results

3.1. Tailored twin-jet base flow construction

A tailored mean flow field is considered for twin-jet configurations, constructed by combining the flow fields correspond-
ing to isolated round jets. The analytical expression used by Troutt & MacLaughlin [43] and Tam & Burton [44] describes the 
single-jet axial velocity profile as a function of three parameters: the axial velocity uc , the annual-mixing layer thickness δ, 
and the transversal extent of the potential core R . For a spatially-developing jet, these three quantities are functions of the 
axial coordinate x:

ūx

U j
=

{
uc(x), r < R(x)
uc(x)exp

[−(r − R(x)2)/δ2(x)
]
, r ≥ R(x)

(12)

In previous works [14,28], hot-wire anemometry data was used to determine uc(x), δ(x), and R(x) for an isolated round 
jet at different exhaust Mach numbers, following a procedure similar to that of Gudmundsson & Colonius [13]. A trip wire 
was used to ensure that the boundary layer internal to the nozzle was turbulent, and the Reynolds number based on the 
exhaust velocity U j and nozzle diameter D was Re = 4.2 × 105. The functions fitted for the mean jet flow corresponding to 
M j = 0.4 are used in the present work.

Mean flows corresponding to a twin-jet configuration are obtained by considering two jets of the form (12), aligned 
with the x-direction and with centers placed symmetrically on the coordinates (y, z) = (0, −h/2) and (y, z) = (0, h/2). The 
nozzle lips lay on the x = 0 plane. Fig. 1 gives a schematic representation of the problem, where the geometry may be 
defined entirely using the distance between the nozzle centers h. The total axial velocity is obtained as the sum of the two 
jets, which is a rigorous model close to the nozzle lips, in the pre-merging region. Once the shear layers of the two jets 
meet, it is expected that non-linear interactions, present in the real flow, produce a mean flow that deviates to some extent 
from the model. However, the qualitative features of the mean flow remain consistent with experimental observations [45]. 
Fig. 2 shows the downstream evolution of the axial velocity at the nozzle center and in the mid-point between the jets. 
The velocity rise in the mid-plane is associated with the merging of the jets. The pre-merging region extends for distances 
comparable to the jet potential core when h/D ≥ 1.25, and the effects of potential core closure and jet merging will appear 
simultaneously. While the two effects could be isolated by increasing the separation between jets or artificially reducing 
the divergence rates of the individual jets, realistic configurations present potential core closure and jet merging, and such 
isolation is not done here.
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Fig. 3. Locally-parallel stability eigenspectra, for single-jet (circles) and twin-jet configuration with h = 1.5 D (crosses). St = 0.5 and x = 0.25 D .

Fig. 4. Pressure eigenfunctions corresponding to Kelvin–Helmholtz modes m = 0, m = 1 and m = 2 for a single jet. St = 0.5, x = 0.25 D .

A zero mean pressure gradient is assumed, and the Crocco–Busemann relation particularized for the isothermal jet

T̄

T∞
=

(
M j − ūx

c∞

)
ūx

2c∞
+ 1

γ − 1
(13)

is used to determine the mean temperature T̄ . The density ρ̄ field is obtained from the state equation. The cross-stream 
mean velocity is neglected.

3.2. Locally-parallel stability results

The locally-parallel stability analysis used here considers disturbances with arbitrary shape in the cross-stream section. 
When applied to a single round jet, it must recover the same results as those obtained by more classical approaches used 
for axisymmetric flow (e.g., [46,28]). In particular, eigenmodes of the form exp(imθ), where θ is the azimuthal angle with 
respect to axis z and m = 0, ±1, ±2, ±3 . . . is the corresponding wavenumber, are to be recovered by the analysis in a 
natural manner. Fig. 3 (circles) shows a representative eigenspectrum, corresponding to a single jet with center located at 
(y, z) = (0, 0.75 D), cross-stream plane x = 0.25 D and St = 0.5. Although the computational domain � = [−7, 7] × [−7, 7]
is used for the spatial resolution N y × Nz = 601 × 601, convergence of the leading discrete Kelvin–Helmholtz eigenvalues 
is achieved, up to the third representative digit, with the smaller domain � = [−5, 5] × [−3, 3] and resolution N y × Nz =
501 × 301. The pressure components of the eigenfunctions corresponding to Kelvin–Helmholtz instability modes m = 0, 
m = 1 and m = 2 are shown in Fig. 4. The contours in this figure, as well as in subsequent Figs. 5 and 7–10, are evenly 
spaced between ± the maximum absolute value of the field quantity represented, white and black representing maxima 
positive and negative values, respectively. The background gray color corresponds to the zero level. Instabilities with |m| ≥ 1
are represented by two eigenmodes in the analysis, with the same eigenvalue and identical spatial structure except for a 
rotation on the y − z plane, so any azimuthal rotation of the spatial structure is captured by the linear combination of the 
two eigenmodes.

Fig. 3 also shows the analogous eigenspectrum for a twin-jet configuration, with jet centers located at (y, z) =
(0, ±0.75D) (jet separation h = 1.5 D). The crosses denote the corresponding eigenvalues. Careful inspection of the eigen-
functions (Fig. 5) relates the eigenmodes to those of the single-jet configuration. The presence of the second jet doubles 
the number of eigenmodes corresponding to each Kelvin–Helmholtz mode, so that two eigenmodes exist for m = 0 and 
four for each of the |m| ≥ 1 modes. The second jet also breaks the azimuthal-rotation symmetry of the eigenfunctions, and 
distinct eigenvalues are obtained for the equivalents of the m modes. A new classification for each m-mode is introduced 
on account of their symmetric or antisymmetric behavior with respect to the y and z axes. Figs. 5(a–b) show the pressure 
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Fig. 5. Pressure eigenfunctions corresponding to Kelvin–Helmholtz modes m = 0, m = 1 and m = 2 for twin jets separated by h/D = 1.5. St = 0.5, x = 0.25 D .

Fig. 6. Spatial growth rate αi (left) and phase velocity cp = ω/αr (right) corresponding to the m = 0 S (black lines) and m = 0 A (red lines) 
Kelvin–Helmholtz eigenmodes, as a function of the jet separation h, from the locally-parallel analysis at x = 0.25 D . The Strouhal numbers are St =
0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6 and 0.65, increasing in the direction of the arrow.

components of modes m = 0 S and m = 0 A, symmetric and antisymmetric over y = 0, respectively. Figs. 5(c–j) show modes 
AA, SA, AS and SS for m = 1 and m = 2, where the first letter denotes symmetry (S) or antisymmetry (A) on the y = 0 axis, 
and the second one on the z = 0 axis. This terminology is more complete than defining these modes as sinuous or varicose, 
as different modes of each kind are present, and more descriptive than that used by Morris [25]. Fig. 3 also shows that 
the influence of the jet proximity on the eigenmodes is inversely proportional to the azimuthal wavenumber m: the two 
eigenvalues corresponding to m = 0 for the twin-jet flow are different, and also differ from the single-jet ones. The twin-jet 
eigenmodes gradually converge towards the isolated jet ones as m is increased. This behavior is explained by the asymptotic 
decay of the single-jet eigenfunctions, the rate of which is proportional to ∼ r−1/2 exp(−r

√
α2 − ω2). For a fixed frequency 

ω, the axial wavenumber α increases with increasing m, resulting in a slower phase speed and a faster radial decay of the 
fluctuations.

The literature provides evidence that, for single subsonic round jets, wavepackets with m = 0 are correlated with the 
highly-directional far-field noise [5,2,14]. This is due to (i) the longer characteristic size of the wavepackets in the axial 
direction, as compared to helical modes, which is related to the instability properties of axisymmetric waves, (ii) the slower 
radial decay of m = 0 Bessel functions that represent acoustic radiation, and (iii) the absence of the partial noise cancellation 
associated with +m and −m Fourier modes when |m| ≥ 1. Consequently, when considering twin jets, it can be expected 
that the wavepackets more relevant to noise generation are those corresponding to m = 0. Visualization of the asymptotic 
behavior of the cross-plane pressure field for large r shows that m = 0 S (Fig. 5.b) results into axisymmetric (i.e. m = 0) 
pressure fluctuations of varicose nature, while m = 0 A (Fig. 5.a) behaves like a m = 1, sinuous mode.

Fig. 6 shows the dependence of the spatial growth rate −αi and phase velocity cp = ω/αr with the jet separation for 
Strouhal numbers between 0.25 and 0.65. The results show that the jet interactions are stronger for lower frequencies. This 
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Fig. 7. Pressure field on the z = 0.5 h plane (top row) and y = 0 plane (bottom row), for mode m = 0 S, for three jet spacing h/D = 1.1, 1.3 and 1.5 and 
St = 0.3.

Fig. 8. Axial velocity field on the z = 0.5 h plane (top row) and y = 0 plane (bottom row), for mode m = 0 S, for three jet spacing h/D = 1.1, 1.3, and 1.5, 
and St = 0.3.

is explained by the asymptotic radial decay of the eigenfunctions, which recovers Bessel functions. Higher frequencies (and 
azimuthal wavenumbers) correspond to faster radial decays, and consequently the two jets need to be closer to experience 
comparable effects. Jet proximity decelerates the symmetric mode, while having a mild effect on its instability. For St ≤ 0.5, 
m = 0 S is slightly destabilized, and stabilized for higher frequencies. The effect on the asymmetric mode is found to be 
stronger: destabilization occurs for a bounded range of jet separations, which depends strongly on St . As the frequency is 
increased, the peak growth rate increases, but the range of jet separations for instability and the most amplified frequency 
are reduced. Phase velocities of the m = 0 A mode exhibit non-monotonous variations with h and St , but in general they 
are increased with respect to their isolated-jet counterparts. Present results agree qualitatively with inviscid analyses of 
supersonic jets of finite-width mixing layer [25].

3.3. Three-dimensional parabolized stability equations

Once provided with a turbulent mean flow q̄ (discussed in section 3.1) and an initial condition, obtained from the 
resolution of an ad hoc locally-parallel stability problem (section 3.2), the 3D PSE can be integrated to compute the spatially-
evolving instability waves that model the statistical wavepackets.

In the following, computations initialized with m = 0 S and m = 0 A Kelvin–Helmholtz modes are considered. As dis-
cussed in the previous section, these eigenmodes can be expected to be most relevant for noise radiation. Figs. 7 and 8 show 
the pressure and axial velocity fields corresponding to 3D PSE computations initiated with the m = 0 S mode, for St = 0.3
and jet spacing h/D = 1.1, 1.3 and 1.5. The planes shown are the one containing the jet centers (y = 0) and the vertical 
one corresponding to one jet center (z = 0.5 h). Figs. 9 and 10 show the analogous fluctuating flow fields for computations 
initialized with the m = 0 A mode.

The pressure fields corresponding to m = 0 S show an initial amplitude growth that extends for the first 5–6 diameters 
from the nozzle followed by a decay, resembling results for single jets [13,28]. Pressure and velocity fluctuations are found 
to be stronger in the external part of the twin-jet system than in the merging region between the two jets. Velocity 
fluctuations show the same qualitative behavior as for single jets, attaining peak values at approximately the same axial 
locations.

While the effects of jet proximity are found to be limited to mild quantitative differences on the wavepackets computed 
for m = 0 S modes, clear qualitative differences are observed in the pressure and velocity fields corresponding to m = 0 A 
modes (Figs. 9–10). As suggested by locally-parallel analyses in the vicinity of the nozzle (Fig. 6), jet proximity stabilizes 
these wavepackets, which is evident in the pressure fields and especially in the x − z plane. As opposed to m = 0 S modes, 
velocity and pressure fluctuations are stronger in the merging region between the jet cores. For m = 0 A modes, velocity 
fluctuations in the vertical planes z = 0.5 h attain peak values at approximately the same axial locations. Conversely, when 
the transversal plane y = 0 is monitored, velocity fluctuations are found to achieve their maxima downstream of the pres-
sure peak and extend farther with a milder decay rate. This different behavior may be attributed to the merging of the two 
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Fig. 9. Pressure field on the z = 0.5 h plane (top row) and y = 0 plane (bottom row), for mode m = 0 A, for three jet spacing h/D = 1.1, 1.3, and 1.5, and 
St = 0.3.

Fig. 10. Axial velocity field on the z = 0.5 h plane (top row) and y = 0 plane (bottom row), for mode m = 0 A, for three jet spacing h/D = 1.1, 1.3, and 1.5, 
and St = 0.3.

jets. The appearance of strong fluctuations of hydrodynamic origin is expected here, since it is at the end of the potential 
core. The relevance of these fluctuations is currently a subject of active debate [47,48].

The total amplification experienced by the wavepackets is quantified using the N-factor, defined as

N = log

(∣∣∣∣ A(x)

A(x0)

∣∣∣∣
)

= −
xˆ

x0

αi(ξ)dξ (14)

(cf. Eq. (2)), for Strouhal numbers St = 0.3 and S = 0.5 and different spacings of the jets spanning from h = 1.1 D to 1.8 D . 
The results are shown in Fig. 11. Fig. 12 shows the corresponding wavepacket amplitudes, illustrating the amplitude growth 
and phase speed variations along the axial direction simultaneously. In line with the fluctuation fields visualizations dis-
cussed above, a weak destabilizing due to jet proximity is found on m = 0 S wavepackets, which is slightly more pronounced 
for the lower St = 0.3 frequency. Conversely, a dramatic impact of the jet separation on the amplitude growth is observed 
for m = 0 A, which varies from a strong stabilization for lower frequencies and jet separations to an important destabi-
lization for relatively higher frequencies and bounded ranges of jet distances. For instance, Fig. 12 (bottom right) shows, 
for St = 0.5 and modes m = 0S , a maximum amplification of A(x)/A(x0) ≈ 93.2 (N ≈ 4.5) for h = 1.5D; for h = 1.3D the 
corresponding amplification is A(x)/A(x0) ≈ 34.6 (N ≈ 3.5), occurring around two diameters closer to the nozzle lips. On 
the other hand, A(x)/A(x0) ≈ 1.89 (N ≈ 0.6) for h = 1.1D .

4. Conclusions

With the objective of modeling the large-scale turbulent structures present in the turbulent mixing region of twin-jet 
configurations, the standard PSE methodology is extended to consider wave-like instabilities with an arbitrary dependence 
of their properties in the cross-stream plane. This methodology, relatively recent in the literature, is herein referred to as 
three-dimensional PSE or 3D PSE, as opposed to the usual PSE applications in which the spanwise or azimuthal directions 
are introduced using Fourier modes. For its initialization, a locally-parallel spatial instability analysis is performed.

The M j = 0.4 single round jet from previous publications [14,28] is used to construct mean flow models for twin-jet 
configurations, by the combination of the velocity fields for two ideal jets. The resulting flows agree qualitatively with the 
experimental observations by Okamoto et al. [45], but quantitative agreement with real twin-jet mean flows is expected only 
for the first few diameters of evolution, in the jets’ pre-merging region. Future research in this direction should consider 
more realistic mean flows, obtained from experiments or high-fidelity simulations. Previous experiences on the computation 
of wavepackets using PSE for single round jets demonstrated that small inaccuracies in the mean flow gradients can result 
in important differences in the PSE solutions.
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Fig. 11. Amplification curves, in terms of the N-factor corresponding to St = 0.3 and St = 0.5 and modes m = 0 S, and m = 0 A, for jet separations 
h/D = 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, and 1.8, increasing in the direction of the arrows.

Fig. 12. Real component of the amplitude curves A(x), corresponding St = 0.3 and St = 0.5 and modes m = 0 S, and m = 0 A, for jet separations h/D = 1.1
(solid lines), 1.3 (dashed lines), and 1.5 (dashed-dotted lines).

Local stability analyses presented herein for near-nozzle cross-planes show that the jet interaction has the potential to 
stabilize and destabilize the Kelvin–Helmholtz instabilities. The effects of jet proximity are stronger for lower frequencies 
and azimuthal wavenumbers. Particular attention is paid to two eigenmodes, corresponding to the axisymmetric mode 
(m = 0) for single jets. The m = 0 mode has been suggested to be the most relevant one for the noise radiated by single jets 
[14], partly due to the more elongated structure of the corresponding wavepacket, higher peak amplitudes, and slower radial 
decay of their associated pressure field, as compared to |m| ≥ 1 azimuthal modes. For twin jets, the azimuthal symmetry 
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of this mode is broken, and two discrete modes appear: a faster one (m = 0 A), which is antisymmetric about the jet 
mid-plane and is related to sinuous fluctuations of the flow field, and a slower and symmetric one (m = 0 S) related to 
varicose fluctuations. Inspection of their respective pressure fields shows that m = 0 S retains the asymptotic behavior of 
the axisymmetric mode, but m = 0 A behaves asymptotically as a m = 1 mode. Wavepackets arising from the m = 0 A modes 
near the nozzle can be expected to be significantly less efficient in generating sound.

The results presented herein show that jet proximity has a limited effect on m = 0 S modes, exerting a mild destabi-
lization when their separation is reduced. The amplitude peak of the pressure fluctuations is localized in the external shear 
layer of the twin-jet mean flow. Conversely, the jet separation has a dramatic effect on the spatial growth and subsequent 
decay of the m = 0 A modes. Order-of-magnitude changes in the wavepacket amplification are found for different combina-
tions of the jet separation and Strouhal number, ranging from strong stabilizations for low frequencies and very close jets, 
to significant destabilization for particular frequency ranges and jet separations h ∼ 1.5 D . Maximum amplitudes found for 
m = 0 A wavepackets clearly exceed those for m = 0 S. Furthermore, the maxima of the pressure and velocity fluctuations 
are localized in the merging region between the two jets for the asymmetric modes.

The full implications of present wavepacket models for twin-jet configurations with noise radiation are unclear at 
present, as is the relation between wavepacket models for single round jets and the far-field sound [47–49]. Some experi-
ments [23,24] have reported the presence of sinuous oscillations of the twin-jet flow field associated with net reductions 
of the far-field sound pressure levels and changes in the sound directionality on the azimuthal direction, for certain com-
binations of parameters. This behavior can be attributed to the dominance of the m = 0 A mode described here. It may 
therefore be conjectured that noise reductions in twin-jet configurations may be achieved by favoring the appearance of 
this instability in a controlled manner.
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Appendix A. On the use of PSE for computing wavepackets

The use of PSE for the computation of large-scale structures in turbulent flows deserves some additional comments. 
The parabolized stability equations were originally devised as an outgrowth of the weakly non-parallel analysis for the 
study of instability and transition of laminar flow. The exponential form of the Ansatz – Eq. (2) – assumes that a single 
relevant local eigenmode exists, characterized by its wavenumber and spatial structure. The downstream integration tries to 
follow this eigenmode, accounting for the downstream history of the disturbance and slow divergence of the base flow. The 
results of PSE are in general robust, and their interpretation is straightforward in those cases in which a single, unstable 
local eigenmode exists for each frequency, as is the case of laminar flat-plate boundary layers [29–31]. When an unforced 
turbulent jet flow is considered, some problems are encountered.

For isolated round jets, comparisons between PSE computations and wavepacket structures educed from experimental 
data using the Proper Orthogonal Decomposition show very good agreement in the near-field pressure and velocity fields 
for the first diameters downstream of the nozzle, up to the end of the potential core [13,14]. Rodríguez et al. [17] used a 
bi-orthogonal projection of large eddy simulation data on the different local eigenmode families to conduct PSE computa-
tions with different initial conditions. It was found that, as far as the contribution of the single unstable Kelvin–Helmholtz 
eigenmode was introduced in the initial fluctuation shape function, PSE converges quickly to the same solution regardless 
of contributions from other (stable) eigenmodes. When the initial condition did not include the Kelvin–Helmholtz eigen-
mode, the result of the integration was not robust. This behavior was further investigated by monitoring simultaneously the 
downstream evolution of the locally-parallel stability eigenspectra and the PSE solution [28]. Wavepacket models computed 
by PSE are robust and compare well with experiments when a single unstable eigenmode exist. As the integration advances 
towards the end of the potential core, the discrete Kelvin–Helmholtz eigenmode first becomes stable and finally merges 
with the continuous branch of vorticity modes; in the absence of a dominant eigenmode, the PSE solution captures a partial 
and limited combination of eigenmodes, with axial wavelengths close to that followed by the PSE integration.

These observations explain the good agreement of PSE computations with the dominant turbulent coherent structures 
extracted from experiments [13,14,28], high-fidelity simulations [17,18] and the leading mode of global resolvent analysis 
[21,50] for spatial regions in which a dominant, physical instability mechanism exists, with which the discrete unstable 
eigenmode is associated. Once a dominant modal instability is absent, the dynamics become too complex for the PSE to 
capture. Alternative methodologies, either based on two-dimensional eigenmode problems [19,20], global resolvent analysis 
[21,50], or the one-way linearized equations [22] are promising in the modeling of the dynamics of the aft part of the 
wavepackets.
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The PSE computations face additional difficulties when multiple unstable discrete modes exist, as the integration tends to 
follow the most unstable one. In the present work, several unstable modes coexist, resulting from the coupled discretization 
of the two-dimensional plane and the interaction between the two jets. Local eigenmodes related to |m| = 2, 3 and 4 
(depending on St) are the most unstable ones at the nozzle lip, but are damped a short distance downstream. Modes 
corresponding to m = 0 are the most relevant ones for noise generation, and become the most unstable ones as the |m| ≥ 2
decay. Special care had to be taken to prevent the PSE solutions from “shifting” from one mode to another. The tendency to 
this shifting is increased by the proximity of the wavenumber α, the similarity of the shape function q̃, and the step size 
�x. The strategy adopted here was the reduction of the step size so that important variations of α and q̃ cannot appear 
between two consecutive steps. The stabilization procedure (8) and careful choice of the parameters (9) was instrumental 
in delivering robust solutions.

Appendix B. Governing equations

The set of equations used as the departure point in the derivation of the locally-parallel stability analysis and the parab-
olized stability equations, corresponding to the non-conservative version of those used by [51], is listed below:

∂ρ

∂t
+ ∂(ρu j)

∂x j
= 0 (15)

ρ

(
∂ui

∂t
+ u j

∂ui

∂x j

)
+ ∂ p

∂xi
− ∂τi j

∂x j
= 0 (16)

ρ

(
∂e

∂t
+ u j

∂e

∂x j

)
+ ∂ pu j

∂x j
+ ∂(−τikui + q j)

∂x j
= 0 (17)

where (x1, x2, x3) = (x, y, z) are the Cartesian coordinates, (u1, u2, u3) = (u, v, w) the corresponding velocity components, 
and the specific energy e, the viscous stress tensor τi j and the heat flux for a fluid obeying Fourier’s law, q j , are given by

e = 1

γ − 1

p

ρ
+ 1

2
uiui (18)

τi j = μ

Re

(
∂ui

∂x j
+ ∂u j

∂xi
− 2

3

∂uk

∂xk

)
(19)

and

q j = − μ

Re Pr

∂T

∂xi
(20)

Here γ is the ratio of specific heats, μ is the viscosity coefficient, Re is the Reynolds number and Pr is the Prandtl number. 
The set of equations is closed by the equation of state

p = γ − 1

γ
ρT (21)

While linearizing the equations, density ρ̄ , and temperature T̄ are retained for the base flow description, while the 
perturbations are written down in terms of pressure p′ and temperature T ′ . The equation of state (21) particularized for 
the based flow is substituted in the governing equations, while the linear perturbation density term takes the form

ρ ′ = γ

γ − 1

p′

T̄
− ρ̄

T̄
T ′ (22)

The linear operators L and R are obtained by substituting the PSE Ansatz (2) in the linearized governing equations and by 
neglecting second-order streamwise derivatives of the base flow quantities. These derivations were done using the symbolic 
computing software Maple, and validated by reproducing the results of [14,28].
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