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A higher-order nonlocal strain-gradient model is presented for the damped vibration 
analysis of single-layer graphene sheets (SLGSs) in hygrothermal environment. Based 
on Kirchhoff plate theory in conjunction with a higher-order (bi-Helmholtz) nonlocal 
strain gradient theory, the equations of motion are obtained using Hamilton’s principle. 
The higher-order nonlocal strain gradient theory has lower- and higher-order nonlocal 
parameters and a material characteristic parameter. The presented model can reasonably 
interpret the softening effects of the SLGS, and indicates a reasonably good match with 
the experimental flexural frequencies. Finally, the roles of viscous and structural damping 
coefficients, small-scale parameters, hygrothermal environment and elastic foundation on 
the vibrational responses of SLGSs are studied in detail.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Graphene sheets (GSs) have drawn considerable attention due to numerous advantages for their use in sensitive de-
vices such as nanoelectromechanical systems (NEMS) [1], biological tissue [2], nanosensors [3], and nanoactuators [4]. The 
single-layer graphene sheet (SLGS) is one of the popular graphene-based materials and is known as a two-dimensional flat 
monolayer with nanoscale. When the scale of a structure such as a plate reduces to the nanometer scale, the size-dependent 
effects play an important role on the mechanical behavior of the structure (see some of points in Refs. [5,6]).

Over the last few years, different non-classical continuum theories have been introduced to examine size-dependent 
effects [7–11]. Amongst them, nonlocal elasticity theory [12], as a popular model of non-classical continuum theories, can 
account for long-range interatomic forces. On the basis of the nonlocal elasticity theory, a great deal of researches have 
been focused on analyzing the size-dependent mechanical and physical behaviors of various nanoscale structures, including 
nanobeam, nanoplate, and nanoshell [13–27]. Recently, in the endless development of these theories, bi-Helmholtz nonlocal 
continuum theory [28], which has two distinct nonlocal parameters (so-called low- and high-order nonlocal parameters) 
has been used to analyze the dynamical response of carbon nanotubes [29]. These authors concluded that the bi-Helmholtz 
nonlocal model is more appropriate than the one-parameter nonlocal model (nonlocal elasticity theory) for measuring the 
softening effects in carbon nanotubes by using molecular dynamics (MD) simulation results. Moreover, Shaat and Abdelkefi 
[30] showed that nonlocal continuum theory with one nonlocal parameter cannot show a good match with both longitu-
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dinal and flexural wave dispersions of experimental data, and the bi-Helmholtz nonlocal model was suggested for a better 
accuracy. Also, Barretta et al. [31] used two pairs of nonlocal parameters (lower and higher order) to model the functionally 
graded nanobeam.

In spite of the mentioned advantages about nonlocal continuum models, the capacity of these nonlocal models to satisfy 
other size-dependent effects on the mechanical properties of nanostructures has some limitations [32]. For instance, by 
applying nonlocal continuum theory, the stiffness-enhancement effect, which was observed from strain gradient elasticity 
theory [5] and experimental data [33], cannot be predicted well. In fact, the strain gradient elasticity theory states that the 
strain in a point is a function of all stresses in its neighbor points [34]. According to this theory, the role of size effect is 
also measured with only one small-scale parameter (known as material characteristic parameter). Mathematically, on the 
basis of Hooke’s law, the nonlocal parameter is located in the Laplacian of stress on the left-hand side of the fundamental 
equation, whereas the material characteristic parameter is used on the right-hand side of the fundamental equation on the 
Laplacian of strains [35].

A nonlocal strain gradient theory is proposed by Aifantis [36] to examine both the stress gradient effect and the strain 
gradient effect in small-scale structures. This theory can estimate both the softening-stiffness and stiffness-enhancement 
effects. Challamel and Wang [37] used the nonlocal strain gradient theory to overcome the paradox in nonlocal cantilever 
beams subjected to a point load. Zhang et al. [38] examined the bending, buckling, and vibration of nonlocal strain gradient 
beams. Jafari et al. [39] studied the vibration behavior of nonlocal strain gradient plates. In the context of thermodynamics 
framework, Lim et al. [32] cast both the stress-gradient and strain-gradient effects into a higher-order (bi-Helmholtz) nonlo-
cal strain gradient theory. The bi-Helmholtz nonlocal strain gradient beam model [32] showed good agreement between the 
theoretical results and the MD results for carbon nanotubes. Recently, Ebrahimi et al. [40] studied the vibration behavior of 
nonlocal strain-gradient plates made of functionally graded material. Up to now, many scholars have been trying to use this 
model for studying the mechanical behavior of elastic nanoparticles [41], nanorod [42], nanoshells [43], nanobeams [32,44,
45] and nanoplates [46,47] under the influence of thermal environment [40], hygrothermal environment [48,49], magnetic 
field [50,51], elastic substrate [40], and viscoelastic substrate [18]. The bi-Helmholtz nonlocal strain gradient theory contain-
ing three distinct small-scale parameters has been employed to examine the wave propagation in porous double-nanobeam 
systems in the presence [52] and absence [53] of thermal environments. Farajpour et al. [54] examined higher-order non-
local strain gradient theory for the buckling analysis of nanoplates. This size-dependent model based on a quasi-3D plate 
theory was used for the wave propagation analysis of nanoplates made of functionally graded material [55]. Most recently, 
the effectiveness of this theory in the wave frequency of SLGS was examined by Karami et al. [35] by comparing results 
between numerical and experimental data.

In practical, structures often work under the influence of environmental conditions. The concept of environmental con-
ditions can cover wet-dry, freeze-thaw, sea-water, and moisture impression. Among them, the temperature and absorption 
of moisture are most important conditions for the accurate analysis of GSs. Many studies were conducted to develop me-
chanical models of GSs incorporating the influence of environmental conditions. For instance, the elastic material properties 
of zigzag and armchair GSs involving the influence of temperature have been estimated using MD simulation by Shen et 
al. [15], which showed that the material properties of SLGSs are temperature-dependent and size-dependent. With the 
estimated elastic material properties, the static deflections [56] and frequency [15] of GSs were determined under temper-
ature effect by MD simulation as well as nonlocal elasticity models. They showed that the nonlocal elasticity theory can 
be used to predict the mechanical behavior of SLGSs in the thermal environment when an appropriate nonlocal parameter 
is chosen. Since other environmental conditions are important on the response of SLGSs, Han et al. [57] investigated the 
moisture-response of SLGSs by performing self-controlled photoreduction experimentally. This study showed that the SLGS 
exhibits moisture-responsive properties owing to the selective adsorption of water molecules. Additionally, the effects of 
environment attacks due to elevated temperature and absorbed moisture on the nonlocal static [58], dynamic [18], vibra-
tion [59], wave propagation [35,49], and buckling [48] analysis of SLGSs have been conducted analytically. It was reported 
that the nonlocal effect plays a very important role on the mechanical behaviors of SLGS in the temperature and moisture 
environment.

A foundation can be used as a controller for these structures under an environmental condition. Up to now, various 
hypotheses of elastic foundations for describing the interaction between foundation and plate have been used (see some of 
them in Ref. [60]). The simplest model of elastic foundation has just one coefficient medium reaction (known as Winkler 
elastic foundation). This model is imperfect in providing continuity in the medium due to separate springs [61]. To overcome 
the previously mentioned imperfection, Pasternak’s model was presented by adding a shear layer over springs. In addition, 
when considering a viscous damping constant, a portion of energy can be irrecoverable [62]. Therefore, the construction 
including viscoelastic foundation is more effective, especially on creep behavior [63]. Hence, a great deal of researches have 
been carried out for modeling nanostructures, resting on visco-Pasternak foundation [18,35,59,64].

Up to now, no analytical study in the open literature has been tried to propose a bi-Helmholtz nonlocal strain-gradient 
model for the hygro-thermo-viscoelastic vibration of nanoplates. Hence, this study will present a bi-Helmholtz nonlocal 
strain-gradient model to examine the influences of heat as well as of the moisture conduction field on the complex fre-
quency of a viscoelastic orthotropic nanoplate surrounded by a visco-Pasternak foundation. The developed model shows a 
reasonably good match with the experimental flexural frequencies, and hence can reasonably interpret the softening ef-
fects of the flexural frequencies of the SLGS. Finally, the roles of viscous and structural damping coefficients, small-scale 
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Fig. 1. A viscoelastic SLGS coupled with a visco-Pasternak foundation within a hygrothermal environment.

parameters, hygrothermal environment, and elastic foundation on the vibrational frequencies of SLGSs will be investigated 
in detail.

2. Problem definition and fundamental equations

Consider a simply supported nanoplate with viscoelastic orthotropic material and geometry, which is shown in Fig. 1. As 
shown in Fig. 1, the nanoplate is referred to the (x, y, z) set of directions, where the z-axis is along the thickness. Moreover, 
it is exposed to the hygrothermal environment and rests on a visco-Pasternak foundation.

2.1. Bi-Helmholtz nonlocal strain gradient theory

Based on the popular model of nonlocal strain gradient elasticity theory [36], the stress of elastic materials depends on 
the nonlocal elastic stress field as well as the strain gradient stress field

t = σ − ∇σ (1) (1)

in which the nonlocal elastic stress field σ corresponds to the strain tensor ε; and the higher-order stress tensor σ (1)

corresponds to the strain gradient sensor ∇ε. That is,

σ =
∫
V

α0
(
x′, x, e0a

)
C : ε′dV ′

σ (1) = l2
∫
V

α1(x′, x, e1a)C : ∇ε′dV ′
(2)

where ‘:’ is the double-dot product, l denotes a material characteristic parameter (in some available literature, it is also 
known as the length-scale parameter or gradient parameter [65]) that allows us to consider the magnitude of the higher-
order strain gradient stress field. Moreover, e0a and e1a are the low- and high-order nonlocal parameters that are reported 
from atomic lattice dynamics or experimental data by matching the wave dispersion relation to consider the magnitude of 
the nonlocal elastic stress field. Also, α0(x, x′, e0a) and α1(x, x′, e1a) are the nonlocal kernel functions.

With some simplification, the constitutive relation of nonlocal strain gradient theory has the following form [40]:[
1 − (e1a)2∇2][1 − (e0a)2∇2]ti j = Q ijkl

[
1 − (e1a)2∇2]εkl − Q ijklκ

2[1 − (e0a)2∇2]∇2εkl (3)

Let μ0 = e0a and μ1 = e1a, bi-Helmholtz nonlocal strain gradient elasticity theory can be formulated as [32]:(
1 − μ2

1∇2)(1 − μ2
0∇2)ti j = Q ijkl

[(
1 − μ2

1∇2)εkl − l2
(
1 − μ2

0∇2)∇2εkl
]

(4)

To examine the role of heat and moisture on the vibrational response of orthotropic nanoplates, the hygrothermal effect is 
added to the constitutive relation as follows [35](

1 − μ2
1∇2)(1 − μ2

0∇2)ti j = Q ijkl
[(

1 − μ2
1∇2)εkl − αi j�T − βi j�H − l2

(
1 − μ2

0∇2)∇2εkl
]

(5)

here �T = T − T0 and �H = H − H0 signify the thermal and moisture rises, respectively. (T0, H0) denote the reference 
temperature and moisture concentration, respectively. (T , H) denote the final temperature and moisture concentration, re-
spectively. It can be of interest that the simpler models of Eq. (5) based on nonlocal elasticity theory or strain gradient 
elasticity theory be rendered by setting μ0 = μ1 = 0 and l = 0 in Eq. (5), respectively.
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2.2. Hygrothermal environment

Hygrothermal environment effects on the formulation can be taken into account by introducing axial forces f i j , which 
can be given as follows [15]:

fxx = NH
xx + NT

xx, NH
xx =

h
2∫

− h
2

βxx�Hdz, NT
xx =

h
2∫

− h
2

αxx�T dz

f yy = NH
yy + NT

yy, NH
yy =

h
2∫

− h
2

βyy�Hdz, NT
yy =

h
2∫

− h
2

αyy�T dz (6)

fxy = NH
xy + NT

xy, NH
xy =

h
2∫

− h
2

βxy�Hdz, N T
xy =

h
2∫

− h
2

αxy�T dz

where (NH
xx, NH

yy, and NH
xy) are the humidity efficacies due to absorbed moisture [15], and (NT

xx, NT
yy, and NT

xy) are the 
thermal efficacies due to temperature change along the thickness of plate [66]. αxx , αyy , αxy , βxx , βyy and βxy indicate 
the thermal and moisture expansion coefficients in the x–x, y–y, and x–y surfaces, respectively. The thermal and moisture 
expansion coefficients can be specified as follows [15]:⎡

⎣ αx βx

αy βy

αxy βxy

⎤
⎦= −

⎡
⎢⎣

Q̄ 11 Q̄ 12 Q̄ 16

Q̄ 12 Q̄ 22 Q̄ 26

Q̄ 16 Q̄ 26 Q̄ 66

⎤
⎥⎦
⎡
⎢⎣

c2 s2

s2 c2

2cs −2cs

⎤
⎥⎦
[

α11 β11
α22 β22

]
(7)

here α11, α22, β11, and β22 are the coefficients of thermal and moisture expansions in the longitudinal and transverse 
directions. Moreover, in the previous equation, the transformed elastic constants Q̄ i j corresponding to orthotropic materials 
are defined as [15]:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q̄ 11

Q̄ 12

Q̄ 22

Q̄ 16

Q̄ 26

Q̄ 66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

c4 2c2s2 s4 4c2s2

c2s2 c4 + s4 c2s2 −4c2s2

s4 2c2s2 c4 4c2s2

c3s cs3 − c3s −cs3 −2cs(c2 − s2)

cs3 c3s − cs3 −c3s 2cs(c2 − s2)

c2s2 −2c2s2 c2s2 (c2 − s2)2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

Q 11
Q 12
Q 22
Q 66

⎤
⎥⎥⎦ (8)

in which the elastic constants Q ij of orthotropic nanoplates can be specified by [62]:

Q 11 = E1

(1 − ν12ν21)
, Q 22 = E2

(1 − ν12ν21)
, Q 12 = E1ν12

(1 − ν12ν21)
, Q 66 = G12 (9)

where c = cos(θ), s = sin(θ); and θ indicates the skew angle with respect to the x-axis of the plate.

3. Governing equations for rectangular nanoplates

3.1. Displacement field and strains

Based on Kirchhoff plate theory [67], the displacements of an arbitrary point of the structure can be defined in terms of 
the middle-surface displacement components. Therefore, the displacement field can be specified by

u(x, y, z, t) = u0(x, y, t) − z
∂ w0

∂x

v(x, y, z, t) = v0(x, y, t) − z
∂ w0

∂ y
(10)

w(x, y, z, t) = w0(x, y, t)

here the time-dependent variables u, v , and w are the middle surface displacement components in the x, y, and z directions, 
respectively.
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According to the above displacement field, the strain–displacement relations in the nanoplate are expressed as

εxx = ε0
xx + ε1

xx

εyy = ε0
yy + ε1

yy (11)

γxy = γ 0
xy + zγ 1

xy

here,

ε0
xx = ∂u

∂x
, ε0

yy = ∂v

∂ y
, γ 0

xy = ∂u

∂ y
+ ∂v

x

ε1
xx = −∂2 w

∂x2
, ε1

yy = −∂2 w

∂ y2
, γ 1

xy = −2
∂2 w

∂x∂ y

(12)

in which εxx and εyy denote the normal strain members in the x and y directions, respectively, and εxy shows the shear 
strain part in the x–y plane. The classical stress–strain relation for an orthotropic elastic nanoplate under hygrothermal 
effect can be obtained as

⎡
⎣ σxx

σyy

τxy

⎤
⎦=

⎡
⎢⎣

E1
(1−ν12ν21)

ν12 E2
(1−ν12ν21)

0
ν12 E2

(1−ν12ν21)
E2

(1−ν12ν21)
0

0 0 G12

⎤
⎥⎦
⎡
⎣ εxx

εyy

γxy

⎤
⎦−

⎡
⎣ αx�T + βx�H

αy�T + βy�H

αxy�T + βxy�H

⎤
⎦ (13)

where σxx , σyy , and τxy are the normal and shear stresses in the x–y plane. E1, E2 are mean Young’s modulus in the x and 
y directions, respectively, v12, v21 indicate Poisson’s ratios, and G12 denotes the shear modulus in the x–y surface.

The Voigt model assumes a uniform distribution of the displacement strain. Hence, the elastic moduli Ei and the shear 
modulus Gij of viscoelastic materials relying on the Kelvin–Voigt model [68] can be redefined as [62]

Ei ← Ei

(
1 + g

∂

∂t

)
(i = 1,2), Gij ← Gij

(
1 + g

∂

∂t

)
(i �= j = 1,2) (14)

where g is the structural damping coefficient.

3.2. Equation of motion

The Hamilton energy principle given below will be applied for deriving the equation of motion of the nanoplate,

t2∫
t1

(δU + δW − δK )dt = 0 (15)

in which K , W , and U are kinetic energy, external work caused by the external force, and strain energy, respectively. In the 
following, these terms will be given in detail.

Taking the first variation of the evaluated strain energy leads to:

δU =
∫
V

(
σxxδεxx + σyyδεyy + 2σxyδεxy + σ

(1)
xx ∇δεxx + σyyδεyy + σyyδεxy

)
dV

=
∫
V

((
σxx − ∇σ

(1)
xx
)
δεxx + 2

(
σxy − ∇σ

(1)
xy
)
δεxy + (σyy − ∇σ

(1)
yy
)
δεyy

)
dV

+
[ b∫

0

( h/2∫
−h/2

σ
(1)
xx ∇δεxxdz + 2

h/2∫
−h/2

σ
(1)
xy ∇δεxydz +

h/2∫
−h/2

σ
(1)
yy ∇δεyydz

)
dy

]a

0

+
[ a∫

0

( h/2∫
−h/2

σ
(1)
xx ∇δεxxdz + 2

h/2∫
−h/2

σ
(1)
xy ∇δεxydz +

h/2∫
−h/2

σ
(1)
yy ∇δεyydz

)
dx

]b

0

(16)

Herein the stress resultants are defined as
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⎧⎨
⎩

Nxx

N yy

Nxy

⎫⎬
⎭=

h/2∫
−h/2

⎧⎨
⎩

txx

t yy

txy

⎫⎬
⎭dz,

⎧⎨
⎩

Mxx

M yy

Mxy

⎫⎬
⎭=

h/2∫
−h/2

⎧⎨
⎩

txx

t yy

txy

⎫⎬
⎭ z dz

⎧⎪⎨
⎪⎩

N(1)
xx

N(1)
yy

N(1)
xy

⎫⎪⎬
⎪⎭=

h/2∫
−h/2

⎧⎪⎨
⎪⎩

σ
(1)
xx

σ
(1)
yy

σ
(1)
xy

⎫⎪⎬
⎪⎭dz,

⎧⎪⎨
⎪⎩

M(1)
xx

M(1)
yy

M(1)
xy

⎫⎪⎬
⎪⎭=

h/2∫
−h/2

⎧⎪⎨
⎪⎩

σ
(1)
xx

σ
(1)
yy

σ
(1)
xy

⎫⎪⎬
⎪⎭ z dz

(17)

Substituting Eqs. (11) and (12) into Eq. (16), the moment relations in conjunction with the flexural rigidities of the or-
thotropic nanoplates become:

δU =
∫
A

(
Nxxδ

∂2u

∂x2
− Mxxδ

∂2 w

∂x2
+ Nxyδ

∂u

∂ y
+ Nxyδ

∂v

∂x
− 2Mxyδ

∂2 w

∂x∂ y
+ N yyδ

∂2 v

∂ y2
− M yyδ

∂2 w

∂ y2

)
dA

+
[ b∫

0

(
N(1)

xx δ
∂2u

∂x2
− M(1)

xx δ
∂2 w

∂x2
+ N(1)

xy δ
∂v

∂ y
+ N(1)

xy δ
∂u

∂x
− 2M(1)

xy δ
∂2 w

∂x∂ y
+ N(1)

yy δ
∂2 v

∂ y2
− M(1)

yy δ
∂2 w

∂ y2

)
dy

]a

0

+
[ a∫

0

(
N(1)

xx δ
∂2u

∂x2
− M(1)

xx δ
∂2 w

∂x2
+ N(1)

xy δ
∂v

∂ y
+ N(1)

xy δ
∂u

∂x
− 2M(1)

xy δ
∂2 w

∂x∂ y
+ N(1)

yy δ
∂2 v

∂ y2
− M(1)

yy δ
∂2 w

∂ y2

)
dx

]b

0

(18)

The virtual work done by applied forces is

δW = −
∫
A

⎛
⎜⎜⎝
(

fxx
∂ w0

∂x

δ∂ w0

∂x
+ fxy

(
∂ w0

∂x

δ∂ w0

∂ y
+ ∂ w0

∂ y

δ∂ w0

∂x

)
+ f yy

∂ w0

∂ y

δ∂ w0

∂ y

)

−kWδw0 + kG

(
∂ w0

∂x

δ∂ w0

∂x
+ ∂ w0

∂ y

δ∂ w0

∂ y

)
− ∂cD

∂t
δw0

⎞
⎟⎟⎠dA (19)

here in kW, kG and cD represent the spring constant, the shear layer parameter, and the viscous damping constant, respec-
tively.

Now the final term of Hamilton’s variational method (the kinetic energy) of a Kirchhoff orthotropic plate can be measured 
by

δK =
∫
A

h/2∫
−h/2

ρ(u̇δu̇ + v̇δ v̇ + ẇδẇ)dz dx dy

=
∫
A

[
−I0(u̇δu̇ + v̇δ v̇ + ẇδẇ) + I1

(
∂δẇ

∂x
u̇ + ∂ ẇ

∂x
δu̇ + ∂δẇ

∂ y
v̇ + ∂ ẇ

∂ y
δ v̇

)

− I2

(
∂ ẇ

∂x

∂δẇ

∂x
+ ∂ ẇ

∂ y

∂δẇ

∂ y

)]
dx dy (20)

in which ρ is the mass density and the mass moments of inertia are given by⎧⎨
⎩

I0
I1
I2

⎫⎬
⎭=

h/2∫
−h/2

ρ

⎧⎨
⎩

1
z
z2

⎫⎬
⎭dz dA (21)

According to the fundamental equations of Kirchhoff plate theory considering visco-Pasternak foundation, hygrothermal 
environment, and mechanical load, the equilibrium equations regarding the displacements for orthotropic plates using 
Hamilton’s principle can be defined as:

δu: ∂Nxx

∂x
+ ∂Nxy

∂ y
= I0

∂2u

∂t2
− I1

∂2

∂t2

(
∂ w

∂x

)

δv: ∂Nxy

∂x
+ ∂N yy

∂ y
= I0

∂2 v

∂t2
− I1

∂2

∂t2

(
∂ w

∂ y

)

δw: ∂2Mxx

∂x2
+ 2

∂2Mxy

∂x∂ y
+ ∂2M yy

∂ y2
= fxx

∂2 w0

∂x2
+ 2 fxy

∂2 w0

∂x∂ y
+ f yy

∂2 w0

∂ y2
+ kW w0

− kG

(
∂2 w0

2
+ ∂2 w0

2

)
+ cD

∂ w0 + I0
∂2 w

2
− I2

∂2

2

(
∂2 w

2
+ ∂2 w

2

)
+ I1

∂2

2

(
∂u + ∂v

)
(22)
∂x ∂ y ∂t ∂t ∂t ∂x ∂ y ∂t ∂x ∂ y
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According to Eq. (18), the following classical and non-classical boundary conditions will be obtained as follows:

• classical boundary conditions

At x = 0 or a Nxx or u, Nxy or v, Mxx or
∂ w

∂x
,

∂Mxx

∂x
− 2Mxy

∂ w

∂x
or w

At y = 0 or b N yy or v, Nxy or u, M yy or
∂ w

∂ y
,

∂M yy

∂ y
+ 2Mxy

∂ w

∂x
or w

(23)

• non-classical boundary conditions

At x = 0 or a N(1)
xx or

∂u

∂x
, M(1)

xx or
∂2 w

∂x2 , N(1)
yy or

∂v

∂ y

At y = 0 or b N(1)
yy or

∂2 w

∂ y2
, N(1)

xy or
∂u

∂ y
+ ∂v

∂x
, M(1)

xy or
∂2 w

∂x∂ y

(24)

Due to the higher-order nonlocal strain gradient theory, the equations of motion for a size-dependent rectangular nanoplate 
can be obtained as:

Nxx = (
μ2

0 + μ2
1

)∇2Nxx − μ2
0μ

2
1∇4Nxx + (1 − μ2

1∇2)(A11
∂u

∂x
+ A12

∂v

∂ y

)

− l2
(
1 − μ2

0∇2)∇2
(

A11
∂u

∂x
+ A12

∂v

∂ y

)

N yy = (
μ2

0 + μ2
1

)∇2N yy − μ2
0μ

2
1∇4N yy + (1 − μ2

1∇2)(A21
∂u

∂x
+ A22

∂v

∂ y

)

− l2
(
1 − μ2

0∇2)∇2
(

A21
∂u

∂x
+ A22

∂v

∂ y

)

Nxy = (
μ2

0 + μ2
1

)∇2Nxy − μ2
0μ

2
1∇4Nxy + (1 − μ2

1∇2)(A66
∂u

∂x
+ A66

∂v

∂ y

)

− l2
(
1 − μ2

0∇2)∇2
(

A66
∂u

∂x
+ A66

∂v

∂ y

)

(25)

Mxx = (
μ2

0 + μ2
1

)∇2Mxx − μ2
0μ

2
1∇4Mxx − (1 − μ2

1∇2)(D11
∂2 w

∂x2
+ D12

∂2 w

∂ y2

)

+ l2
(
1 − μ2

0∇2)∇2
(

D11
∂2 w

∂x2
+ D12

∂2 w

∂ y2

)

M yy = (
μ2

0 + μ2
1

)∇2M yy − μ2
0μ

2
1∇4M yy − (1 − μ2

1∇2)(D21
∂2 w

∂x2
+ D22

∂2 w

∂ y2

)

+ l2
(
1 − μ2

0∇2)∇2
(

D21
∂2 w

∂x2
+ D22

∂2 w

∂ y2

)

Mxy = (
μ2

0 + μ2
1

)∇2Mxy − μ2
0μ

2
1∇4Mxy − 2

(
1 − μ2

1∇2)(D66
∂2 w

∂x∂ y

)

+ 2l2
(
1 − μ2

0∇2)∇2
(

D66
∂2 w

∂x∂ y

)

(26)

In the case of an orthotropic nanoplate, we have:

A11 = E1h

1 − ν12ν21
, A12 = ν12 E2h

1 − ν12ν21
, A22 = E2h

1 − ν12ν21
A66 = G12h

D11 = E1h3

12(1 − ν12ν21)
, D12 = ν12 E2h3

12(1 − ν12ν21)
, D22 = E2h3

12(1 − ν12ν21)
, D66 = G12h3

12

(27)

Substituting Eqs. (25) and (26) into Eq. (22) leads to

∂Nxx

∂x
+ ∂Nxy

∂ y
= (μ2

0 + μ2
1

)∇2
(

∂Nxx

∂x
+ ∂Nxy

∂ y

)
− μ2

0μ
2
1∇4

(
∂Nxx

∂x
+ ∂Nxy

∂ y

)

+ (1 − μ2
1∇2)(A11

∂2u0
2

+ A12
∂2 v0 + A66

(
∂2u0

2

∂2 v0
))
∂x ∂x∂ y ∂ y ∂x∂ y



D. Shahsavari et al. / C. R. Mecanique 346 (2018) 1216–1232 1223
− l2
(
1 − μ2

0∇2)∇2
(

A11
∂2u0

∂x2
+ A12

∂2 v0

∂x∂ y
+ A66

(
∂2u0

∂ y2

∂2 v0

∂x∂ y

))
(28)

∂N yy

∂ y
+ ∂Nxy

∂x
= (μ2

0 + μ2
1

)∇2
(

∂N yy

∂ y
+ ∂Nxy

∂x

)
− μ2

0μ
2
1∇4

(
∂N yy

∂ y
+ ∂Nxy

∂x

)

+ (1 − μ2
1∇2)(A21

∂2u0

∂x∂ y
+ A22

∂2 v0

∂ y2
+ A66

(
∂2u0

∂x∂ y

∂2 v0

∂x2

))

− l2
(
1 − μ2

0∇2)∇2
(

A21
∂2u0

∂x∂ y
+ A22

∂2 v0

∂ y2
+ A66

(
∂2u0

∂x∂ y

∂2 v0

∂x2

))
(29)

∂2Mxx

∂x2
+ 2

∂2Mxy

∂x∂ y
+ ∂2M yy

∂ y2

= (μ2
0 + μ2

1

)∇2
(

∂2Mxx

∂x2 + 2
∂2Mxy

∂x∂ y
+ ∂2M yy

∂ y2

)
− μ2

0μ
2
1∇4

(
∂2Mxx

∂x2 + 2
∂2Mxy

∂x∂ y
+ ∂2M yy

∂ y2

)

− (1 − μ2
1∇2)(D11

∂4 w0

∂x4
+ D12

∂4 w0

∂x2∂ y2
+ 4D66

∂4 w0

∂x2∂ y2
+ D21

∂4 w0

∂x2∂ y2
+ D22

∂4 w0

∂ y4

)

+ l2
(
1 − μ2

0∇2)∇2
(

D11
∂4 w0

∂x4
+ D12

∂4 w0

∂x2∂ y2
+ 4D66

∂4 w0

∂x2∂ y2
+ D21

∂4 w0

∂x2∂ y2
+ D22

∂4 w0

∂ y4

)
(30)

Using Eq. (22) and Eqs. (29)–(30), the equations of motion for a size-dependent rectangular nanoplate based on the higher-
order nonlocal strain gradient theory can be determined as

(
1 − μ2

0∇2 − μ2
1∇2 + μ2

0μ
2
1∇4)(I0

∂2u0

∂t2
− I1

∂3 w0

∂t2∂x

)

= ((1 − μ2
1

)− l2
(
1 − μ2

0

)∇2)(A11
∂2u

∂x2
+ A12

∂2 v

∂x∂ y
+ A66

(
∂2u

∂ y2
+ ∂2v

∂x∂ y

))
(31)

(
1 − μ2

0∇2 − μ2
1∇2 + μ2

0μ
2
1∇4)(I0

∂2 v0

∂t2
− I1

∂3 w0

∂t2∂x

)

= ((1 − μ2
1

)− l2
(
1 − μ2

0

)∇2)(A21
∂2u

∂x∂ y
+ A22

∂2 v

∂ y2
+ A66

(
∂2u

∂x∂ y
+ ∂2 v

∂x2

))
(32)

(
1 − μ2

0∇2 − μ2
1∇2 + μ2

0μ
2
1∇4)(I0

∂2 w0

∂t2
− I2

∂2

∂t2

(
∂2 w0

∂x2
+ ∂2 w0

∂ y2

)
+ I1

∂2

∂t2

(
∂u0

∂x
+ ∂v0

∂ y

))

= ((1 − μ2
1

)− l2
(
1 − μ2

0

)∇2)(−D11
∂4 w

∂x4
− D12

∂4 w

∂x2∂ y2
− 4D66

∂4 w

∂x2∂ y2
− D21

∂4 w

∂x2∂ y2

− D22
∂4 w

∂ y4

)
+ (1 − μ2

0∇2 − μ2
1∇2 + μ2

0μ
2
1∇4)(−kW + kG

(
∂2 w0

∂x2
+ ∂2 w0

∂ y2

)
− cD

∂ w0

∂t

)
(33)

Regarding the above equations [i.e., Eqs. (31)–(33)], it can be found that the equation of in-plane displacements is not 
coupled with aligning equations of transverse displacement. Hence, we only select Eq. (33) to study the transverse vibration 
problem. Furthermore, when neglecting the rotary inertia (I2 and I1), the governing equation of viscoelastic orthotropic 
nanoplates based upon the higher-order nonlocal strain gradient theory can be expressed as:(

1 + g
∂

∂t

){(
1 − μ0∇2 − l∇2 + lμ0∇4){D11

∂4 w0

∂x4
+ (2D12 + 4D66)

∂4 w0

∂x2∂ y2
+ D22

∂4 w0

∂ y4

}}

+ (1 − μ0∇2 − μ1∇2 + μ0μ1∇4){( fxx + kG)
∂2 w0

∂x2
+ ( f yy + kG)

∂2 w0

∂ y2
+ 2 fxy

∂2 w0

∂x∂ y
− I0

∂2 w0

∂t2

−
(

kW + cD
∂

∂t

)
w0

}
= 0 (34)

3.3. Solution methodology

In this subsection, an analytical solution will be presented for the free vibration of a simply-supported Kirchhoff 
nanoplate using the higher-order nonlocal strain gradient theory. By applying Eqs. (23) and (24), we will have the clas-
sical and non-classical boundary conditions of a simply supported Kirchhoff nanoplate as follows:
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Table 1
Geometrical and temperature-dependent material properties of single-layer graphene sheets.

h a b E1 E2 G12 ν12 ρ α11 α22 β11 β22

(nm) (nm) (nm) (TPa) (TPa) (TPa) (kg/m3) (10−6/K) (10−6/K) (wt.% H2O)−1 (wt.% H2O)−1

0.156 4.888 4.855 1.949 1.962 0.846 0.201 5295 1.9 2.1 0.0026 0.0

Classical boundary conditions Non-classical boundary conditions

Mxx(0, y, t) = Mxx(a, y, t) = 0
∂2 w(0, y, t)

∂x2
= ∂2 w(a, y, t)

∂x2
= 0

w(0, y, t) = w(a, y, t) = 0
∂2 w(0, y, t)

∂ y2
= ∂2 w(a, y, t)

∂ y2
= 0

M yy(x,0, t) = M yy(x,b, t) = 0
∂2 w(x,0, t)

∂x2
= ∂2 w(x,b, t)

∂x2
= 0

w(x,0, t) = w(x,b, t) = 0
∂2 w(x,0, t)

∂ y2
= ∂2 w(x,b, t)

∂ y2
= 0

(35)

The following expansion of the displacement field may be considered for consideration of simply supported boundary 
conditions in rectangular nanoplates,

uz(x, y, t) =
∞∑

m=1

∞∑
n=1

w sin(αx) sin(β y)eλ(m,n)t (36)

in which λ is the complex eigenfrequency associated with the (m, n)-th eigenmode, and α = mπ/a, β = nπ/b. Also, w is an 
unknown coefficient to be determined.

By substituting Eq. (26) into Eq. (25), the equation of motion can be summarized as a matrix form as follows,[
K + Cλ(m,n) + Mλ2(m,n)

]
w = 0 (37)

or [
ω2

0 + 2ξω0λ(m,n) + λ2(m,n)
]

w = 0 (38)

where the undamped frequency ω0 and the damping ratio ξ are given by

ω0 =
√

K

M
, ξ = C√

4K M
(39)

here K , M , and C are, respectively, mass, stiffness, and damping coefficients, and can be seen in Appendix A. The (m, n)-th 
order of the complex eigenfrequency corresponding to the viscoelastic orthotropic nanoplates can be obtained analytically 
as

λ(m,n) = −C ± i
√

4K M − C2

2M
(40)

here i = √−1. Note that K , M , and C have been defined in Appendix A. It should be noted [69] that its real part can 
give a measure (or an index) of the rate of decay (or divergence) of the vibrational mode, and the imaginary part of the 
complex eigenfrequency gives a measure (or an index) of the rate of oscillation of the considered structures. Noting that, the 
vibration of the nanoplate is under-damped if 0 < ξ < 1, critically-damped if ξ = 1, and over-damped if ξ > 1. The complex 
eigenfrequency has become an integral part of many applications, including an index for measuring the role of damping on 
dynamic responses or determining the stability of structural systems when they contain some sources of energy such as 
hygrothermal environment, and fluid components [70].

4. Results and discussion

Numerical results are presented in this section for the hygro-thermo-viscoelastic vibration of simply supported viscoelas-
tic orthotropic SLGS resting on a visco-Pasternak foundation. To achieve this aim, the effective material properties of SLGS 
and belongings should be specified first. Hence, the material properties, the geometries as well as the thermal expansion 
coefficients for SLGS were taken from MD simulation results [15] and the coefficients of moisture expansions have been 
adapted from analytical models [58,71,72] that are listed in Table 1. Moreover, SLGS looks like a sheet containing honey-
comb carbon atoms and its efficiency is dependent on the atomic structure. In order to present the numerical results in the 
forms of graphical and tabular, some dimensionless parameters are defined for natural frequencies and components of the 
visco-Pasternak foundation [62]:
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Fig. 2. Wave characteristics of SLGS according to the experimental data, the nonlocal elasticity model [15], the classical elasticity model, and the bi-
Helmholtz nonlocal strain-gradient model (the lower-order nonlocal parameter μ0 = 0.34 nm, the higher-order nonlocal parameter μ1 = 0.54 nm, and the 
material characteristic parameter l = 0.21 nm).

Table 2
Natural frequencies (in GHz) of SLGS in thermal environment.

Model �T (K)

0 100 200

MD simulation [15] 114.4 – –
Nonlocal elasticity model [15] 114.4a 105.7a 94.7a

Bi-Helmholtz nonlocal strain-gradient model 114.44b 105.54b 95.86b

Superscript a and b identify the small-scale parameters, a: μ0 = 0.27 nm, μ1 = 0, l = 0, b: μ0 =
0.34 nm, μ1 = 0.54 nm, l = 0.21nm.

λ̄ = λa2

√
ρh

D11
, KW = kWa4

D11
, KG = kGa2

D11
, CD = cDa2√

ρhD11
, G = g

a2

√
D11

ρh
(41)

4.1. Identifying nonlocal and material characteristic parameters and comparison studies

In the exact analysis of graphene, often the optimal small-scale parameters are reported from atomic lattice dynamics, 
MD simulation or experimental data by matching the wave dispersion relation and frequency. In this field, Shen et al. 
[15] identified the optimal nonlocal parameter for the free-vibration frequency of simply supported SLGS using nonlocal 
elasticity theory by matching results with the MD simulation. As mentioned in the introduction section, the capacity of 
nonlocal elasticity theory to satisfy other size-dependent effects on the mechanical properties of nanoscale structures may 
lead to some limited problems [32,73]. Hence, the dispersion relation between wave frequency and wave number of SLGS 
was investigated by employing nonlocal strain gradient theory (NSGT) and the experimental data [34,74]. In their work, 
with identified small-scale parameters, the results were close to experimental data for the only wave behavior. Now, by 
adopting bi-Helmholtz nonlocal strain gradient theory (bi-H NSGT) as a size-dependent theory including three small-scale 
parameters, the optimal lower and higher order nonlocal parameters related to nonlocal effect, and material characteristic 
parameter related to strain gradient effect will be identified for SLGS. The benefit of the proposed model is compared with 
both experimental data [75] and MD simulation [15], as shown in Fig. 2 and Table 2.

The flexural frequency as a function of wave number for SLGS is drawn in Fig. 2. Our results on basis of bi-H NSGT with 
the identified small-scale parameters (μ0 = 0.34 nm, μ1 = 0.54 nm, l = 0.21 nm) are included in Fig. 2. The experimental 
data [75] and results obtained by nonlocal elasticity theory (the nonlocal parameter was fixed by MD simulation [15]) and 
classical elasticity theory (CET) are also computed and figured for comparison. As shown, the frequency curves calculated by 
CET, nonlocal elasticity theory (NET) [15], and bi-H NSGT almost match with experimental data [75] when the wave number 
is less than around 1 (1/nm). It means that, in small wave numbers [k < 1 (1/nm)], all the three continuum theories can 
give agreeable results. This is because the properties frequency of nanostructures (such as graphene) has not permeability 
to its frequency when the low wave numbers [k < 1 (1/nm)] are considered. However, when one considers wave numbers 
larger than 1 (1/nm), only bi-H NSGT is reliable for frequency. This is due to the fact, with an increment in wave number, 
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Fig. 3. Influence of a) a temperature rise and b) a moisture rise on the frequency of simply supported SLGS.

that the dependence of wave frequency on material properties and size effects (such like softening-stiffness effect and 
the stiffness-enhancement effect) will be more important. Accordingly, it can be found that in high wave numbers, the 
supplementary small-scale parameters need to be considered to reach results with a sufficient accuracy.

As can be observed in Table 2, using the identified small-scale parameters on the basis of bi-H NSGT leads to a good 
agreement between MD simulation [15] and the results obtained by nonlocal elasticity theory [15] in the absence and 
presence of thermal environment for the frequency of simply supported SLGS.

4.2. Case studies

Hereinafter, the geometry of SLGS are fixed at a = b = j × h, for ( j = 5, 10, 20, . . . , 55), the material properties, and 
the identified small-scale parameters will be used to analyze the role of parameters as temperature and moisture rise of 
the environment, structural damping, and hardness of elastic and viscoelastic foundations on the free vibration of simply 
supported SLGS.

4.2.1. Effect of temperature and moisture rise
The influence of temperature and moisture rise on the vibration behavior of SLGS for various thickness ratios is studied 

in Fig. 3.
As shown in Fig. 3,

1) the existence of an environmental condition decreases the frequency of graphene sheet,
2) the impact of moisture rise on the eigenfrequency is more sensitive than that of temperature rise,
3) an environmental condition is more influential in the higher values of the thickness ratios,
4) in the absence of an environmental condition, the frequency is increased with the increment in thickness ratio. However, 

in the presence of temperature or moisture environment, with increasing the thickness ratio of the graphene sheet, the 
imaginary part of the frequency rises to its peak, and then decreases. That is, the frequency of the nanoplate has case 
sensitivity to the variation of thickness ratio in the presence of a hygrothermal environment.

4.2.2. Effect of structural damping coefficient
The complex frequency of the viscoelastic SLGS due to changes in the structural damping coefficient (G) for diverse 

ranges of thickness ratio is studied in Fig. 4.
We can see that the regions in which ξ > 1, ξ = 1, and ξ < 1 for different structural damping coefficients are in Fig. 4a. 

According to Fig. 4,

1) the imaginary part of the eigenfrequency reduces by raising the value of the structural damping coefficient, and in the 
following, it reaches zero when the SLGS is critically-damped (ξ = 1),

2) the real part of the eigenfrequency has a divergence behavior when damping exceeds a critically-damped point,
3) when considering a constant structural damping coefficient, the increase in thickness ratio leads to an increasing damp-

ing ratio,
4) in the presence of a structural damping coefficient, a thinner graphene has a larger damping capacity.
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Fig. 4. Complex frequency of simply supported SLGS due to the variation of the structural damping coefficient.

4.2.3. Effect of viscous damping constant
The complex frequency responses of SLGS for diverse ranges of viscous damping constant due to the variation of the 

thickness ratio is plotted in Fig. 5. As observed from Fig. 5, with the increment in the viscous damping constant, energy 
absorption is increased, and the system tends to an overdamped system. Additionally, in the case of the high values of the 
viscous damping constant, the responsibility of the thickness ratio in the progress of the imaginary and real parts of the 
eigenfrequency is different. In the presence of a viscous damping constant, a thicker graphene has a larger damping capacity.

4.2.4. Effect of elastic and viscoelastic foundations in various conditions
According to bi-H NSGT, the remarkable effects of different elastic and visco-state foundations on the complex eigenfre-

quency of SLGS are exhibited in Table 3.

1) Foundation raises the eigenfrequency of the SLGS. This increment is in connection with the hardness effect of chosen 
foundation. Hence, a SLGS with foundations tends to a stiffer structure than that without a foundation.

2) The Pasternak foundation due to the consideration of an extra shear layer for illustrating transverse loads is more 
effective than the Winkler one in order to increase the imaginary part of the eigenfrequency.
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Fig. 5. Complex frequency of simply supported SLGS due to the variation of the structural damping coefficient.

3) The visco-state supposition of the foundation decreases the imaginary part of the eigenfrequency while it leads to a 
higher real part in eigenfrequency at the same time. These are due to the fact that visco-state makes the medium 
rough. Roughness is related to the influence of extra damping loads that exists in this type of foundation due to the 
practical use of the recoverable reserves in the system.

4) The presence of moisture and temperature rise leads to a considerable reduction in the eigenfrequency of the elastic 
orthotropic graphene. Moreover, it is observed that the power of the environment condition to decrease the eigenfre-
quency at higher values of the thickness ratio is larger than for the lower ones.

5) Another important observation is that with considering the structural damping coefficient (viscoelastic distribution of 
material properties), the absorption of energy is increased.

4.2.5. Effect of mode numbers
By considering the constant temperature and moisture values as well as constant visco-Pasternak foundation, the graph-

ical relationships between the structural damping coefficient and the higher-order frequency parameters of graphene based 
on CET, nonlocal elasticity theory (NET), and bi-H NSGT are plotted in Fig. 6 for a constant thickness ratio (a/h = 10). As 
shown in Fig. 6, with the increment in structural damping coefficient, distinct size-dependent continuum theories have 
different trends of reaction in the higher modes of the imaginary part of the eigenfrequency. The eigenfrequency curves 
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Table 3
Comprehensive study of the complex eigenfrequency of elastic and viscoelastic SLGS due to varying foundation types and environmental conditions. (μ0 =
0.34 nm, μ1 = 0.54 nm, l = 0.21 nm, G = 0.05, �T = 200, �H = 0.1, KW = 200, KG = 20, CD = 5).

a/h Type of foundation No environment Thermal environment Hygrothermal environment

Elastic 10 Without foundation ±15.723 i ±15.355i ±15.234i
Winkler foundation ±21.147 i ±20.875i ±20.786i
Pasternak foundation ±29.017i ±28.819i ±28.755i
Visco-Winkler foundation −2.500 ± 20.999i −2.500 ± 20.725i −2.500 ± 20.636i
Visco-Pasternak foundation −2.500 ± 28.909i −2.500 ± 28.711i −2.500 ± 28.646i

50 Without foundation ±19.698i ±10.119i ±3.135i
Winkler foundation ±24.249i ±17.389i ±14.486i
Pasternak foundation ±31.350i ±26.404i ±24.589i
Visco-Winkler foundation −2.500 ± 24.120i −2.500 ± 17.209i −2.500 ± 14.268i
Visco-Pasternak foundation −2.500 ± 31.250i −2.500 ± 26.285i −2.500 ± 24.462i

Viscoelastic 10 Without foundation −6.180 ± 14.457i −6.180 ± 14.056i −6.180 ± 13.924i
Winkler foundation −6.180 ± 20.224i −6.180 ± 19.940i −6.180 ± 19.846i
Pasternak foundation −6.180 ± 28.351i −6.180 ± 28.149i −6.180 ± 28.083i
Visco-Winkler foundation −8.680 ± 19.284i −8.680 ± 18.985i −8.680 ± 18.887i
Visco-Pasternak foundation −8.680 ± 27.688i −8.680 ± 27.481i −8.680 ± 27.414i

50 Without foundation −9.700 ± 17.144i −9.700 ± 12.879i −9.700 ± 9.447i
Winkler foundation −9.700 ± 22.224i −9.700 ± 14.432i −9.700 ± 10.758i
Pasternak foundation −9.700 ± 29.811i −9.700 ± 24.558i −9.700 ± 22.595i
Visco-Winkler foundation −12.200 ± 20.956i −12.200 ± 12.391i −12.200 ± 7.809i
Visco-Pasternak foundation −12.200 ± 28.878i −12.200 ± 23.416i −12.200 ± 21.349i

Fig. 6. Higher-order frequencies of simply supported SLGS with changes in the structural damping coefficient for various continuum theories (G = 0.05, 
�T = 200, �H = 0.1, KW = 200, KG = 20, CD = 5).

calculated by CET, NET, and bi-H NSGT are close when the mode numbers (m, n) are equal to one. It indicates that, in the 
lower mode numbers, NET and bi-H NSGT can predict agreeable results. Although, when one considers mode numbers larger 
than one (n > 1), the NET and bi-H NSGT present different graphical trends for the eigenfrequency. Hence, it is required 
to consider supplementary small-scale parameters to achieve much accuracy, especially in higher mode numbers. In high-
order mode, the viscosity of the material (the structural damping coefficient) has a superior role in the results and creates 
a sharpness of decline on the imaginary part of the eigenfrequency.

5. Conclusions

Damped vibration of simply-supported viscoelastic SLGS surrounded by visco-Pasternak foundation and exposed to the 
hygrothermal environment is studied analytically. The lower and higher order nonlocal parameters appraised the softening-
stiffness effect in SLGS, whereas the material characteristic parameter appraised the stiffness-enhancement effect in SLGS. 
According to Kirchhoff plate theory in conjunction with the higher-order (bi-Helmholtz) nonlocal strain gradient theory, the 
equations of vibrational motion are derived using Hamilton’s principle. The effects of various parameters on the vibration of 
SLGSs are investigated in detail. Based on our numerical results, the following conclusions can be notable:
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• the developed model based on bi-H NSGT with the identified small-scale parameters (μ0 = 0.34 nm, μ1 = 0.54 nm, l =
0.21 nm) can reasonably interpret the softening effects of flexural frequencies of the SLGS, and shows a reasonably 
good match with the experimental flexural frequencies;

• the increase in the spring constant and the shear layer parameter will lead to increasing eigenfrequencies. However, the 
larger values of temperature, moisture, and structural damping coefficient will result in lower eigenfrequencies;

• the influence of environmental loading on the eigenfrequency increases with increasing the thickness ratio of the SLGS. 
However, the influence of elastic foundation on the eigenfrequency decreases with increasing the thickness ratio;

• in the case of a viscous damping constant, a thicker graphene has a larger damping capacity. However, for the case of a 
viscous damping constant, a thicker graphene has a larger damping capacity;

• the structural damping coefficient and the viscous damping constant have an important effect on the real part of 
eigenfrequency for the over-damped case, while both have a little effect on the real part of eigenfrequency for the 
under-damped case;

• the presence of elastic foundation leads to the increment in the stiffness and imaginary part of the eigenfrequency of 
the SLGS;

• the influence of small-scale parameters on the eigenfrequency will be more significant for higher-order modes.
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Appendix A

K = {D11α
4 + (2D12 + 4D66)α

2β2 + D22β
4}+ (μ0 + l)

{
D11α

6 + (D11 + 2D12 + 4D66)α
4β2

+ (2D12 + D22 + 4D66)α
2β4 + D22α

6}+ lμ0
{

D11α
8 + (D11 + 4D12 + 8D66 + D22)α

4β4 + D22β
8

+ (2D11 + 2D12 + 4D66)α
6β2 + (2D12 + 2D22 + 4D66)α

2β6}− ( fxx + kG)α2 + 2 fxyαβ

− ( f yy + kP)β
2 − kW − (μ0 + μ1)

{
( fxx + kG)α4 + ( fxx + f yy + 2kG)α2β2 + ( f yy + kG)β4

− 2 fxy
(
α3β + αβ3)+ kW

(
α2 + β2)}− μ0μ1

{
( fxx + 2 f yy + kG)α2β4 + ( fxx + kG)α6

+ (2 fxx + f yy + 2kG)α4β2 − ( f yy + kG)α6 − 2 fxy
(
α5β + 2α3β3 + αβ5)+ kw

(
α4 + 2α4β3 + β4)} (42)

C = g
{

D11α
4 + (2D12 + 4D66)α

2β2 + D22β
4 + (μ0 + l)

{
D11α

6 + (D11 + 2D12 + 4D66)α
4β2

+ (2D12 + D22 + 4D66)α
2β4 + D22α

6}+ lμ0
{

D11α
8 + (D11 + 4D12 + 8D66 + D22)α

4β4 + D22β
8

+ (2D11 + 2D12 + 4D66)α
6β2 + (2D12 + 2D22 + 4D66)α

2β6}}+ cD
{(

1 − (μ0 + μ1)
)(

α2 + β2)
− μ0μ1

(
α4 + 2α2β2 + β4)} (43)

M = I0
(
1 + (μ0 + μ1)

(
α2 + β2)+ μ0μ1

(
α4 + 2α2β2 + β4)) (44)
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