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We use the method of Green’s functions to analyze an inverse problem in which we 
aim to identify the shapes of two non-elliptical elastic inhomogeneities, embedded in 
an infinite matrix subjected to uniform remote stress, which enclose uniform stress 
distributions despite their interaction with a finite mode-III crack. The problem is reduced 
to an equivalent Cauchy singular integral equation, which is solved numerically using the 
Gauss–Chebyshev integration formula. The shapes of the two inhomogeneities and the 
corresponding location of the crack can then be determined by identifying a conformal 
mapping composed in part of a real density function obtained from the solution of the 
aforementioned singular integral equation. Several examples are given to demonstrate the 
solution.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The design objective of achieving uniform stress distributions inside multiple non-elliptical elastic inhomogeneities em-
bedded in an infinite elastic matrix has attracted much attention in the literature recently (see, for example, [1–6]). The 
main reason for such interest lies in the fact that uniform interior stress distributions in embedded inhomogeneities are 
optimal in that they eliminate the possibility of stress peaks, which are well-known to cause failure of the composite con-
taining the inhomogeneities (for example, in the manufacture of fiber-reinforced composites). In previous studies in this 
area, the matrix surrounding the inhomogeneities is consistently assumed to be free of any cracks. Naturally, we are led 
to examine the influence of a cracked matrix on the uniformity of stresses inside multiple embedded inhomogeneities. 
In a recent seminal study, the authors [7] have established that uniform stresses can still be maintained inside a single
non-elliptical elastic inhomogeneity interacting with a mode-III finite crack in the matrix when the matrix is subjected to 
uniform remote stress.

In this work, we extend the study begun in Wang et al. [7] to the uniformity of stresses inside two non-elliptical 
elastic inhomogeneities interacting with a finite Griffith crack when the matrix is subjected to uniform anti-plane shear 
stress at infinity. We proceed as follows. By employing a Green’s function from a solution derived earlier in Wang and 
Schiavone [4] (for a screw dislocation interacting with two elastic inhomogeneities with internal uniform stresses), we 
construct a conformal mapping function and a Cauchy singular integral equation, both of which contain an unknown real 
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Fig. 1. Two non-elliptical elastic inhomogeneities interacting with a mode-III Griffith crack on the real axis under uniform remote stress σ∞
32 .

density function. The Cauchy singular integral equation is solved numerically for the real density function by applying the 
Gauss–Chebyshev integration formula [8], so that the conformal mapping function characterizing the required shapes of 
the inhomogeneities and the corresponding location of the matrix crack is completely determined. Our analysis indicates 
that the finite matrix crack plays a key role in the non-elliptical shapes of the two inhomogeneities, whereas it exerts 
no influence on the internal uniform stresses inside the two inhomogeneities. Several typical examples are presented to 
demonstrate the solution.

2. Problem formulation

Under anti-plane shear deformations of an isotropic elastic material, the two shear stress components σ31 and σ32, the 
out-of-plane displacement w and the stress function φ can be expressed in terms of a single analytic function f (z) of the 
complex variable z = x1 + ix2 as [9]

σ32 + iσ31 = μ f ′(z), φ + iμw = μ f (z) (1)

where μ is the shear modulus, and the two shear stress components can be expressed in terms of the stress function as [9]

σ32 = φ,1, σ31 = −φ,2 (2)

As shown in Fig. 1, we consider two non-elliptical elastic inhomogeneities embedded in an infinite matrix weakened by a 
traction-free finite Griffith crack {a ≤ x1 ≤ b, x2 = 0±} on the real axis. Let S1, S2, and S3 denote the left inhomogeneity, the 
matrix and the right inhomogeneity, respectively, all of which are perfectly bonded through the left and the right interfaces 
L1 and L2. We denote the crack by C . The matrix is subjected to uniform remote anti-plane shear stress σ∞

32 (with σ∞
31 = 0). 

In what follows, the subscripts 1, 2 and 3 are used to identify the respective quantities in S1, S2 and S3. Our objective below 
is to determine whether uniform stresses continue to exist inside the two non-elliptical inhomogeneities when interacting 
with the mode-III crack.

3. The shapes of the two inhomogeneities permitting internal uniform stresses

The original interaction problem of the two inhomogeneities and the crack can be formulated as a continuous distri-
bution of screw dislocations on the crack. The solution for a screw dislocation interacting with two non-elliptical elastic 
inhomogeneities permitting internal uniform stresses was recently derived by Wang and Schiavone [4]. By employing this 
solution as a Green’s function, the following conformal mapping function for the present interaction problem can be con-
structed,
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Fig. 2. The problem in the ξ -plane.

z = ω(ξ) = R
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ξ(z) = ω−1(z), 1 ≤ |ξ | ≤ ρ− 1
2

(3)

where R is a real scaling constant, p and λ (1 < λ < ρ− 1
2 ) are two real constants, q(η) is a real density function to be 

determined, and

ξ1 = ω−1(b), ξ2 = ω−1(a), ξ1 < ξ2 (4)

Γ1 = μ1

μ2
, Γ3 = μ3

μ2
, Λ = (Γ1 + 1)(Γ3 − 1)

(Γ1 − 1)(Γ3 + 1)
(5)

Using the mapping function in Eq. (3), the matrix S2 in the z-plane is mapped onto an annulus 1 ≤ |ξ | ≤ ρ− 1
2 in the 

ξ -plane, the interfaces L1 and L2 in the z-plane are mapped onto two co-axial circles with the radii 1 and ρ− 1
2 in the 

ξ -plane respectively, the finite Griffith crack C in the z-plane is mapped onto the slit {ξ1 ≤ Re{ξ} ≤ ξ2, Im{ξ} = 0±} in the 
ξ -plane, and the point z = ∞ is mapped to ξ = λ (see Fig. 2).

In addition, the following Cauchy singular integral equation is obtained as a condition that ensures that the crack faces 
are traction-free:
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where the mismatch parameter K is defined by

K = Γ1 − 1

Γ1 + 1
, −1 ≤ K ≤ 1 (7)

It should be noted that the constraint in Eq. (6)2 has been utilized to derive Eqs. (3) and (6)1. The singular integral equa-
tion in Eq. (6) can be solved numerically through normalization and utilization of the Gauss–Chebyshev integration formula 
[8]. Once Eq. (6) is solved, the term containing the real density function q(η) in Eq. (3) can then also be evaluated (quite 
expediently) using the Gauss–Chebyshev integration formula so that the corresponding mapping function is known com-
pletely. Consequently, the shapes of the two inhomogeneities and the location of the crack can be determined. Apparently, 
the stresses continue to exhibit the strong square root singularity at the crack tips.

In addition, the three analytic functions for the present interaction problem are given by

f1(z) = 2k

Γ1 + 1
z + 2c1, z ∈ S1 (8)

f3(z) = 2k

Γ3 + 1
z + 2c3, z ∈ S3 (9)

f2(ξ) = f2
(
ω(ξ)

) = kω(ξ) + k(Γ1 − 1)

Γ1 + 1
ω̄

(
1

ξ

)
+ c1(Γ1 + 1) + c̄1(Γ1 − 1)

= kω(ξ) + k(Γ3 − 1)

Γ3 + 1
ω̄

(
1

ρξ

)
+ c3(Γ3 + 1) + c̄3(Γ3 − 1), 1 ≤ |ξ | ≤ ρ− 1

2

(10)

where c1 and c3 are complex constants, and

k = σ∞
32 (Γ1 + 1)

μ2[Γ1 + 1 − pλ2(Γ1 − 1)] (11)

Thus, it follows from Eqs. (1), (8) and (9) that the stresses are uniformly distributed inside the two inhomogeneities as 
follows

σ32 = 2Γ1σ
∞
32

Γ1 + 1 − pλ2(Γ1 − 1)
, σ31 = 0, z ∈ S1

σ32 = 2Γ3(Γ1 + 1)σ∞
32

(Γ3 + 1)[Γ1 + 1 − pλ2(Γ1 − 1)] = 2Γ3σ
∞
32

Γ3 + 1 − pλ2Λ−1(Γ3 − 1)
, σ31 = 0, z ∈ S3

(12)

which are unaffected by the nearby crack.

4. Illustrative examples

In this section, the shapes of the two inhomogeneities and the location of the crack will be determined for given values 
of the seven real parameters Λ, ρ , λ, K , p, ξ1, and ξ2.

In the first example, we choose:

Λ = 1, ρ = 0.2, λ = ρ− 1
4 = 1.4953, K = −0.5, p = 0.25, ξ1 = 1.9, ξ2 = 2.235 (13)

In this example, both inhomogeneities are softer than the matrix (Γ1 = Γ3 = 1/3). The shapes of the two inhomogeneities 
and the location of the crack are shown in Fig. 3. We can see from Fig. 3 that the shape of the left inhomogeneity is 
affected only minimally, whereas that of the right inhomogeneity is apparently altered quite significantly by the crack, 
which is located on the right-hand side of the right inhomogeneity. The right inhomogeneity becomes non-convex, with its 
area reduced by the influence of the nearby crack.

In the second example, we choose:

Λ = 1, ρ = 0.2, λ = ρ− 1
4 = 1.4953, K = −0.5, p = 0.25

ξ1 = −2.18, ξ2 = ρ− 1
2 /ξ1 = −1.0257

(14)

In this example, both inhomogeneities are again softer than the matrix. The shapes of the two inhomogeneities and the 
location of the crack are shown in Fig. 4. It is observed from Fig. 4 that the shapes and sizes of the two inhomogeneities are 
identical, and that one inhomogeneity is simply a mirror image of the other with respect to the vertical line x1 = 1

2 (a + b). 
The shapes of both inhomogeneities are apparently affected by the crack lying between them. Both inhomogeneities become 
non-convex due to the influence of the nearby crack.

In the third example, we choose:

Λ = 1, ρ = 0.2, λ = ρ− 1
4 = 1.4953, K = 0.5, p = 0.25, ξ1 = 1.82, ξ2 = 2.22 (15)
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Fig. 3. The non-elliptical shapes of the two inhomogeneities and the location of the crack by choosing the seven parameters in Eq. (13).

Fig. 4. The non-elliptical shapes of the two inhomogeneities and the location of the crack by choosing the seven parameters in Eq. (14).

In this example, both inhomogeneities are stiffer than the matrix (Γ1 = Γ3 = 3). The shapes of the two inhomogeneities and 
the location of the crack are shown in Fig. 5. We can see from Fig. 5 that the shape of the left inhomogeneity is affected 
only marginally, whereas that of the right inhomogeneity is indeed altered by the crack, which is located on the right-hand 
side of the right inhomogeneity. The area of the right inhomogeneity is enlarged and a corner is formed on the boundary 
of the right inhomogeneity as a result of the influence of the nearby crack.

In the fourth example, we choose

Λ = 1, ρ = 0.2, λ = ρ− 1
4 = 1.4953, K = 0.5, p = 0.25

ξ1 = −2.15, ξ2 = ρ− 1
2 /ξ1 = −1.04

(16)

In this example, both inhomogeneities are again stiffer than the matrix. The shapes of the two inhomogeneities and the 
location of the crack are shown in Fig. 6. It is observed from Fig. 6 that one inhomogeneity is again simply a mirror image 
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Fig. 5. The non-elliptical shapes of the two inhomogeneities and the location of the crack by choosing the seven parameters in Eq. (15).

Fig. 6. The non-elliptical shapes of the two inhomogeneities and the location of the crack by choosing the seven parameters in Eq. (16).

of the other with respect to the vertical line x1 = 1
2 (a + b). The shapes of both inhomogeneities are clearly affected by the 

crack lying between them, with two corners formed on the boundaries of the two inhomogeneities.
In the fifth example, we choose:

Λ = −1, ρ = 0.05, λ = ρ− 1
4 = 2.1147, K = 0.5, p = 0.1, ξ1 = 3.2, ξ2 = 4.47 (17)

In this example, the left inhomogeneity is stiffer, but the right inhomogeneity is softer than the matrix (Γ1 = 3, Γ3 = 1/3). 
The shapes of the two inhomogeneities and the location of the crack are shown in Fig. 7. We see that the right portion of 
the right inhomogeneity is again affected by the crack, with the right inhomogeneity becoming non-convex.

In the sixth example, we choose:

Λ = −1, ρ = 0.05, λ = ρ− 1
4 = 2.1147, K = 0.5, p = 0.1, ξ1 = 1.01, ξ2 = 1.4 (18)
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Fig. 7. The non-elliptical shapes of the two inhomogeneities and the location of the crack by choosing the seven parameters in Eq. (17).

Fig. 8. The non-elliptical shapes of the two inhomogeneities and the location of the crack by choosing the seven parameters in Eq. (18).

In this example, we again have the left inhomogeneity stiffer, but the right inhomogeneity softer than the matrix. The 
shapes of the two inhomogeneities and the location of the crack are shown in Fig. 8. We see that the left portion of the left 
inhomogeneity is again affected by the crack. The area of the left inhomogeneity is enlarged, and a corner is formed on the 
boundary of the left inhomogeneity as a result of the influence of the nearby crack.

In the seventh example, we choose:

Λ = −1, ρ = 0.05, λ = ρ− 1
4 = 2.1147, K = 0.5, p = 0.1, ξ1 = −4, ξ2 = −1.3 (19)

In this example, we again have the left inhomogeneity stiffer, but the right inhomogeneity softer than the matrix. The 
shapes of the two inhomogeneities and the location of the crack are shown in Fig. 9. It is observed from Fig. 9 that the right 
portion of the left inhomogeneity and the left portion of the right inhomogeneity are clearly affected by the nearby crack 
that lies between the two inhomogeneities. A corner is formed on the boundary of the left inhomogeneity, whilst the right 
inhomogeneity becomes non-convex.
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Fig. 9. The non-elliptical shapes of the two inhomogeneities and the location of the crack by choosing the seven parameters in Eq. (19).

Fig. 10. The non-elliptical shapes of the two inhomogeneities and the location of the crack by choosing the seven parameters in Eq. (20).

In the final example, we choose:

Λ = 1, ρ = 0.05, λ = ρ− 1
4 = 2.1147, K = 0.5, p = ρ

1
2 = 0.2236

ξ1 = −4.16, ξ2 = ρ− 1
2 /ξ1 = −1.075

(20)

In this example, both the inhomogeneities are stiffer than the matrix. The shapes of the two inhomogeneities and the 
location of the crack are shown in Fig. 10. In this extreme case (as illustrated in Fig. 10) there are three sharp corners 
on the boundary of each inhomogeneity, which are again mirror images of each other with respect to the vertical line 
x1 = 1

2 (a + b). It is seen from Eq. (10) that the stresses in the matrix are bounded at these sharp corners on the boundaries 
of the two inhomogeneities and that they exhibit the square root singularity only at the two crack tips.

The numerical results presented in this section clearly indicate that the crack exerts a significant influence on the shapes 
of inhomogeneities permitting internal uniform stress distributions.
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5. Conclusions

In this work, we prove that the internal stresses inside two non-elliptical inhomogeneities interacting with a mode-
III crack under uniform anti-plane shear stress at infinity can indeed be maintained uniform despite the presence of the 
crack. The internal stresses inside the two inhomogeneities given by Eq. (12) are independent of the existence of the 
crack, whereas the non-elliptical shapes of the two inhomogeneities are significantly influenced by the nearby crack. The 
non-elliptical shapes of the two inhomogeneities are caused by two factors: one is the interaction between the two inho-
mogeneities themselves (even in the absence of the crack), the other is the influence of the crack. Our solution method can 
be conveniently modified to study the uniformity of stresses inside two non-elliptical inhomogeneities interacting with a 
Zener–Stroh crack loaded by a net screw dislocation Burgers vector. Furthermore, the uniformity property inside the two 
inhomogeneities interacting with a mode-III crack continues to hold when the remote loading is non-uniform. In the case of 
arbitrary non-uniform remote loading, the conformal mapping function in Eq. (3) should be reconstructed and higher-order 
poles (instead of first-order poles) added at ξ = λ−1 and ξ = ρ−1λ−1 outside the annulus 1 ≤ |ξ | ≤ ρ− 1

2 to account for the 
non-uniform loading at infinity.
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