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For the analysis and design process of smart structures with integrated piezoelectric 
patches, the finite element method provides an effective simulation approach. In this paper, 
an attempt on modeling and simulation of the behavior of hybrid active structures is 
carried out using developed Kirchhoff-type-four-node shell element.
The finite element results are compared with reference solutions taking into account the 
electromechanical responses of smart structures with various geometries, and the results 
show very high agreement. The main aspect of the application of the proposed element 
is to predict the behavior of FGM shells containing piezoelectric layers. A set of numerical 
analyses is performed in order to highlight the applicability and effectiveness of the present 
finite element model, notably for smart FGM structures. A comprehensive parametric 
study is conducted to show the influence of material composition, the placement and the 
thickness of the piezoelectric layers on the deformation of the laminated structure.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The requirement of structural strength in many engineering fields demands materials that can maintain structural in-
tegrity. Although the great developments made in the design of structures using classical materials, such structures are 
considered as passive systems. Indeed, they are dimensioned in order to sustain the most critical loads that occur during 
the lifetime of the structure; however, there is no possibility of active improvement of the behavior of the structure during 
loading, especially critical and unexpected loading, which has a significant influence on the robustness of the system. In 
order to overcome those drawbacks of passive systems, active or smart structure are introduced.

Smart structures have attracted intensive research interests because of their potential benefits in a wide range of appli-
cations, such as shape control, vibration suppression, noise attenuation, and damage detection [1,2]. Several materials that 
exhibit physical coupling effects can be employed in active structures as integrated sensors/actuators, e.g., piezoelectrics, 
shape memory alloys (SMAs), electrostrictive materials, electro-rheological fluids or polymer gels, for instance. The most 
frequently used active materials are the piezoelectric ones. The coupled mechanical and electrical properties of piezoelec-
tric materials make them well suited for use as sensors and actuators in smart structures, named also intelligent structures. 
These structures offer great potential for use in advanced aerospace as well as hydrospace, nuclear and automotive structural 
applications due to their excellent electromechanical properties, easy fabrication, design flexibility, and efficiency to convert 
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electrical energy into mechanical energy [3–8]. In fact, their intrinsic electromechanical coupling effect produces mechanical 
deformations under the application of electrical loads (i.e. the direct effect) and electrical fields under the application of 
mechanical loads (i.e. the converse effect). Hence, it is important to develop efficient computational tools to predict the 
electromechanical coupling behavior of these advanced structures.

Recently, functionally graded materials (FGMs) have found extensive applications in a variety of industries such as aero-
nautical production industry, mechanical engineering, and nuclear engineering due to their distinctive material properties 
that vary continuously and smoothly through certain dimensions. Compared with common composites, FGMs have several 
advantages, namely, assuring continuous transition of stress distributions, reducing or removing of stress concentration, and 
consolidating bonding strength along the interface of two dissimilar materials [9–11]. On the other hand, piezoelectric ap-
plications as distributed sensors and actuators use thin piezoelectric patches embedded or bonded to a surface made from 
composite materials. Within this framework, the aim of this research is to provide an accurate description of the electrome-
chanical coupling behavior of piezolaminated structures composed of piezoelectric patches bonded to FGM surfaces.

Furthermore, due to the increasing use of composite structures in advanced industries, it is crucial to apply an appro-
priate theory in conjunction with a consistent and powerful numerical approach such as the finite element method. Shell 
elements are the key structures widely used in various mechanical structures, civil engineering, aerospace and naval, due 
to their excellent performance. Over the years, modeling and analysis of the behavior of shell structures have received con-
siderable attention from research communities: see [12–27], to cite a few works. It is found that kinematics of typical shell 
structures can be described using three theories: (i) Kirchhoff–Love theory; (ii) First-order Shear Deformation Theory (FSDT); 
(iii) High-order Shear Deformation Theories (HSDT). Although Kirchhoff theory neglects the effect of shear deformations, it 
has proved its efficiency in describing the behavior for thin shells by its simple implementation in the most finite element 
codes and low computational cost. In order to deal with the restriction of Kirchhoff’s model, Reissner and Mindlin proposed 
First order Shear Deformation Theory (FSDT) to take into account the shear deformation effect. Nevertheless, the Reissner 
and Mindlin’s approach seems to be insufficient to examine thick shell structures; besides, it is necessary to introduce 
shear correction coefficients that can be restrictive for such applications. Indeed, shear correction coefficients can be simply 
acquired for linear isotropic material (5/6), but their determination is more complex for composites, especially laminated 
structures. High-order Shear Deformation Theories were proposed to overcome the shear coefficients limitations. Despite 
these theories provide a refined approximation of the displacements and deformations of the structure, the number of used 
kinematic variables is mainly high, which leads to difficult numerical resolution, particularly for complex geometries.

Moreover, several investigations have been carried out to describe the mechanical behavior of composite structures 
and, recently, of FGM materials based on solid-shell finite elements; the interested reader is referred to [28–33], among 
other publications. The formulation of these 3D elements has been developed based on several combinations of Enhanced 
Assumed Strain (EAS) and Assumed Natural Strain (ANS) methods in order to prevent most locking phenomena, which im-
proves their efficiency in the prediction of various mechanical aspects of shell structures. Although commercial FEA software 
packages like ANSYS and ABAQUS have coupled field analysis efficiency which can deal with the electro-thermomechanical 
behavior of piezoelectric materials, only 3D piezoelectric solid finite elements can be treated, while most piezoelectric ap-
plications as dispersed sensors and actuators use thin piezoelectric patches embedded or bonded to a surface made of 
composite materials. Hence, the application of these elements for the analysis of thin-walled active structures involves sig-
nificant numerical executions and higher computation cost. Consequently, several researchers in this field have dedicated 
their work to the development of more adequate 2D finite element methods that provide good precision with less numerical 
operations [34–41]. The choice of the appropriate kinematic model for accurate analysis of advanced composite structure 
is still one of the most challenging problems in finite element simulations. Taking into account the rapid development of 
computer technologies and numerical methods in engineering and in order to assure a compromise between accuracy and 
low computational effort, the Kirchhoff model seems to be a suitable choice to examine the electromechanical coupling 
behavior of thin-walled active structures with laminate architectures featuring FGM composite as a passive material and 
utilizing piezoelectric patches as both sensor and actuator components.

2. Piezoelectric Kirchhoff shell formulation

In this section, the geometry and kinematics of the linear discrete Kirchhoff shell model are briefly described. The refer-
ence surface of the shell is assumed to be smooth, continuous and differentiable. The initial and the deformed configurations 
are denoted by C0 and Ct , respectively.

Variables associated with initial configuration C0 are denoted by uppercase letters, whereas those related to current 
configuration Ct are symbolized using lowercase letters. To distinguish vectors from other variables, they are expressed 
using bold letters.

2.1. Piezoelectric Kirchhoff shell kinematic assumptions

The position vector of any material point (q), which is located at a distance z along the shell director D , is defined in 
terms of curvilinear coordinates ξ = (ξ1, ξ2, ξ3 = z) as follows:

Xq
(
ξ1, ξ2, z

) = X p
(
ξ1, ξ2) + zD

(
ξ1, ξ2), z ∈ [−h/2,h/2] (1)
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Fig. 1. Parameterizations of the shell material points: the initial and current configuration of the shell structure.

in which h is the thickness, p represents the material point located on the reference surface of the shell, and D is the initial 
shell director, as illustrated in Fig. 1.

The base vectors are represented in the initial state C0 by:

Gα = Aα + zD,α; G3 = D, α = 1,2 (2)

The surface element dA in the initial state is given by:

dA = √
A dAξ ,

√
A = ‖A1 ∧ A2‖, dAξ = dξ1dξ2 (3)

The covariant reference metric tensor G at a material point ξ is defined by:

G = [G i .G j], i, j = 1,2,3 (4)

The volume element dV in the initial state is given by:

dV = √
G dξ1 dξ2 dz,

√
G = [G1 G2 G3] = √|Gij| (5)

The metric tensor in the deformed configuration Ct can be divided into two parts: the first one takes into account the 
in-plane components, while the second one involves the out-of-plane components. Hence, it is expressed as:

gij = g i .g j,

{
gαβ = aαβ + zbαβ

gα3 = cα
α,β = 1,2 (6)

where aαβ , bαβ and cα represent kinematic variables, which are expressed as:⎧⎨
⎩

aαβ = aα · aβ

cα = aα · d

bαβ = aα · d,β + aβ · d,α

(7)

The Lagrangian strain ε can be formulated as a function of membrane, bending, and transverse shear strains using the 
following expression:

ε = 1

2
(g − G), εij = 1

2
(gij − Gij),

{
εαβ = eαβ + zχαβ

2εα3 = γα
(8)

where eαβ , χαβ and γα denote respectively the membrane, bending, and transverse shear strains. In matrix notation, these 
components are given by:

e =
⎧⎨
⎩

e11
e22

2e

⎫⎬
⎭ , χ =

⎧⎨
⎩

χ11
χ22

2χ

⎫⎬
⎭ , γ =

{
γ1
γ2

}
(9)
12 12
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Moreover, the virtual components are computed in the initial configuration C0 as:

δeαβ = 1/2(Aα · δx,β + Aβ · δx,α); δγ = Aα · δd + δx,α · d

δχαβ = 1/2(Aα · δd,β + Aβ · δd,α + δx,α · d,β + δx,β · d,α); d = D;α,β = 1,2
(10)

It should be emphasized that, according to the Kirchhoff approach, the shear contribution of strain disappears in discrete 
form over the element boundary side and becomes indeed zero [42].

The electrical field E is evaluated based on the gradient of the electric potential ϕ . Its expression is given by:

E = −ϕ,α, α = 1,2,3 (11)

The in-plane electric field components E1 and E2 are neglected and only the transverse electric field E3 is considered. 
The electric field of an element in terms of the electrical potential is expressed as:

E1 = 0; E2 = 0; E3 = −∂ϕ

∂z
(12)

2.2. Weak form

The Lagrangian formulation uses scalars, and so coordinate transformations tend to be much easier. By using the total 
Lagrangian formulation, the weak form of the equilibrium equations can take the following form:

G(Φ, δΦ) =
∫
V

(σij · δεij + qiδEi)dV − Gext(δΦ) = 0 (13)

where δΦ = (δx, δd, δϕ) is an arbitrary variation, δεij are the components of the strain tensor, σij are the components of the 
stress tensor, qi is the electric displacement, δEi is the virtual electric vector, and Gext is the external virtual work.

Using Eqs. (8) and (9), the weak form becomes:

G =
∫
A

(N · δe + M · δχ + qδE)dA − Gext = 0 (14)

where δe and δχ are the variations of the shell strains, N and M are the membrane and bending stress resultants, and q is 
the electric displacement, which can be expressed in matrix form as:

N =
⎧⎨
⎩

N11

N22

N12

⎫⎬
⎭ , M =

⎧⎨
⎩

M11

M22

M12

⎫⎬
⎭ , q =

⎧⎨
⎩

q11

q22

q33

⎫⎬
⎭ (15)

Their components are defined as follows:

Nαβ =
h/2∫

−h/2

σαβ

√
G/A dz, Mαβ =

h/2∫
−h/2

zσαβ

√
G/A dz, qαβ =

h/2∫
−h/2

qαβ
√

G/A dz (16)

The expressions of the generalized resultant of stress R and strain Σ vectors are given by:

R =
⎧⎨
⎩

N
M
q

⎫⎬
⎭

9×1

, Σ =
⎧⎨
⎩

e
χ
Em

⎫⎬
⎭

9×1

(17)

Hence, the weak form of the equilibrium equation can be rewritten as

G(Φ, δΦ) =
∫
A

δΣᵀ · R dA − Gext(Φ, δΦ) = 0 (18)

2.3. Constitutive equations of the piezoelectric Kirchhoff shell

Both direct and converse piezoelectric effects are expressed using the piezoelectric constitutive equations coupling the 
elastic and electric fields and formulated as follows:{

σ = Cε − pᵀE
(19)
q = pε + g E
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where q is the electric displacement vector, p is the piezoelectric coupling matrix, and g is the dielectric permittivity 
matrix. E denotes the electric field vector, σ is the stress vector, ε represents the strain tensor, and C is the elastic matrix 
for a constant electric field.

In the case of an elastic isotropic constitutive model, the stress resultant R is related to the strain field:

R = H T Σ (20)

with H T is the linear coupling elastic and electric matrix expressed as:

H T =
⎡
⎣ H 11 H 12 H 13

H 22 H 23

Sym H 33

⎤
⎦ ;

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(H 11, H 12, H 22) = ∫ h/2
−h/2(1, z, z2)C dz

(H 13, H 23) = ∫ h/2
−h/2(1, z)pᵀ dz

H 33 = ∫ h/2
−h/2 g dz

(21)

where C is the in-plane linear elastic sub-matrix, which can be written as:

C = Y (z)

1 − ν2(z)

⎡
⎣ 1 ν(z) 0

ν(z) 1 0

0 0 (1 − ν(z))/2

⎤
⎦ (22)

in which Y (z) is the Young modulus and ν(z) is Poisson’s ratio.
pᵀ represents the in-plane dielectric permittivity sub-matrices that can be expressed as:

pᵀ =
⎡
⎣0 0 e31

0 0 e32

0 0 0

⎤
⎦ (23)

3. Finite element formulation

The finite element implementation of the present theoretical formulation based on a four-node linear Kirchhoff shell 
element is presented in this section, in order to predict static electromechanical responses of a piezolaminated structure 
composed of piezoelectric patches bonded to a composite surface. Thus, the development of an isoparametric finite element, 
which is of displacement–rotation–electric potential type, can be carried out. The proposed element has six degrees of 
freedom: u, v, w, θx, θy, ϕ .

The interpolation of the displacement vector (U = x − X) and of the shell vector d can be written as:

U =
4∑

I=1

N I U I , d =
4∑

I=1

N I d I +
8∑

K=5

P K αK t K (24)

with U I ∈ R3, dI is the shell vector at the nodal points, (I) represents a node of the element, and N I denotes the standard 
bilinear isoparametric shape functions.

(K ) represents the mid-point of the element boundaries and αK are variables associated with d on the element bound-
aries. The vector t K is the unit vector and its direction is defined by the position of the nodes couple (I, J ), as depicted 
in Fig. 2,

t K = (x J − xI )/LK , LK = ‖x J − xI‖ (25)

where LK is the I– J side length.
The expressions of the shape functions for the quadrilateral elements N I and P K are given respectively in Table 1.
The electric potential ϕ can be interpolated from the nodal electric potential vectors ϕn:

ϕ =
4∑

I=1

N IϕI (26)

The relation between the derivation of N I in the local Cartesian and the local elementary systems can be written as:{
N̄ I

,1

N̄ I
,2

}
= [ J ]−1

{
N I

,1

N I
,2

}
(27)

where J is the Jacobian transformation from the local Cartesian base {n0
1, n

0
2, n

0} to the covariant base {A1, A2, A3} as 
shown in Fig. 3. It can be defined as:
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Fig. 2. Position of the nodes couple (I, J ).

Table 1
Shape functions N I and P K for a quadrilateral element.

N1 = 1
4 (1 − ξ)(1 − η) P 5 = 1

2 (1 − ξ2)(1 − η)

N2 = 1
4 (1 + ξ)(1 − η) P 6 = 1

2 (1 + ξ)(1 − η2)

N3 = 1
4 (1 + ξ)(1 + η) P 7 = 1

2 (1 − ξ2)(1 + η)

N4 = 1
4 (1 − ξ)(1 + η) P 8 = 1

2 (1 − ξ)(1 − η2)

Fig. 3. Single-layer shell with system coordinates.

J =
[

n0
1 · A1 n0

2 · A1

n0
1 · A2 n0

2 · A2

]
(28)

The normal field n0 to the mid-surface, in the initial state C0, can be evaluated as:

n0 = A1 ∧ A2

‖A1 ∧ A2‖ (29)

3.1. Approximation of the membrane strain field

The discretization of the membrane part of the strain field is given by:

δe = Bm · δΦn (30)

where Bm represents the membrane strain–displacement matrix. Their expressions are given at nodal level I as follows:

B I
m = [ B I

mm 0 0 ] , B I
mm =

⎡
⎢⎣

n0ᵀ
1 N̄ I

,1

n0ᵀ
2 N̄ I

,2

n0ᵀ
1 N̄ I

,2 + n0ᵀ
2 N̄ I

,1

⎤
⎥⎦ , I = 1, . . . ,4 (31)
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3.2. Approximation of bending strain field

The discretization of bending strain is expressed as

δχ = Bb · δΦn (32)

where Bb is the discrete bending strain–displacement matrix. It can be defined by:

B I
b = [ B I

bm B I
bb 0 ] (33)

B I
bm =

⎡
⎢⎣

dᵀ
2,1 N̄ I

,1 + n0ᵀ
1 M I

d,1

dᵀ
2,2 N̄ I

,2 + n0ᵀ
2 M I

d,2

dᵀ
2,1N̄ I

,2 + n0ᵀ
1 M I

d,2 + dᵀ
2,2N̄ I

,1 + n0ᵀ
2 M I

d,1

⎤
⎥⎦ , B I

bb =
⎡
⎢⎣

n0ᵀ
1 · M I

r,1

n0ᵀ
2 · M I

r,2

n0ᵀ
1 · M I

r,2 + n0ᵀ
2 · M I

r,1

⎤
⎥⎦ (34)

The matrices M I
d and M I

r are expressed as:

M I
d = P K td I

K + P Mtd I
M , td I

K = 3

2LK
t K ⊗ dK (35)

M I
r = N I I + P K tt I

K + P Mtt I
M , tt I

K = 3

4
t K ⊗ t K (36)

3.3. Approximation of the electric field

The electric field is interpolated as follows:

δEm = Be · δΦn (37)

where Be represents the discrete electric field–displacement vector and Em denotes the opposite of the electrical field E .

Be = [ 0 0 B I
e ] ; B I

e =

⎧⎪⎨
⎪⎩

0

0
N I

t

⎫⎪⎬
⎪⎭ (38)

Finally, the generalized strain δΣ can be approximated as follows:

δΣ =

⎧⎪⎨
⎪⎩

δe

δχ

δEm

⎫⎪⎬
⎪⎭ = B · δΦn, B =

⎡
⎢⎢⎢⎢⎢⎢⎣

Bm

B1

B2

Bs

Be

⎤
⎥⎥⎥⎥⎥⎥⎦

(39)

Using Eqs. (20) and (39), the internal virtual work becomes:

G int =
∫
A

δΣᵀ · R dA = δΦᵀKΦ, K =
∫
A

BᵀH T B dA (40)

where K is the global stiffness matrix.
Therefore, the discretized static linear piezoelastic equilibrium equation for the structure can be written as

KΦ = F (41)

where F is the contribution of either the internal and the external works.

3.4. Nodal transformation

The variation of the directors δd and their derivatives δd,α can be expressed either in spatial description, in all equations,

δd = δθ ∧ d = Λδθ, Λ̄ = −d̃ (42)

where d̃ is a skew-symmetric tensor such that d̃d = 0, or in material description,

δd = Q δΘ E3 = Λ̄δΘ, Λ̄ = Q Ẽ3 (43)
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where d = Q E3, E3 = [ 0 0 1 ]t and Q = [ t1 t2 t3 ].
A spatial description leads to a shell problem with 7 DOF/node, and the material description leads to a shell problem 

with 6 DOF/node. The transformation Λ̄ takes the following form:

Λ̄n = [−t2n t1n ]3×2 , n = 1, . . . ,4 (44)

The relation between the generalized displacement vector δΦn = (δx, δd, δϕ)n and the nodal displacement δΓ n =
(δx, δΘ, δϕ)n vectors is defined as:

δΦn = ΠnδΓ n, n = 1, . . . ,4 (45)

where Πn =
[

I 0 0
0 Λ_

n 0
0 0 1

]
.

The global stiffness matrix becomes:

K T = ΠᵀKΠ (46)

where Π = diag(Π1, Π2, Π3, Π4).
The discretized static linear piezoelastic equilibrium equation becomes:

KT Γ = F (47)

4. Material properties of FGM shell

The studied FGM shell structure is made of two kinds of materials, and its properties are assumed to vary continuously 
throughout the direction of the thickness (z-axis), according to a power function of the volume fractions of the constituents. 
Based on the power-law model of Bao and Wang [43], the volume fraction of the upper material V u can be considered as:

V u(z) =
(

z

h
+ 1

2

)n

(48)

where z ∈ [− h
2 , h2 ], h the thickness of the structure, and the exponent n is the power-law index (volume fraction exponent), 

which represents the gradation of material properties across the direction of the thickness. The volume fraction of the upper 
constituent is associated with that of the lower constituent using the following relation:

V u(z) + V l(z) = 1 (49)

The subscripts u and l denote the upper and lower constituents, respectively.
The effective material properties of FGM can be expressed as:

Peff(T , z) = Pul(T )V u(z) + P l(T ), Pul(T ) = Pu − P l (50)

where Pu and P l denote respectively the properties of the upper and lower materials such as Young’s modulus Y . Func-
tionally gradient materials are mainly used in high-temperature environments, the material properties are expressed as 
functions of temperature, as given by Touloukian [44], in the form:

P (T ) = P0
(

P−1T −1 + 1 + P1T + P2T 2 + P3T 3) (51)

where P0, P−1, P1, P2, and P3 are the temperature coefficients. In this paper, the Young modulus is considered as temper-
ature dependent. The Poisson ratio ν is constant through the direction of the thickness.

5. Numerical results

So far, there are no theoretical, experimental, and numerical results on the behavior of active materials integrated into 
an FGM passive structure available in the existing literature to which we can compare our model. Therefore, in order to 
demonstrate the efficiency of the present model, comparisons are carried out for different cases reported in the literature 
and using isotropic shell structures with integrated piezoelectric materials.

First, before the electromechanical behavior of the piezolaminated structure composed of piezoelectric patches bonded 
to the FGM surface is investigated, three illustrative examples are examined to ensure the accuracy and validity of the de-
veloped Kirchhoff model: (i) clamped beam with active piezoelectric layers; (ii) active plate structure; (iii) simply supported 
composite cylindrical arch.

Then, the numerical results of the study of the electromechanical coupling behavior of a thin-walled active structure 
with a laminate architecture featuring an FGM composite as a passive material and utilizing piezoelectric patches as both 
sensor and actuator components are presented.
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Table 2
Electromechanical material properties.

Material properties Aluminum Steel T300/976 PIC 151 PZT G1195

Elastic properties
Elastic modulus Y11 (GPa) 70.3 207 150 59.4 63
Elastic modulus Y22 (GPa) 70.3 207 9 59.4 63
Poisson’s ratio ν12 0.33 0.28 0.3 0.38 0.3

Piezoelectric properties
Piezoelectric coupling coefficient e31 (C · m−2) 0 0 0 9.6 2.286
Piezoelectric coupling coefficient e32 (C · m−2) 0 0 0 9.6 2.286
Dielectric permittivity coefficient d33 (F · m−1) 0 0 0 1.71e−8 1.5e−8

Fig. 4. Geometry of the beam with active piezoelectric layers.

Three different configurations according to the location of the piezo active layers bonded on the top and the bottom 
of the structure are investigated to show the applicability and the versatility of the linear discrete Kirchhoff model. The 
influence of the geometrical parameters and of the power-law index on the response of the piezolaminated structure are 
also examined. The electromechanical material properties of all the materials used in this section are listed in Table 2
according to [34,39,41].

5.1. Comparison studies

5.1.1. Clamped beam with active piezoelectric layers
This example consists of a clamped beam made of aluminum with a pair of piezo patches bonded to its upper and lower 

surfaces, as shown in Fig. 4. The geometry of the structure is taken according to Marinkovic et al. [34], where L = 110 mm 
is the axial length, b = 27.5 mm is the width, and h = 0.5 mm is the thickness of the structure.

The pair of patches (PIC151) have dimensions a × b = 42.5 × 27.5 mm as depicted in Fig. 4. The thickness of each active 
layer is h = 0.2 mm. The material properties are listed in Table 2.

A voltage of 100 V is applied between the electrodes of the patches. Due to the opposite polarization of the patches, 
their activation produces internal bending moments uniformly distributed over the edges of the patches. Table 3 and Fig. 5
present a comparison of the static deflection of the centerline of the beam obtained using the present model, the ACShell9 
user element developed in [34], and the ABAQUS standard piezoelectric element C3D20E.

As may be seen, the present results are in good agreement with those obtained using the ACShell9 user element and 
ABAQUS C3D20E element. Hence, the present model can accurately predict the static deflection of the piezolaminated beam 
subjected to an electric voltage of 100 V applied to the piezo patches.

Table 4 tabulates the effect of the voltage change V on the stress σ xx at point (0, b/2, 0) of the clamped beam with active 
piezoelectric layers. The stress at central point of the clamped beam with active piezoelectric layers rises with increasing 
voltage.

5.1.2. Active plate structure
The structure tested in this section is an active steel plate clamped over all four edges. Four pairs of collocated piezo-

electric actuators (PIC151) of thickness 0.2 mm are attached to the lower and upper surfaces of the plate. The thickness of 
the plate is 1 mm. The geometry of the studied piezolaminated plate is illustrated in Fig. 6. The material properties of the 
steel and of the PIC 151 are given in Table 2. The patches of each side are oppositely polarized, whereby all the patches on 
one side of the plate have the same polarization. The symmetry of the model allows the consideration of only one quarter 
of the plate for the FE simulation. The quarter of the plate is discretized by 40 × 60 elements along the width and axial 
directions, respectively.

Since the piezolayers are oppositely polarized, when the active plate is exposed to the same electric voltage of 100 V, it 
is supplied to both of them simultaneously, a bending moment uniformly distributed over the edges is induced, and a static 
deflection of the plate occurs.

Comparisons of static centerline deflection considering one quarter of the piezolaminated plate acquired using the 
present model, UEL subroutine developed by Nestorovic et al. [41] and Abaqus standard piezoelectric hexahedral element 
C3D20E, when the active plate is exposed to electric voltage of 100 V, are shown in Table 5 and in Fig. 7. It can be no-
ticed that excellent agreement is achieved between the present results and the numerical solutions. Further, stresses at the 
central point (a/2, b/2, 0) of the active plate rises with increasing voltage, as listed in Table 6.
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Table 3
Deflections of the clamped beam with active piezoelectric layers.

Distance (mm) Deflections (mm)

Present model Marinkovic et al. [34] Abaqus C3D20E

0 0 0 0
15 −0.002 −0.007 −0.007
30 −0.040 −0.042 −0.042
45 −0.119 −0.122 −0.122
60 −0.229 −0.233 −0.233
75 −0.34 −0.347 −0.347
90 −0.453 −0.460 −0.460
110 −0.601 −0.610 −0.610

Fig. 5. Comparison of the static deflection of the centerline of the piezolaminated beam subjected to an electric voltage of 100 V.

Table 4
Effect of voltage change on the stresses at the central point of the clamped beam with active piezoelec-
tric layers.

10 V 50 V 100 V 200 V 300 V

σ xx (0,b/2,0) (MPa) 0.120 0.604 1.207 2.415 3.622

Fig. 6. Geometry of the active plate clamped at all edges.

5.1.3. Simply supported composite cylindrical arch
This example consists of a simply supported cylindrical arch made of composite T300/976 with continuous PZT G1195 

actuators embedded on the top and the bottom of the composite surface as shown in Fig. 8. The piezolaminated structure 
has been modeled using a standardized 4 ×40 mesh along the axial and circumferential directions, respectively. The stacking 
sequence of the composite is [45/ −45/0] s. The electro-elastic properties of materials are shown in Table 2. Each composite 
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Table 5
Centerline deflection considering one quarter of the active plate.

Distance (mm) Deflections (mm)

Present model Nestorovic et al. [41] Abaqus C3D20E

0 0 0 0
40 −2.050 −2.030 −2.090
60 −3.024 −3.016 −3.017
80 −3.371 −3.302 −3.389
100 −3.260 −3.117 −3.231
130 −2.874 −2.752 −2.873
150 −2.770 −2.666 −2.795

Fig. 7. Centerline deflection considering one quarter of the plate, y = 0.

Table 6
Effect of voltage change on the stresses at the central point of the active plate.

10 V 50 V 100 V 200 V 300 V

σ xx (a/2,b/2,0) (MPa) 2.001e−3 1.280e−2 2.561e−2 5.122e−2 7.684e−2

Fig. 8. Simply supported piezo active composite cylindrical arch.

ply is 0.12 mm in thickness, and the thickness of each piezoelectric layer is 0.24 mm. The radius of cylindrical arch is 
R = 100 mm, and the axial length is b = 60 mm.

The considered cylindrical arch is excited by the actuation of the piezolayers. The oppositely polarized layers are sub-
jected to a voltage of 100 V. A comparison of numerical results of the radial deflection at the width mid-line obtained using 
the present approach and the Shell9 user element implemented by Marinkovic et al. [39] has been conducted, as illustrated 
in Table 7 and in Fig. 9.

Again, the present results are in excellent concordance with the numerical ones given by Marinkovic et al. [39]. Hence, 
the proposed piezoelectric Kirchhoff shell developed in the present study shows a good ability to predict the linear behavior 
of various active structures with good accuracy.

The influence of the electric potential variation on the maximal stresses of the simply supported piezo active composite 
cylindrical arch is examined in Table 8. Table 9 shows the effect of the variation of the slenderness ratio R/htot on the 
maximal stresses considering V = 100 V. htot denotes the full thickness of the structure.
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Table 7
Radial deflection of simply supported active composite arch.

Distance (mm) Deflections (mm)

Present model Marinkovic et al. [39]

0 0 0
0.1 0.075 0.089
0.2 0.052 0.050
0.3 −0.013 −0.029
0.4 −0.075 −0.092
0.5 −0.100 −0.116
0.6 −0.075 −0.089
0.7 −0.013 −0.018
0.8 0.052 0.058
0.9 0.075 0.088
1 0 0

Fig. 9. Radial deflection of a piezo active composite arch.

Table 8
Effect of voltage change on the maximal stresses of the simply supported piezo arch.

10 V 50 V 100 V 200 V 300 V

σ max (MPa) 2.544 12.720 25.440 50.881 76.321

Table 9
Effect of the slenderness ratio variation on the maximal stress of the simply supported piezo arch.

R/htot 20 50 100 150 200

σ max (MPa) 5.818 14.729 30.748 46.576 67.244

5.2. FGM active plate analysis

After the validation of the current linear formulation, the electromechanical behavior of thin-walled active structure with 
a laminate architecture featuring an FGM composite as a passive material and utilizing piezoelectric patches as both sensor 
and actuator components is now examined based on the developed piezoelectric Kirchhoff shell.

A piezolaminated FGM active plate with four pairs of G-1195N piezoelectric patches attached to the top and the bottom 
surfaces of the structure is investigated. The geometry of the plate is the same as that illustrated in Fig. 6. The patches 
of each pair are oppositely polarized, whereby all the patches on one side of the plate have the same polarization. The 
actuation of the patches is achieved by simultaneously applying the same voltage of 100 V to each of them.

The FGM plate is composed of two materials, Ti–6Al–4V and aluminum, and its properties are graded in the direction of 
the thickness according to the volume power-law fraction distribution presented in Eq. (48). The inversely polarized piezo 
active patches are bonded on the top and the bottom surfaces of the structure, considering various location configurations 
A, B, and C, as depicted in Fig. 10. The shell laminate is discretized into a uniform mesh of 140 (14×10) elements. The 
thickness of the FGM plate is 1 mm and each G-1195N patch is 0.2 mm in thickness. The material properties of the 
G-1195N patch and of the FGM plate are listed in Table 10. The top surface of the FGM shell is assumed to be “Ti–6Al–4V 
rich”, while the bottom surface is “aluminum rich” for all considered location configurations (A, B, and C).
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Fig. 10. A schematic diagram showing the various configurations of the piezoelectric patches.

Table 10
Materials constants of the constituent materials of the FGM after He et al. [45].

Material constants Aluminum oxide Ti–6Al–4V

Y (Pa) ν ρ (kg·m−3) Y (Pa) ν ρ (kg·m−3)

P0 349.55e9 0.26 3750 122.56e9 0.2884 4429
P−1 0 0 0 0 0 0
P1 −3.853e−4 0 0 −4.586e−4 1.1211e−4 0
P2 4.027e−7 0 0 0 0 0
P3 −1.673e−10 0 0 0 0 0

In all the considered cases, the active layers have symmetric position with respect to the thickness of the structure, 
and they act as actuators. They are oppositely polarized and supplied with the same electric voltage of 100 V, which 
results in bending moments uniformly distributed over the edges of the surface covered by piezopatches, which results in 
bending-dominated behavior of the structure.

Firstly, the bending-dominated behavior of the laminated plate containing the active piezoelectric layers is investigated 
according to configuration A.

The longitudinal bending WL, the transverse bending WT, and the lateral twisting WR are defined as in [46]:

WL = W2

b
, WT = W2 − (W1 + W3)/2

b
, WR = W1 − W3

b
(52)

where b is the width of the plate and W1, W2 and W3 are the lateral deflections at locations shown in Fig. 10a.
In order to illustrate the influence of the volume fraction exponent on the static response of the piezolaminated structure, 

the variation of the longitudinal bending, transverse bending, and lateral twisting are tabulated in Tables 11, 12 and 13, and 
plotted in Figs. 11, 12, and 13, respectively, for different values of the volume fraction exponent.

Furthermore, the effect of the volume fraction exponent on normal stresses along the thickness of the plate (configura-
tion A) subjected to a voltage of 100 V are presented in Figs. 14 and 15 and tabulated in Tables 14 and 15.

It can be obviously observed that the volume fraction exponent has a significant effect on the behavior of the active 
plate subjected to a uniform voltage. In fact, an increase in the volume fraction exponent leads to a decrease of the de-
flections. This is because the mechanically induced deformation mainly depends on the bending stiffness of the actuator, 
and an increase in the volume fraction exponent leads to a greater amount of aluminum, which has higher elastic material 
properties compared to Ti–6Al–4V; therefore, its bending stiffness is greater.

To highlight the effect of the disposition of the patches on the static responses of the FGM shell laminate with dis-
tributed piezoelectric sensor and actuator pairs, static deflections are examined according to the configurations A, B, and C 
represented in Fig. 10. The actuation of the patches is achieved by simultaneously applying the same voltage of 100 V to 
each of them.

Only one quarter of the plate is considered for the simulation because of the symmetry of the model. Tables 16–18, and 
Figs. 16–18 show a centerline deflection, considering one quarter of the plate for the different location configurations of the 
piezo active layers A, B, and C, considering the effect of various values of the volume fraction index.

As can be seen, in a fashion similar to the previous example, the volume fraction index has an important influence on 
the static response of the active FGM structure. Indeed, with the increase of the volume fraction exponent n, the static 
deflections of FGM plate decrease in all configurations.

Hence, the highest deflections in all the proposed configurations are obtained considering the volume fraction exponent 
n = 0. Table 19 reports the maximum centerline deflections obtained for configurations A, B, and C, y = 0, considering 
the volume fraction exponent n = 0. It can be noticed that varied values of maximum centerline deflections are obtained, 
corresponding to each configuration.

It is also observed that the static behavior of the piezolaminated FGM structure is different from one configuration to the 
other. This reveals the existence of an optimal location of the piezoelectric patch with respect to the objective of achieving 
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Table 11
Longitudinal bending of clamped FGM plate for various volume fraction indexes.

Distance (mm) Longitudinal bending (10−5 m)

n = 0 n = 0.2 n = 1 n = 2 n = 10

0 0 0 0 0 0
25 −1.416 −1.357 −1.168 −1.057 −0.959
50 −4.019 −3.665 −2.927 −2.578 −2.293
75 −4.762 −4.303 −3.392 −2.975 −2.639
100 −3.913 −3.532 −2.781 −2.439 −2.164
125 −3.104 −2.801 −2.204 −1.934 −1.715
150 −2.811 −2.536 −1.995 −1.750 −1.553

Fig. 11. Longitudinal bending of the clamped FGM plate for various volume fraction indexes.

Table 12
Transverse bending of clamped FGM plate for various volume fraction indexes.

Distance (mm) Transverse bending (10−5 m)

n = 0 n = 0.2 n = 1 n = 2 n = 10

0 0 0 0 0 0
25 −5.250 −5.437 −5.161 −4.813 −4.449
50 −17.555 −16.061 −12.852 −11.313 −10.045
75 −18.122 −16.302 −12.732 −11.121 −9.826
100 −9.966 −8.955 −6.993 −6.112 −5.406
125 −4.694 −4.217 −3.296 −2.883 −2.552
150 −3.139 −2.820 −2.205 −1.929 −1.709

Fig. 12. Transverse bending of clamped FGM plate for various volume fraction indexes.

the intended response. In fact, a piezolaminated composite with distributed piezosensors and actuators enables the structure 
to respond in real time or nearly real time to external stimuli to compensate for undesired behavior or to produce a desired 
response.

The multilayered material including piezoelectric active layers is polarized in the direction of the thickness. Hence, it 
is important to investigate the influence of the thickness of the piezoelectric layer on the deformation of the laminated 
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Table 13
Lateral twisting of clamped FGM plate for various volume fraction indexes.

Distance (mm) Lateral twisting (10−5)

n = 0 n = 0.2 n = 1 n = 2 n = 10

0 0 0 0 0 0
25 1.782 1.626 1.305 1.153 1.028
50 4.528 4.118 3.283 2.894 2.577
75 5.901 5.347 4.238 3.727 3.312
100 5.833 5.273 4.163 3.657 3.247
125 5.270 4.758 3.750 3.291 2.920
150 4.995 4.508 3.550 3.115 2.764

Fig. 13. Lateral twisting of a clamped FGM plate for various values of the volume fraction index.

Table 14
Normal stress σxx for various values of the volume fraction exponent.

σxx (0.0.z) (MPa)

z/h n = 0 n = 1 n = 2 n = 10

−0.5 0.075 0.120 0.114 0.107
−0.375 0.056 0.074 0.078 0.078
−0.25 0.037 0.035 0.043 0.050
−0.125 0.018 0.004 0.009 0.021
0 5.472e−17 −0.020 −0.019 −0.007
0.125 −0.018 −0.038 −0.042 −0.035
0.25 −0.037 −0.051 −0.055 −0.061
0.375 −0.056 −0.057 −0.059 −0.075
0.5 −0.075 −0.057 −0.051 −0.038

Fig. 14. Normal stress σxx (0.0.z) for various values of the volume fraction exponent.
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Table 15
Normal stress σyy for various values of the volume fraction exponent.

σyy (0.0.z) (MPa)

z/h n = 0 n = 1 n = 2 n = 10

−0.5 −0.303 −0.462 −0.432 −0.394
−0.375 −0.227 −0.299 −0.304 −0.291
−0.25 −0.151 −0.15 −0.175 −0.186
−0.125 −0.075 −0.039 −0.052 −0.082
0 3.072e−17 0.057 0.055 0.021
0.125 0.075 0.131 0.143 0.124
0.25 0.151 0.183 0.201 0.220
0.375 0.227 0.213 0.221 0.275
0.5 0.303 0.221 0.198 0.153

Fig. 15. Normal stress σyy (0.0.z) for various values of the volume fraction exponent.

Table 16
Centerline deflection considering one quarter of the plate under various values of the volume fraction 
index (configuration A), y = 0.

Distance (mm) Centerline deflection (10−6 m)

n = 0 n = 0.2 n = 1 n = 2 n = 10

0 0 0 0 0 0
25 −5.139 −4.366 −3.078 −2.576 −2.202
50 −12.834 −10.889 −7.660 −6.405 −5.472
75 −16.454 −13.942 −9.789 −8.179 −6.985
100 −16.102 −13.635 −9.565 −7.990 −6.823
125 −14.476 −12.255 −8.594 −7.179 −6.130
150 −13.697 −11.595 −8.131 −6.792 −5.799

Fig. 16. Centerline deflection considering one quarter of the plate under various values of the volume fraction index (configuration A), y = 0.
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Table 17
Centerline deflection considering one quarter of the plate under various values of the volume fraction 
index (configuration B), y = 0.

Distance (mm) Centerline deflection (10−6 m)

n = 0 n = 0.2 n = 1 n = 2 n = 10

0 0 0 0 0 0
25 −3.0098 −2.566541 −1.826024 −1.535045 −1.317258
50 −10.9043 −9.265755 −6.554881 −5.49844 −4.710843
75 −14.8663 −12.59769 −8.872772 −7.430347 −6.358237
100 −7.6735 −6.537586 −4.646912 −3.905633 −3.351197
125 2.2070 1.843149 1.263963 1.046673 0.8879524
150 6.1420 5.196355 3.646979 3.049101 2.605748

Fig. 17. Centerline deflection considering one quarter of the plate under various values of the volume fraction index (configuration B), y = 0.

Table 18
Centerline deflection considering one quarter of the plate under various values of the volume fraction 
index (configuration C), y = 0.

Distance (mm) Centerline deflection (10−5 m)

n = 0 n = 0.2 n = 1 n = 2 n = 10

0 0 0 0 0 0
25 −0.2533 −0.2242 −0.1688 −0.1449 −0.1262
50 −1.2302 −1.0787 −0.8013 −0.6843 −0.5940
75 −3.5456 −3.0870 −2.2687 −1.9301 −1.6707
100 −8.1718 −7.0843 −5.1717 −4.3891 −3.7925
125 −12.6269 −10.9264 −7.9535 −6.7426 −5.8214
150 −13.0679 −11.3237 −8.2607 −7.0089 −6.0549

Fig. 18. Centerline deflection considering one quarter of the plate under various values of the volume fraction index (configuration C), y = 0.

structure. Table 20 and Fig. 19 show the effect of the slenderness ratio a/h on the centerline deflection of the active FGM 
plate under a uniform potential of 100 V for a volume fraction index n = 2 (configuration A).

It was found that the centerline deflection of the FGM plate increases as the slenderness ratio rises. This implies that 
piezoelectric layer thickness has a significant effect on the piezoelastic linear behavior of the active structure. Such sensi-
tive geometrical parameter should be carefully considered for the design of smart structures with integrated piezoelectric 
patches.
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Table 19
Maximum deflections obtained for configurations A, B and C con-
sidering the volume fraction exponent n = 0.

Maximum deflections (m)

Configuration A Configuration B Configuration C

−16.65e−6 −15.00e−6 −13.2e−5

Table 20
Centerline deflection considering one quarter of the plate under various values of the piezoelectric layer 
thickness (configuration A), y = 0 and n = 2.

Distance (mm) Centerline deflection (10−6 m)

a/h = 250 a/h = 300 a/h = 400 a/h = 500 a/h = 1000

0 0 0 0 0 0
25 −2.4392 −2.5767 −2.0404 −1.8127 −2.3068
50 −6.0995 −6.4050 −5.1549 −4.6061 −5.7893
75 −7.8287 −8.1799 −6.6805 −6.0036 −7.4550
100 −7.6664 −7.9908 −6.5799 −5.9349 −7.3141
125 −6.8938 −7.1794 −5.9338 −5.3630 −6.5828
150 −6.5234 −6.7924 −5.6201 −5.0828 −6.2307

Fig. 19. Effect of the piezoelectric layer thickness on the centerline deflection considering one quarter of the plate, y = 0, subjected to an electric voltage 
of 100 V (configuration A).

6. Conclusions

Piezoelectric patches become more and more frequently utilized as active elements on thin-walled structures as both 
sensor and actuator components. Hence, the analysis of thin-walled structures with embedded active piezoelectric elements 
is of increasing importance. This was a motivation for publishing the current investigation, which considers closely the 
actual distribution of electric potential and electric field across the thickness of active elements, taking into account kine-
matical assumptions. The analysis of static deflections of thin-walled active structures with laminate architecture featuring 
passive material and utilizing piezoelectric patches is presented using a discrete form of Kirchhoff’s finite element model. 
The approximation of the displacement field is carried out using four-node finite elements. The current approach allows 
two aspects of analysis: computational and application sides. On the computational aspect, the present model constitutes 
an alternative to the examination of the electromechanical coupling behavior of piezolaminated structures without locking 
problems and with low computational effort. On the application aspect, the proposed piezoelectric Kirchhoff finite ele-
ment model extend the numerical framework to advanced applications of smart structures; indeed, the element covers the 
modeling of arbitrary thin-walled structures with complex geometries and involving functionally graded materials. The per-
formance and the accuracy of the presented model are highlighted through numerical examples with different geometries. 
Finally, the developed piezoelectric Kirchhoff model shows good ability to predict the linear behavior of piezolaminated 
FGM structures for various location configurations of the piezoelectric patches. It was found that the power-law index and 
the piezoelectric layer thickness have significant effects on the static response of the piezolaminated FGM structure.
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[35] D. Marinković, H. Köppe, U. Gabbert, Aspects of modeling piezoelectric active thin-walled structures, J. Intell. Mater. Syst. Struct. 20 (15) (2009) 

1835–1844.
[36] V. Balamurugan, S. Narayanan, A piezolaminated composite degenerated shell finite element for active control of structures with distributed piezosen-

sors and actuators, Smart Mater. Struct. 17 (3) (2008) 035031.
[37] D. Marinković, M. Zehn, Finite element formulation for active composite laminates, Am. J. Eng. Appl. Sci. 8 (3) (2015) 328.
[38] R. Lammering, S. Mesecke-Rischmann, Multi-field variational formulations and related finite elements for piezoelectric shells, Smart Mater. Struct. 

12 (6) (2003) 904.
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