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The emitted noise from round jets is reduced using linear feedback controllers designed us-
ing structural sensitivity analysis. Linear global modes inform the selection and placement 
of the controller, and Navier–Stokes simulations are used to demonstrate effectiveness in 
a Mach-1.5 cold axisymmetric jet and in a Mach-0.9 cold turbulent jet. In both jets, each 
fitted with a cylindrical nozzle, the control reduces the radiated noise and modifies the 
baseflow in a way that enhances the relative amplitudes of low-frequency St ≈ 0.05 global 
modes that do not have significant support in the acoustic field.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Several decades of experimental, theoretical, and computational-based investigations have suggested that the basic struc-
ture of the loudest jet noise sound sources, i.e. those at low frequencies and radiating towards the downstream jet axis, 
are consistent with a wavepacket structure [1]. Different approaches have been used to describe these wavepackets, such as 
linear stability theory applied to spatially-developing shear layers and jets [2–9]. In jets, these wavepackets are intermittent, 
advecting disturbances that are correlated over distances that exceed the integral scales of turbulence [1]. Educing these 
structures from numerical or experimental data has, for example, included projecting the data onto locally-parallel instabil-
ity waves [10] or parabolized stability equations (PSE, Gudmundsson and Colonius [11]), a process that can be augmented 
by using a proper orthogonal decomposition (POD) as a filter [12]. Numerically predicting the noise from the wavepackets 
modeled as instability waves has also been investigated by, for example, Balakumar [13], Yen and Messersmith [14], and 
Cheung et al. [15].

Global mode analysis complements these approaches in that it provides a direct means of analyzing the behavior of 
linear disturbances whose superposition can replicate a wavepacket character. Theofilis [16] and Theofilis and Colonius [17]
review the use of global modes while Jordan and Colonius [1] review wavepackets as a model for low-frequency jet noise. 
Although they are more computationally intensive to compute than PSE modes, global modes are more faithful to the full 
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Fig. 1. Domain and boundary condition specifications for axisymmetric and turbulent jet calculations.

governing equations in that they do not invoke any spatial variation approximations of the flow field and, more importantly, 
allow for upstream–downstream coupling within the jet.

Several investigators examined the use of global modes to describe jet hydrodynamic and acoustic fields. Nichols and Lele 
[18], for example, used a global mode analysis about a parameterized baseflow to obtain the optimal transient response of a 
cold, supersonic jet and identified upstream-propagating acoustic modes that were not resolved in the earlier PSE analyses. 
Garnaud et al. [19] investigated the linear stability dynamics of incompressible and compressible isothermal jets by means 
of their optimal initial perturbations and of their global eigenmodes; see also Coenen et al. [20]. More recent investiga-
tions have focused on a resolvent analysis and determining optimal input–output gains for time-periodic disturbances (e.g., 
Semeraro et al. [21]).

In this paper we use global modes to control high-speed round jets using linear feedback. We include the nozzle in the 
simulations and analysis because it sets inflow conditions and couples flow disturbances. Moreover, the nozzle is the most 
natural platform for control of noise. We use the same numerical formulation to compute the adjoint global modes, which 
provide sensitivity via the wavemaker approach [22,23], and utilize it to develop the control. Adjoint global modes are key to 
assessing the importance of individual global modes in seeking quieter jets. Our control uses a structured sensitivity-based 
approach originally developed in Bodony and Natarajan [24] and subsequently expanded in Natarajan et al. [25].

We focus exclusively on the axisymmetric (m = 0) global modes because they are an important component of high-
Reynolds-number turbulent jets [26], and thus an important testbed for control development. Jet noise control using higher 
order modes may be approached using the control method we develop without modification. We demonstrate the control 
first on an axisymmetric Mach-1.5 cold jet, followed by a turbulent Mach-0.9 cold jet that is axisymmetric in the mean.

The governing equations, numerical methods, boundary conditions, and the formulation and solution to the eigenvalue 
problems are discussed in Section 2. The results (simulation details, global mode analysis, and control) for the axisymmetric 
Mach-1.5 jet are given in Section 3. Section 4 gives the results corresponding to the cold Mach-0.9 turbulent jet. Following 
a discussion in Section 5, conclusions are drawn in Section 6.

2. Governing equations, boundary conditions, and numerical methods

The jets considered are shown in Fig. 1. The equations of mass, momentum, and energy conservation are solved for a 
compressible, viscous fluid with an ideal gas equation of state (p = ρRT ), Fourier law of heat conduction (q = −k∇T ) and 
Newtonian viscous stresses τ = μ[∇u + (∇u)ᵀ] + λ(∇ · u)I, where I is the identity tensor and u is the velocity field. For the 
axisymmetric jet the equations are expressed in cylindrical polar coordinates x = (r, θ, z) using cylindrical polar velocities 
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u = {Vr, V θ , V z}. For the turbulent jet the equations utilize the Cartesian momentum densities expressed in computational 
coordinates ξ = �(x) whose mapping to physical coordinates x is one-to-one and onto [27]. The ratio of specific heats 
γ = C p/Cv = 1.4 and Prandtl number Pr = μC p/k = 0.72 are constants representative of air at modest temperatures. The 
shear viscosity is temperature dependent as μ/μref = (T /Tref)

2/3 and the second coefficient of viscosity is λ = μB − (2/3)μ, 
where μB = 0.6μ is the bulk viscosity.

2.1. Boundary conditions

The computational domain and supporting boundary conditions for the axisymmetric Mach-1.5 jet and the three-
dimensional, axisymmetric in-the-mean Mach-0.9 jet, are very similar and jointly described in this section. Fig. 1 shows 
the domains and boundary conditions used in the jet simulations. Both jets issue from constant area isothermal nozzles 
with constant upstream stagnation conditions. The nozzle thickness is a constant 0.05 R and the wall temperature is equal 
to the ambient temperature. All upstream, downstream, and lateral boundaries are non-reflecting while the nozzle is isother-
mal with no-slip walls. An additional boundary treatment using sponge zones [28,29] surrounds all boundaries to further 
reduce unwanted reflections and better impose constant stagnation conditions. The reference solution in the sponge zone 
was computed using an auxiliary computation of the corresponding jet at the same conditions but on a larger domain. For 
the axisymmetric jet only, the r = 0 centerline (see Fig. 1(a)) uses the polar axis treatment of Lewis and Bellan [30] (also 
see Natarajan [31]). The flow into the nozzle has laminar boundary layers with a specified momentum thickness, the details 
of which are given in the Results section for each jet.

2.2. Numerical discretization

The axisymmetric and turbulent jets utilize similar numerical methods, albeit with a difference in the treatment of the 
viscous terms. A collocated finite difference approximation is used where the spatial derivatives are approximated by di-
agonal norm summation-by-parts (SBP) operators that are fourth order in the interior, second order at boundaries, and 
globally third order [32]. The Mach-0.9 jet solves the filtered (LES) equations and uses a standard dynamic Smagorinsky 
model formulated for a compressible fluid [33] with Lilly’s improvement [34] using a 7-point explicit least squares test filter 
[35]. The flow solution is also filtered using a tridiagonal implicit filter with αf = 0.49 [36]. The turbulent jet uses repeated 
first derivatives to approximate the divergence of the molecular and LES-informed transport fluxes and the 10th-order high-
wavenumber filter of Visbal and Gaitonde [27] with free parameter αf = 0.49 to suppress numerical instabilities caused by 
the wide stencil approximation to the viscous terms. In contrast, the axisymmetric jet uses narrow stencil second derivative 
operators and the expanded form of the viscous terms. The weak shocks present in the Mach-1.5 jet are captured using the 
artificial transport property method described in Kawai et al. [37]. Implementation of the boundary conditions shown in 
Fig. 1 uses the simultaneous-approximation-term (SAT) approach [38–40] which has been shown to be accurate and stable 
for aeroacoustic calculations [41]. The discrete system of coupled, nonlinear ordinary differential equations is integrated in 
time using the standard fourth-order Runge–Kutta method.

2.3. Global eigenvalue problem

2.3.1. Forward eigenvalue problem
The discretized flow equations may be written as

d Q

dt
= R̃( Q ) (1)

where Q is the vector of unknowns and R̃ is the discretized right-hand side, including the SAT, sponges, and the LES or 
artificial viscosity terms. Linearization of Eq. (1) for small perturbation Q ′ to baseflow Q̄ yields

d Q ′

dt
= L( Q̄ ) Q ′ (2)

where L is the discrete right hand side operator evaluated about the axisymmetric baseflow Q̄ . The eigenvalue problem we 
consider is based on a modal decomposition of the form

Q ′ = Q̂ (r, z)eimθ+ωt (3)

where m is the specified azimuthal mode number and ω is the sought-after eigenvalue with eigenmode Q̂ . The boundary 
conditions convert Eq. (2) to the generalized eigenvalue problem

L Q̂ = ωM Q̂ (4)

The axis conditions are either Dirichlet or Neumann such that M is a diagonal matrix that has an entry 0 for all rows 
corresponding to the axis (with a corresponding diagonal entry of 1 in L), and an entry 1 for all the remaining rows [31]. 
Both the axisymmetric Mach-1.5 jet and the axisymmetric in-the-mean Mach-0.9 jet use the same eigenvalue solver.
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Table 1
Simulation parameters for the axisymmetric jet.

Domain size (Lz, Lr) = (60R,30R)

Grid points (Nz, Nr) = (4400,640)

Nozzle length Lnozzle/R = 6
Nozzle thickness tnozzle/R = 0.05
Reynolds number ρ j U j D/μ j = 10,885
Mach number U j/c j = 1.5
Temperature ratio T j/T∞ = 0.6
Nozzle wall temperature Tw/T∞ = 1
Momentum thickness at nozzle exit θ/R = 0.01

Fig. 2. Mean flow for the Mach-1.5 axisymmetric jet: top, temperature; bottom, axial velocity.

2.3.2. Adjoint eigenvalue problem
We use a volume-corrected formulation [42] to obtain the discrete adjoint eigenvalue problem. Multiplying Eq. (4) by 

Q̂
†
D , where Q̂

†
is the adjoint eigenmode and D = diag(v1/V , v2/V , . . . , vn/V ) is a diagonal matrix in which V is the 

volume of the domain and vi is the volume associated with the ith grid point, yields

(LH DH Q̂
†
)H Q̂ = (MHω∗ DH Q̂

†
)H Q̂ (5)

where the superscript ‘H’ denotes a complex conjugate transpose. Since Eq. (5) holds for arbitrary Q̂ , the discrete adjoint 
eigenvalue problem is

LH D Q̂
† = ω∗MH D Q̂

†
(6)

The eigenspectrum for the discrete adjoint problem is the same as the forward problem; however, the eigenvectors of the 
adjoint system differ.

2.3.3. Eigenvalue solver
The eigenvalue solver for the forward and adjoint systems (Eqs. (4) and (6), respectively) uses PETSc [43–45] for the 

matrix construction and SLEPc [46] to solve the global eigenvalue problem. The Krylov–Schur implementation of the Implic-
itly Restarted Arnoldi Method (IRAM), with MUMPS [47] for the LU factorization of the linearized Navier–Stokes operator, 
is used to obtain the eigenvalues that are closest to a specified target in absolute value in the complex plane and the 
corresponding eigenmodes.

3. Axisymmetric Mach-1.5 cold jet

To present ideas we focus first on the simpler axisymmetric Mach-1.5 cold jet. After presenting the jet’s mean flow, we 
develop the controller and apply it to reduce the jet’s transient growth as a sound generation mechanism, easily describable 
by global modes, and demonstrate noise reduction.

3.1. Flow solution

The simulation parameters are given in Table 1. The stretched and orthogonal computational grid used (Nz, Nr) =
(4400, 640) points in the axial and radial directions, respectively, and was shown to be sufficiently refined in Natarajan [31]. 
The flow simulations provide a time-average solution Q̄ . The equilibrium baseflow solution, which satisfies R̃( Q e) = 0 and 
computed using the method of Åkervik et al. [48], was used as the initial condition for a time-resolved calculation, which 
was averaged over a period of 	tc∞/R ∼ 600 to obtain Q̄ . Fig. 2 shows the contours of the time-averaged axial velocity 
and temperature. Details of the equilibrium solution, and its global mode analysis, may be found in [31].
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3.2. Global mode analysis

To construct and solve the eigenvalue problems (Eqs. (4) and (6)) the time-averaged baseflow was linearly interpolated 
onto a mesh of size (Nz, Nr) = (1100, 300) which was shown in Natarajan [31] to ensure mesh insensitivity to our quantities 
of interest. The time-averaged flow was chosen as the base state because past work has shown that linear analysis applied 
to it yield superior estimates of the frequencies of the unsteady modes [49,50]. Target eigenvalues (ωr target, Sttarget) (marked 
‘x’ in Fig. 3) were used with ωr target = 0.00 and Sttarget in the range of 0.05–0.65, with a spacing of 	Sttarget = 0.05. For 
each target eigenvalue, 30 eigenmodes were obtained using the convergence criterion ||L Q̂ − ωM Q̂ ||/||ωM Q̂ || ∼ 10−10.

Fig. 3 shows the globally stable eigenspectrum of the time-averaged baseflow Q̄ . The time-average flow supports 
downstream-propagating (type A) and upstream-propagating (type B) modes [18]. Figs. 3(b–e) show the type-A modes for 
eigenvalues at different Strouhal numbers (At

1–At
4). These modes have a predominantly downstream-propagating wavepacket 

structure with a strong acoustic footprint, which supports a connection to the far-field noise radiation. Figs. 3(f–g) show 
type B modes. Unlike type-A modes, these modes have a strong upstream-propagating component. Type A and B modes 
were studied by Nichols and Lele [18]. The spectrum also contains hydrodynamically bound modes, identified as Ht

1,2 in 
Figs. 3(h–i) which are acoustically inefficient. We call these modes type H and will find them to be important for reducing 
the jet noise.

A spatial overlap of the forward–adjoint pair corresponding to a given eigenvalue defines a localized region in space 
called the wavemaker wherein the eigenspectrum is most sensitive to modifications of the baseflow [22]. Following Giannetti 
and Luchini [23], the wavemaker is

W(z, r) = ( Q̂
†
)ᵀDδL Q̂

( Q̂
†
)ᵀM Q̂

(7)

where δL is the perturbation to the linearized operator L. For a case with δL equal to the identity, the wavemaker region 
for the forward–adjoint pairs corresponding to the eigenvalues At

1 through At
4 are shown in Fig. 4. Peak values of the 

wavemaker close to the nozzle lip indicates high dynamical sensitivity to localized changes in the baseflow and suggest that 
the nozzle lip is a profitable location for feedback control, as has been widely recognized.

3.3. Optimal transient growth

As a consequence of the non-normality of the linearized operator, for a globally stable system it is possible to obtain 
perturbation growth for a finite period of time by a particular superposition of the global modes [51]. Optimal transient 
growth represents the worst case scenario for the linear system in terms of the amplification of the defined disturbance 
energy norm. Since the motivation of this work is noise control, a pressure perturbation based energy semi-norm defined as

E(t) = 1

2

∫



p̂(t)p̂(t)∗ dV = 1

2

∫



p̂(t)p̂(t)∗ r dr dz (8)

where 
 is the target surface shown in Fig. 1, would be instructive as an alternative to the energy-based norm used by 
Nichols and Lele [18]. Optimal transient growth is the envelope of the worst case scenario for all t and is given by

G(t) = max

∥∥ Q (t)
∥∥2

E∥∥ Q (0)
∥∥2

E

(9)

where Q (0) and Q (t) are the initial condition and its response, respectively. A singular-value decomposition problem 
is formulated to solve for G(t), and the optimal initial condition Q opt(0) to obtain the transient response at any given 
time t can be computed [52,31]. Fig. 5(a) shows the optimal transient response envelope for the eigenspectrum of the 
time-averaged baseflow for m = 0 and m = 1 modes. From the transient response analysis, we can arrange the global 
modes in order of prominence of their contribution to the initial condition that achieves the maximum transient growth 
amplification as shown in Figs. 5(b) and (c), respectively. The size of the circle surrounding the symbols is proportional 
to the contribution of the corresponding global mode to the optimal initial condition [31]. It is observed that the optimal 
transient response is predominantly due to the superposition of type A global modes in the frequency range St ∼ 0.45–0.65. 
The optimal transient growth is associated with a propagating aerodynamic wavepacket which emits an acoustic wavepacket 
into the far field (Figs. 5(d)–(i)), which is a potential mechanism for jet noise production and propagation (Nichols and Lele 
[18]), as well as a control objective.

3.4. Linear feedback control

We control the jet by designing a linear feedback controller selected to optimally move the eigenmode that most con-
tributes to the transient growth of the Mach-1.5 jet. How the control is designed is described prior to demonstrating its 
effect on the jet.
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Fig. 3. Global modes of the time-averaged Q̄ : (a) eigenspectrum; forward global modes (Re{V̂ z}) of type-A modes (downstream-propagating): (b) At
1 (c) At

2
(d) At

3, and (e) At
4; type B modes (with a predominant upstream-propagating wave structure): (f) Bt

1 (g) Bt
2; Hydrodynamic type H modes (h) Ht

1 (i) Ht
2. 

The parenthetical letters in subfigure (a) refer to the corresponding subfigure in which that mode is shown. The contours have min/max values of V̂ z/c∞
of ±10−4.

3.4.1. Controller selection
The framework developed in Natarajan et al. [25] for the global eigenanalysis is utilized to develop a control strategy 

using co-located linear feedback, where the feedback sensing is based on the difference between the instantaneous value 
of the flow variable from that of the baseflow which, for our case, is the uncontrolled time-average. The Navier–Stokes 
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Fig. 4. Wavemaker region W(z, r) defined by Eq. (7) for modes: (a) At
1 (b) At

2 (c) At
3 (d) At

4. Contours levels are between 0 and 0.01.

equation with the control forcing terms is given by

d Q

dt
= R̃( Q ) + αC( Q − Q̄ )︸ ︷︷ ︸

Forcing F (x,t)

(10)

where α is the control gain and C is a control matrix designed to best alter the eigensystem of the linearized operator. C is a 
5 ×5 matrix for three-dimensional problems. The entries of C identify sensor–actuator pairs and localize the actuator–sensor 
pair, as

C =

⎡
⎢⎢⎢⎣

c̃1,1 c̃1,2 c̃1,3 c̃1,4 c̃1,5
c̃2,1 c̃2,2 c̃2,3 c̃2,4 c̃2,5
c̃3,1 c̃3,2 c̃3,3 c̃3,4 c̃3,5
c̃4,1 c̃4,2 c̃4,3 c̃4,4 c̃4,5
c̃5,1 c̃5,2 c̃5,3 c̃5,4 c̃5,5

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
C̃

e−(z−z0)2/�2
z −(r−r0)2/�2

r (11)

where (z0, r0) is the center of the actuator and (�z, �r) is the support in the z and r directions respectively. For this linear 
system, the control gain α is a free parameter that can be varied to change the strength of the control. A discrete structural 
sensitivity analysis [25] gives the eigenspectrum shift due to the control as

δω = ( Q̂
†
)ᵀDC Q̂

( Q̂
†
)ᵀM Q̂

(12)

The objective we pursue is to optimize the movement of the chosen target eigenvalue to reduce transient growth. The 
optimization seeks

C∗ def≡ argmin
C ,||C̃ ||=1

Re(α−1δ ω) (13)

with respect to the parameters {{ci j}5
i, j=1, z0, r0, �z, �r}. The optimization is performed using the Trust-Region-Reflective 

algorithm [53]. More details on the use of structural sensitivity to design and locate controllers can be found in Natarajan 
et al. [25] and Natarajan [31]. A flow chart of the control strategy is shown in Fig. 6. An important feature of the optimization 
problem is that it is computationally tractable with 31 parameters for a three-dimensional problem. Our experience is that 
the optimization requires around 10–15 minutes of time on a single processor.

3.4.2. Controller development
With the hypothesis that modifying the transient growth process will disrupt the jet’s radiated noise we determine 

the optimal control matrix C∗ that most stabilizes the target eigenmode shown in Fig. 5(b). Our use of transient growth 
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Fig. 5. (a) Optimal transient response for the time-averaged baseflow for m = 0 (—) and m = 1 (—) modes; Mode contribution to the optimal initial condition 
for (b) m = 0 (c) m = 1. The size of the circle surrounding the symbols is proportional to the contribution of the corresponding global mode to the optimal 
initial condition. Figures (d)–(i) show the evolution of the m = 0 optimal initial condition. Color levels in (d)–(i) show the real part of perturbation pressure 
with min/max values of ±0.5.
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Fig. 6. Flow chart of the control strategy.

Fig. 7. Visualization of the (a) flow eigenmode (V̂ z), (b) adjoint eigenmode (V̂ †
z ), (c) wavemaker, and (d) the co-located actuator/sensor region for V z–Vr

control-feedback. Contour levels for (a) and (b) are between ±2.5 × 10−4 while (c) and (d) are between 0 and 1.

as the physical connection between the global modes at the jet’s radiated sound is not unique but is informed by ex-
perimental and simulation evidence (Jordan and Colonius [1]). From the optimal transient response analysis, the eigen-
value that contributes most to the optimal initial condition is chosen as the target eigenmode. The optimal parameters 
{{ci j}5

i, j=1, z0, r0, �z, �r} were found using the optimization procedure described in Section 3.4.1 for the forward and ad-
joint global modes shown in Fig. 7(a–b). A single variable control-single variable feedback control strategy is adopted. The 
optimization problem of Eq. (13) was performed, and it was found that the best control, as defined as being able to ef-
fectively stabilize the target eigenvalue, yields a C̃

∗
that senses the radial velocity and forces the axial momentum just 

downstream and outside the nozzle as shown in Fig. 7(d). The optimal location and size parameters were found to be 
(r∗

0, z∗
0, �

∗
r , �∗

z ) = (1.05, 6.72, 0.19, 0.98)R . Observe that the best controller lies close to the wavemaker (Fig. 7(c)) but has 
localized support and uses specific quantities to control and sense. The location and size of the controller in the axial and 
radial directions were found as part of the optimization process and were not specified. More details on the controller 
selection process can be found in Natarajan [31].
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Table 2
Direct numerical simulations to study the effect of control on far-
field sound.

Simulation Control gain (α) Effect on far-field noise

Flow L1 0.0 Uncontrolled flow
Flow L2 2.0 Quieter
Flow L3 4.0 Quieter
Flow L4 −2.0 Louder

Fig. 8. Contour plot of vorticity magnitude (0 ≤ |ωR/c∞| ≤ 3) and pressure perturbation (|p − p∞|/(ρ∞c2∞) ≤ 2.5 × 10−4) at tc∞/R = 870: (a) α = 4.0, 
(b) α = 2.0, (c) no control, and (d) α = −2.0.

3.4.3. Controlled jet simulations
To assess the performance of the control on the far-field sound of the baseline jet (denoted flow L1), nonlinear simu-

lations were carried out with the controller developed in Section 3.4.2 with three different gains: flow L2 with α = 2.0, 
flow L3 with α = 4.0 and flow L4 with α = −2.0. Table 2 summarizes the flows and their far-field noise relative to the 
uncontrolled flow. Note that flow L4, with α = −2.0, applies the controller such that the target mode is destabilized, rather 
than stabilized.

The target surface to quantify the radiated noise is a cylindrical region 
 at r/R = 15 (Fig. 1(a)) and the measurement 
function is

I(t) =
∫



(p(t) − p̄)2 d
 (14)

Fig. 8 shows the contours of vorticity and pressure perturbation at time t c∞/R = 870 for all the cases in Table 2. The 
pressure perturbation contours clearly suggest the radiated sound is higher for Flow L4, the case for which the control 
destabilizes, rather than stabilizes, the target eigenmode. Fig. 9 shows an instantaneous snapshot of vorticity for all the 
cases. For the quieter flows L2 and L3, the vortex pairing is less vigorous and is delayed further downstream by the control, 
a conclusion confirmed in the Reynolds stresses (Fig. 10) where the peak values are reduced with favorable control and 
monotonicity is increased in the jet development region, z/R � 25. Fig. 11 shows the corresponding measurement function 
I(t) for all the flows of Table 2 where we observe that increasing the gain in the direction of mode stabilization reduces the 
jet’s radiated noise. The trend can be observed in Fig. 11(b) as well, which shows the overall sound pressure level (OASPL) 
along the target surface 
.

3.4.4. Global eigenanalysis of controlled flows
We apply the global mode analysis to the controlled jets and seek to understand what dynamical changes the control 

induced into the jet. We start by performing a global mode analysis on the time-averaged controlled flows (L2–L4 in Table 2) 
and comparing the resulting spectra and modes to the uncontrolled case (flow L1). Fig. 12 shows the controlled jet spectra 
around the target eigenvalue while Fig. 13 shows the resulting spectra with emphasis given in the low-frequency range 
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Fig. 9. Visualization with vorticity at t c∞/R = 880.

Fig. 10. Effect of control on the lipline (r/R = 1) root-mean-square axial velocity fluctuations.

Fig. 11. (a) The measurement function I(t) at r/R = 15: uncontrolled; α = 2.0; α = 4.0; α = −2.0; (b) the overall sound pressure 
level on target surface 
 (θ is the angle measured from the jet axis with the vertex at the nozzle exit).

of St < 0.13 (compare to Fig. 5(b)). As the gain α increased, the controlled jet spectrum changed from its uncontrolled jet 
spectrum. The target eigenvalues contributing to the transient growth are moved, as shown in Fig. 12. Observe that although 
the optimization sought to stabilize the eigenvalues, the ultimate change in the spectrum was a combination of stabilization 
and modest increase in frequency by 	St ≈ 0.005. There is also an important and clear change for the very-low-frequency 
modes shown in Fig. 13 with the appearance of a single, unstable mode of frequency St ≈ 0.06 whose growth rate ωr

increases with increasing α. It is noteworthy that the unstable eigenvalue appears only when the control acts to reduce 
the noise, rather than increase it. The unstable eigenvalue will ultimately dominate the transient growth response of the 
controlled jet on timescales of the order T c∞/R = 2/(St U j/c∞) ≈ 30 and is thus not shown.
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Fig. 12. Movement of jet global mode spectrum from uncontrolled (•) to controlled (•) for α = 4.0.

Fig. 13. Eigenspectra for all time-averaged flows: � uncontrolled, � α = 2.0, � α = 4.0, and � α = −2.0. The spectrum without control is shown in each 
panel.

More interesting is the mode shape associated with the unstable eigenvalue, shown in Fig. 14, which has a strong 
resemblance to the Ht

1,2 modes discussed earlier (see Fig. 3). The unstable global modes are characterized by a hydrodynamic 
field with a relatively weak acoustic field; they are hydrodynamically bound to the jet.

The importance of these modes is apparent in Fig. 15 where we project the unsteady data Q ′ = Q − Q onto the global 
modes, Q ′ = ∑

m cm(t) Q̂ m , using the biorthogonality of the forward and adjoint eigenvector pair. It is observed that in 
flows L1 and L4, the baseline and louder controlled jet, no individual mode dominates the perturbation field. In contrast, for 
the quieter jets (L2 and L3), the unstable mode prominently appears with coefficient amplitudes at least 10× greater than 
all other modes. It can be seen that the unstable modes have a much higher amplification, reach a limit cycle and continue 
to be more prominent in the flow field throughout the control time period. Hence the unstable modes, which do not have 
any significant acoustic footprint, are more prominent in the flow field than the acoustically efficient stable modes.

These results suggest that the control, which was developed to affect the transient growth mechanism with central 
Strouhal number around 0.5, creates a new baseflow on which a single unstable mode exists and which becomes dynami-
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Fig. 14. Visualization of unstable eigenmodes showing Re(V̂ z) for (a) α = 2.0 and (b) α = 4.0 with contour levels |V̂ z/c∞| ≤ 10−4.

Fig. 15. Projection of the flow perturbations onto the global modes for all the flows for the eigenvalues shown in Fig. 13: (a) α = −2.0, (b) no control, 
(c) α = 2.0, and (d) α = 4.0.

Fig. 16. POD eigenvalues and projection coefficients for the uncontrolled (flow L1, α = 0.0) and controlled (flow L2, α = 2.0) jets.

cally important. A proper orthogonal decomposition of the flow field using the pressure semi-norm confirms that the quieter 
flows are more regular (see Fig. 16), with less vigorous vortex pairing in a manner similar to that found by Wei and Freund 
[54] for optimal control of a two-dimensional mixing layer. Additional POD details, including its application to jets L3 and 
L4, may be found in Natarajan [31].

Although the appearance of the low-frequency, hydrodynamically-bound unstable global mode does not seem to have 
been reported on in the literature, the axisymmetric jet assumption leaves open the possibility that it is not relevant for 
turbulent jets. We thus apply our jet noise reduction approach to a Mach 0.9 turbulent jet.
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Table 3
Simulation parameters for the turbulent jet.

Domain size Cartesian grid
(Lx, L y , Lz) = (0.25D,0.25D,30D)

Cylindrical grid
(rmin, rmax, Lz) = (0.25D,12.5D,30D)

Grid points Cartesian grid
(Nx, N y , Nz) = (50,50,459)

Cylindrical grid
(Nr , Nθ , Nz) = (318,32,459)

Nozzle length Lnozzle/D = 3
Nozzle thickness tnozzle/D = 0.025
Reynolds number ρ j U j D/μ j = 88,000
Mach number U j/c j = 0.9
Temperature ratio T j/T∞ = 0.6
Nozzle wall temperature Tw/T∞ = 1
Momentum thickness at nozzle exit θ/D = 0.03

Fig. 17. Time-and-azimuthal averaged contours of (a) axial velocity and (b) temperature; (c) centerline axial velocity: present (—); Bodony & Lele [56] (���).

4. Noise reduction of a turbulent jet

4.1. Flow solution

The Mach-0.9 cold jet shown in Fig. 1(b) was simulated using the methods described in Section 2.2 and is the same 
as the large-eddy simulation implementation of Kim et al. [55]. The simulation parameters used are given in Table 3. An 
overset grid approach, also described in Kim et al. [55], is used for the simulations with 5.81 million grid points. The grid 
consists of a Cartesian core grid (Lx, L y, Lz) = (0.25, 0.25, 30)D of dimensions (Nx, N y, Nz) = (50, 50, 459) and an outer 
annular cylindrical grid (rmin, rmax, Lz) = (0.25, 12.5, 30)D of dimensions (Nr, Nθ , Nz) = (318, 32, 459). The target surface 

for the computation of the near-field sound is cylindrical with radius 7 D .

4.2. Controller development using global modes

The baseflow for the global mode analysis is the time-and-azimuthal averaged flow averaged over 	t c∞/D ∼ 300. 
Figs. 17(a–b) show the contours of axial velocity and temperature for the time-and-azimuthal averaged baseflow. (The ax-
isymmetric jet time-averaged baseflow shown in Fig. 2 is quantitatively different from the turbulent jet baseflow.) Fig. 17(c) 
shows a comparison of the centerline axial velocity to the result of Bodony & Lele [56], who performed an LES of a jet at the 
same conditions but without a nozzle. From these and other mean flow properties [31] we conclude that the LES database 
is sufficiently realistic for our purposes.
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Fig. 18. (a) Eigenspectrum showing the mode contribution to the optimal initial condition corresponding to the maximum transient response in (b). The 
dominant transient growth mode (Re(p̂)), identified as ‘Target’ in (a), is shown in (c) with contours |Re(p̂)/(ρ∞c2∞)| ≤ 10−6 and its adjoint (Re(V̂ †

z )) with 
contour levels between ±10−4c∞ . The best co-located control region for the V z (control) with Vr (feedback) controller is shown in (d).

It is understood that the m = 0 modes are an important component of even high-Reynolds-number turbulent jets [26], 
and previous studies of jet noise control suggest that disruption of the coherence of acoustically efficient axisymmetric 
flow structures is a possible approach [55] for noise reduction. Hence we focus on the axisymmetric modes for noise 
control in the present work. The spectrum for the time-and-azimuthal averaged flow for a wide range of Strouhal num-
bers (St ∼ 0.05–1.70) is shown in Fig. 18(a). Previous studies, including Nichols and Lele [18], Nichols and Jovanovic [57], 
Schmidt et al. [58], have examined global mode spectra and the reader is referred to those references for more detailed 
analyses. Because our focus is on jet noise reduction, we construct the optimal transient response in Fig. 18(b), with leading 
forward and (inset) adjoint modes in Fig. 18(c). As anticipated, the adjoint mode contains grid oscillations arising from 
the discrete adjoint operator [42]. Using the controller optimization method described in Section 3.4.2 with the pressure-
based semi-norm of Eq. (8), we determine that the best feedback controller actuates the axial momentum by sensing 
the radial velocity very near the nozzle lip, as shown in Fig. 18(d), to stabilize the eigenmode shown in Fig. 18(a) that 
most contributes to the jet’s maximal optimal transient response. The best control matrix C is given by Eq. (11) with 
C̃

∗
indicating axial momentum forcing and radial momentum sensing and with the optimal parameters were found to be 

(r∗
0, z∗

0, �
∗
r , �∗

z ) = (0.5, 0.0, 0.2, 1.0)D . It is noteworthy that again it is found that the optimal controller senses the radial 
velocity and actuates the axial velocity. It is noteworthy that the turbulent jet meanflow suggests the same controller as 
found for the axisymmetric Mach-1.5 jet, with the former located slightly upstream and towards nozzle centerline relative 
to the latter (see Fig. 7(d)).
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Fig. 19. Vorticity-dilatation contours for (a) baseline T1 and the (b) controlled flow T2 at tc∞/D = 163; near-nozzle view of vorticity contours for (c) 
baseline and (d) controlled flows at tc∞/D = 163.

Fig. 20. (a) Measurement function I(t) and (b) overall sound pressure level on the target surface for the baseline (–) and controlled flows (–).

4.3. Noise controlled jet and its analysis

Using the control strategy in Section 4.2, we implemented the V z (control)-Vr (feedback) controller as part of the LES 
calculation of the Mach-0.9 cold jet. To assess the performance of the control on the radiated sound of the baseline jet 
(T1), a LES was performed with a control gain of α = 2.0 (T2). Figs. 19(a) and (b) show the instantaneous contours of 
vorticity-dilatation at tc∞/D = 163 for the baseline and T2 jets. The dilatation contours are less intense at the target surface 
for T2, which is indicative of its quieter nature. A near-nozzle view of the vorticity contours (Figs. 19(c) and (d)) show that, 
for the quieter flow, there is an enhancement of vorticity close to the nozzle lip.

To quantify the radiated sound, we compute the noise measurement function in Eq. (14) where 
 is the cylindrical 
target surface at rtarget/D = 7. Fig. 20(a) shows the comparison of the noise objective function I(t) for the baseline (T1) and 
controlled flows. For the quieter jet, the controller has been effective in reducing the noise over a time interval of about 
	tc∞/D = 350. The controlled jet lacks the intermittent, loud periods of time observed in turbulent jets. The controller 
impact on I(t) during the loud period 80 ≤ tc∞/D ≤ 220 is greater than it is for tc∞/D > 220, similar to earlier work 
on optimal jet noise reduction [55]. Importantly, however, the controller also does not adversely raise the jet’s radiated 
sound during the quiet period tc∞/D > 220. Fig. 20(b) shows the time-and-azimuthal averaged OASPL for the baseline and 
controlled flows at the target surface 
. The angle θ is measured from the downstream jet axis along a line connecting 
the nozzle exit to the target surface. The quieter flow shows a consistent reduction of 3–4 dB for all angles > 40◦ with a 
maximum reduction of approximately 4 dB at 90◦ .

Using the axisymmetric Mach-1.5 jet results as a guide, we compute the spectrum of the time-and-azimuthally averaged 
baseflow for the controlled jet T2. As Fig. 21(a) shows, the control has modified the baseflow to allow for an unstable 
global mode of very low frequency, here around St = 0.045, whose structure is localized within the hydrodynamic region 
of jet (Fig. 21(b)). This hydrodynamically-bound mode appears to be of the type H modes found for the axisymmetric 
jet. The targeted eigenvalues move qualitatively similar to the axisymmetric Mach-1.5 jet (see Fig. 12) and are thus not 
explicitly shown; the controlled jet transient growth is also not shown because the unstable mode dominates the response 
for timescales T c∞/R ≈ 44.
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Fig. 21. (a) Eigenspectrum comparison for the baseline (•) and controlled (×) time-and-azimuthal averaged flows at low Strouhal numbers. (b) Unstable 
eigenmode (Real(p̂)) for the controlled flow showing non-radiative structure using contour levels between ±10−4ρ∞c2∞ . Effects of control on (c) centerline 
axial velocity and (d) the mean square of axial velocity fluctuations along the jet lip line.

The mean flow of the controlled Mach-0.9 jet shows a reduction in mean flow acceleration and corresponding reduction 
in the lip-line axial velocity fluctuations, as shown in Figs. 21(c) and (d), respectively. The controlled jet shows a reduced 
near-nozzle reduction in the axial velocity, between 1 ≤ z/D ≤ 5, which was discussed in Bodony and Lele [59] to be 
associated with a reduced axial coherence of disturbances exiting the nozzle and, ultimately, to a quieter jet.

5. Discussion

Through simulations of two high-speed jets—one axisymmetric and Mach 1.5 and another turbulent and Mach 
0.9—a global mode-based control designed to stabilize the global mode that most contributes to transient growth, noise 
reductions have been realized using linear feedback controllers. In both jets the control targeted modes with frequency 
around St ≈ 0.5; however, the resulting time-averaged baseflows supported one unstable mode (for the parameter range 
studied) with frequency closer to St ≈ 0.05, roughly 1/10th that of the targeted mode. These low-frequency modes do not 
appear to have been discussed in the literature but they seem central to jet noise reduction in this effort. The modes appear 
to be of a new type, so-called type H, which are hydrodynamically bound to the jet without a significant acoustic field.

It seems that these low-frequency modes collect fluctuations onto less acoustically efficient motions. How these modes 
are generated and how the baseflow is modified by the higher-frequency forcing are not yet known, but other studies, such 
as by Samimy et al. [60], have found that forcing at frequencies higher than the acoustically-dominant St = 0.3 frequency 
appear to reduce a jet’s radiated noise at near-sonic Mach numbers. Jordan and Colonius [1] summarize examples where 
changing the jet’s low frequency dynamics can also affect its radiated noise. It is possible that a means to reduce jet noise 
could be to alter its low-frequency modes, either directly through control or indirectly through baseflow modification.

6. Conclusions

A global mode-based approach to developing linear feedback controllers is used to reduce the noise radiated from high-
speed jets. Using a componentwise structural sensitivity analysis, actuator selection and placement is quantified based upon 
eigenvalue movement. The present study targets the dominant transient growth modes, with frequency St ≈ 0.5, where it 
is found that axial momentum forcing using radial velocity sensing located near the nozzle lip, is the preferred actuator 
for the two cold near-sonic jets considered. The control is demonstrated first on an axisymmetric Mach-1.5 cold jet issuing 
from a cylindrical constant temperature nozzle, for which it reduces the jet’s unsteady velocity fluctuation levels within the 
hydrodynamic region as well as the radiated noise. Reductions between 2 and 5 dB are observed, depending on observer 
angle. The control seems to work by exciting a low-frequency (St ≈ 0.05) unstable mode that is dynamically important. It is 
hypothesized that this low-frequency mode, which lacks an extensive acoustic field (and labeled Type H), redistributes the 
fluctuations onto less acoustically-efficient motions. These conclusions are found to also apply for the turbulent Mach-0.9 
jet, where an unstable Type-H mode is created by the baseflow modification and the jet’s overall noise is also reduced by 
1–4 dB.
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