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The aim of this paper is to study the design of isotropic composites reinforced by aligned 
spheroidal particles made of a transversely isotropic material. The problem is investigated 
analytically using the framework of mean-field homogenization. Conditions of macroscopic 
isotropy of particle-reinforced composites are derived for the dilute and Mori–Tanaka’s 
schemes. This leads to a system of three nonlinear equations linking seven material 
constants and two geometrical constants. A design tool is finally proposed, which permits 
to determine admissible particles achieving macroscopic isotropy for a given isotropic 
matrix behavior and a given particle aspect ratio. Correlations between transverse and 
longitudinal moduli of admissible particles are studied for various particle shapes. Finally, 
the design of particles is investigated for aluminum and steel matrix composites.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Composite materials constitute one of the most advanced class of materials whose popularity in industrial applications 
keeps growing exponentially [1]. Their advent has been aided by the development of new processing methods, theoretical 
approaches of homogenization [2,3] and numerical simulations of heterogeneous materials [4]. This class of materials is 
commonly divided into three categories [5]: (i) fibrous composites consisting of continuous fibers embedded in a matrix, 
(ii) laminated composites consisting of various stacked layers, and (iii) particle-reinforced composites composed of particles in 
a matrix. We are interested in this work in particle-reinforced composites, which cover a large range of existing materials, 
due to the various combinations of particles and matrices including notably concrete and polymer composites (nonmetallic 
particles in a nonmetallic matrix), solid-rocket propellants (metallic particles in nonmetallic matrix), and metal-matrix com-
posites (nonmetallic particles in metallic matrix), as well as various manufacturing processes including powder metallurgy 
and eutectic solidification, among others.

The modeling of particle-reinforced composites can be tackled in a unified approach using homogenization techniques 
that are based on the distributions and the mechanical behaviors of the phases. Mean-field homogenization techniques 
are based on the concept of representative volume element together with appropriate averaging relations permitting to 
achieve a scale transition, known as the Hill–Mandel macrohomogeneity condition [6,7]. The determination of the overall 
behavior of linear composites can then be performed using either (i) bounds, as the rigorous first-order bounds of Voigt and 
Reuss on the effective moduli and the second-order bounds of Hashin and Shtrikman based on variational principles [8], 
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or (ii) estimates, as the dilute scheme [9,10], Mori–Tanaka’s scheme [11] and the generalized self-consistent scheme [12,13], 
which are all based on Eshelby’s ellipsoidal inclusion problem [14].

In practical applications, reinforcements commonly induce anisotropy due to their crystalline orientation (material 
anisotropy) and their shape (morphological anisotropy). In the case of a hexagonal crystallographic symmetry, which covers 
a large range of materials, the material anisotropy reduces to transverse isotropy. Thus, in the quite general situation of 
aligned spheroidal transversely isotropic particles embedded in an isotropic matrix, it is natural to expect a transversely 
isotropic overall behavior when these two sources of anisotropy are combined. Unfortunately, the induced anisotropy re-
stricts the possibilities of engineering composites because, in most of industrial applications, anisotropy is often seen as 
a drawback while macroscopic isotropy is pursued to simplify materials processing. However, one can wonder if the two 
sources of anisotropy (material and morphological) can cancel each other to lead to a macroscopic isotropic composite. This 
would permit to open new possibilities of engineering macroscopic composites made of anisotropic reinforcements. With 
the design of macroscopic isotropic enhanced composites in mind, it is thus of interest to understand the coupling between 
crystalline and particle-shape anisotropies and the conditions permitting to achieve macroscopic isotropy, in the framework 
of theoretical homogenization. The aim of this work is to provide a design tool for isotropic composites reinforced by aligned 
transversely isotropic particles. Section 2 presents the problem considered and notably the theoretical approach of mean-
field homogenization. The condition of macroscopic isotropy is then derived in Section 3. Finally, a design tool is proposed 
in Section 4; correlations between transverse and longitudinal moduli of admissible particles are notably investigated.

2. Position of the problem

2.1. Preliminaries

We investigate the overall behavior of a two-phase composite made of an isotropic matrix reinforced by aligned trans-
versely isotropic particles. The isotropic matrix is characterized by its shear and bulk moduli G0 and K0. The stiffness and 
compliance tensors of the matrix are denoted by C0 and S0, respectively. The volume fraction of the matrix is denoted by 
f0. The particles are supposed to be transversely isotropic with stiffness and compliance tensors denoted by C1 and S1, 
respectively. The shape of the particles is assumed to be spheroidal with an aspect ratio w (w < 1 corresponds to an oblate 
particle, w = 1 spherical and w > 1 prolate). Both material anisotropy and spheroidal axes are supposed to coincide with 
axis e3, so it is expected that the overall behavior is transversely isotropic. Finally, the volume fraction of the particle is 
denoted by f1 = 1 − f0.

In order to derive the overall behavior of the composite, it will be useful to express elasticity tensors with Walpole 
formalism [15], which provides a convenient framework to manipulate transversely isotropic tensors1. Using this formalism, 
the transversely isotropic stiffness tensor C1 is given by

C1 = [2k1, l1, n1, 2m1, 2p1] (1)

and the compliance tensor S1 reads

S1 =
[

n1

2�1
, − l1

2�1
,

k1

�1
,

1

2m1
,

1

2p1

]
(2)

where �1 is given by

�1 = k1n1 − l21 (3)

Positive definiteness of C1 (and S1) requires that all k1, m1, p1 and n1 − l21/k1 are positive [15]. The moduli k1, l1, n1, m1

and p1 can be expressed in terms of the components C1,i jkl through the following relations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

k1 = C1,1111 + C1,1122

2
= C1,1111 − C1,1212

l1 = C1,1133 = C1,2233

n1 = C1,3333

m1 = C1,1212

p1 = C1,2323 = C1,1313

(4)

For practical reasons, it is also convenient to introduce the so-called engineering notations defining the transverse and 
longitudinal Young’s moduli Et and E l , the transverse and longitudinal shear moduli Gt and G l , and the longitudinal Poisson 
ratio νl . These coefficients are related to the moduli (k1, l1, n1, m1, p1) through

1 Elements of Walpole formalism are recalled in Appendix A.
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E l = n1 − l21
k1

Et = 1
1

4k1
+ 1

4m1
+ 1

4

(
n1

k2
1

l21
− k1

)

G l = p1

Gt = m1

νl = l1
2 k1

(5)

The isotropic stiffness tensor C0 can also be expressed in Walpole formalism:

C0 = [2k0, l0, n0, 2m0, 2p0] (6)

where

m0 = p0 = G0, k0 = K0 + 1

3
G0,

l0 = K0 − 2

3
G0, n0 = K0 + 4

3
G0

We finally recall that the Young’s modulus E0 and Poisson ratio ν0 of the matrix are related to the bulk and shear moduli 
K0 and G0 through

E0 = 9K0G0

3K0 + G0
, ν0 = 3K0 − 2G0

2(3K0 + G0)
(7)

2.2. Macroscopic behavior of a particle-reinforced composite

The effective behavior of the composite material is investigated by the mean-field approach of homogenization. Since 
classical homogenization schemes make intensive use of Eshelby’s tensors, we recall that Eshelby’s polarization tensor P
(also known as Hill’s tensor) obtained from the Eshelby (classical) tensor Sesh [14] is given by

P = S
esh : S0 (8)

Tensor P depends on the moduli G0 and K0 of the matrix and on the aspect ratio w of the particle. It possesses the 
symmetry of a transversely isotropic tensor and thus can be written under the form

P = [
2kp, lp, np, 2mp, 2pp

]
(9)

where the expressions of coefficients kp, lp, np, mp and pp are given in Appendix B and have the physical dimension of a 
compliance.

First, we consider the dilute scheme [9,10], which applies for aligned ellipsoidal particles with a very small volume 
fraction. In its “primal” form, the macroscopic stiffness tensor, denoted by CD

, is given by

C
D = C0 + f1

(
P+ (C1 −C0)

−1)−1
(10)

In its “dual” form, the macroscopic compliance tensor, denoted by SD
, is given by

S
D = S0 − f1S0 : (P+ (C1 −C0)

−1)−1 : S0 (11)

It should be noted that SD �=
(
C

D
)−1

, which means that the dilute scheme exhibits a “duality gap”.

Then, we consider Mori–Tanaka’s scheme [11], which applies for aligned ellipsoidal particles with a moderate volume 
fraction. For this model, the macroscopic stiffness tensor, denoted by CMT

, is given by

C
MT =C0 + f1

(
f0P+ (C1 −C0)

−1)−1
(12)

Since Mori–Tanaka’s scheme does not exhibit a “duality gap”, the macroscopic compliance tensor SMT
simply reads SMT =(

C
MT

)−1
.
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In order to simplify the notations, the effective behavior of the composite, denoted by C, can thus be written under the 
generic form

C=C0 + f1
(

fcP+ (C1 −C0)
−1)−1

(13)

where fc = 1 corresponds to the dilute scheme and fc = f0 corresponds to the model of Mori–Tanaka.

3. Condition of macroscopic isotropy

3.1. Generalities

The aim of this Section is to derive the conditions that the particle and the matrix must fulfill so that the macroscopic 
behavior given by Eq. (13) becomes isotropic. Obviously, from Eqs. (10), (11) and (12), a sufficient and necessary condition 
to ensure macroscopic isotropy is that the tensor

A = fcP+ (C1 −C0)
−1 (14)

is isotropic (since C0 and S0 are isotropic). It is interesting to note that the tensor A depends on (i) the coefficients of the 
isotropic matrix through P and C0, (ii) the anisotropy of the particles through C1 and (iii) the shape and volume fraction 
of the particle. Thus the condition of macroscopic isotropy will result in a subtle coupling between material anisotropy and 
shape of the particle.

3.2. Derivation of the isotropy condition

Using Walpole formalism, the tensor A reads

A =
[

2 fckp + n1 − n0

2�A
, fclp − l1 − l0

2�A
, fcnp + k1 − k0

�A
,2 fcmp + 1

2(m1 − m0)
,2 fc pp + 1

2(p1 − p0)

]
(15)

where �A is given by

�A = (k1 − k0)(n1 − n0) − (l1 − l0)
2 (16)

The isotropy condition implies that the tensor A must be written under the form

A = [2(a + b), a, a + 2b, 2b, 2b] (17)

where a and b are arbitrary constants (see Appendix A). It should be noted that the parameters a and b are not related 
to a bulk modulus and a shear modulus, since the tensor A is not a stiffness tensor, but have the physical dimension of a 
compliance. Thus, the isotropy condition leads to the following system⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

2 fcmp + 1

2(m1 − m0)
= 2 fc pp + 1

2(p1 − p0)

2 fckp + n1 − n0

2�A
= 2 fclp − l1 − l0

�A
+ 2 fc pp + 1

2(p1 − p0)

fcnp + k1 − k0

�A
= fclp − l1 − l0

2�A
+ 2 fc pp + 1

2(p1 − p0)

(18)

The isotropy condition consists in a system of three equations linking nine parameters, seven material constants (K0 , G0, 
k1, l1, n1, m1, p1), one morphological constant (w), and a constant related to the volume fraction of particles ( fc).

It should be noted that in the case of the dilute scheme, corresponding to fc = 1, the isotropy condition is independent 
of the volume fraction of reinforcements.

3.3. Macroscopic behavior

When the isotropy condition (18) is verified, it is possible to express the macroscopic stiffness tensor of the isotropic 
composite from Eq. (13), denoted by Ciso

, in a very compact way:

C
iso =

[
2

(
K + 1

3
G

)
, K − 2

3
G, K + 4

3
G, 2G, 2G

]
(19)

where
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3K = 3K0 + f1
1

3c + 2d
, 2G = 2G0 + f1

1

2d
,

c = fclp − l1 − l0
2�A

, d = fcmp + 1

4m1 − m0

4. Design of transversely isotropic spheroidal particles achieving macroscopic isotropy

4.1. Generalities

The aim of this Section is to provide a design tool of transversely isotropic particles permitting to obtain macroscopic 
isotropic composites. Our objectives are twofold:

(1) we aim at providing analytic expressions of the components of the tensor C1 for a given matrix C0, a given shape w
and a given volume fraction fc of particles;

(2) we are interested in studying the correlation between material anisotropy through the coefficients of C1 and morpho-
logical anisotropy through the coefficients fc and w .

The parameters K0, G0, fc and w are thus assumed to be known and the problem reduces in finding the moduli k1 , l1, 
n1, m1, p1 that verify system (18). First, it is interesting to note that system (18) can be written under a dimensionless form 
by multiplying every terms by G0; this leads to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 fcG0mp + 1

2

(
m1

G0
− 1

) = 2 fcG0 pp + 1

2

(
p1

G0
− 1

)

2 fcG0kp +
n1

G0
− K0

G0
− 4

3

2�̃A
= 2 fcG0lp −

l1
G0

− K0

G0
+ 2

3

�̃A
+ 2 fcG0 pp + 1

2

(
p1

G0
− 1

)

fcG0np +
k1

G0
− K0

G0
− 1

3

�̃A
= fcG0lp −

l1
G0

− K0

G0
+ 2

3

2�̃A
+ 2 fcG0 pp + 1

2

(
p1

G0
− 1

)

(20)

where

�̃A =
(

k1

G0
− K0

G0
− 1

3

)
×

(
n1

G0
− K0

G0
− 4

3

)
−

(
l1
G0

− K0

G0
+ 2

3

)2

(21)

Here, the coefficients G0kp, G0lp, G0np, G0mp and G0 pp are given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G0kp = 7h(w) − 2w2 − 4w2h(w) + (
h(w) − 2w2 + 2w2h(w)

)
3K0/G0

8(1 − w2) (4 + 3K0/G0)

G0lp = (2w2 − h(w) − 2w2h(w)) × (1 + 3K0/G0)

4(1 − w2) (4 + 3K0/G0)

G0np = 6 − 5h(w) − 8w2h(w) + (h(w) − 2w2 + 2w2h(w))3K0/G0

2(1 − w2) (4 + 3K0/G0)

G0mp = 15h(w) − 2w2 − 12w2h(w) + (3h(w) − 2w2)3K0/G0

16(1 − w2) (4 + 3K0/G0)

G0 pp = 8 − 6h(w) − 4w2 + (2 − 3h(w) + 2w2 − 3w2h(w))3K0/G0

8(1 − w2) (4 + 3K0/G0)

(22)

where h(w) is given in Appendix A.
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The isotropy condition consists in a system of three equations that links the dimensionless moduli k1/G0, l1/G0, n1/G0, 
m1/G0, p1/G0 to w , fc, and the ratio K0/G0. It is thus remarkable that these dimensionless ratios only depend on the 
matrix behavior through its Poisson ratio since the quantity K0/G0 reads, using Eq. (7):

3K0

G0
= 2(1 + ν0)

1 − 2ν0
(23)

The resolution consists in finding five unknowns verifying three equations for which there are a priori an infinity of solu-
tions. In order to determine a set of admissible material constants, it is however possible to fix arbitrarily two coefficients, 
n1/G0 and l1/G0 for instance, and to deduce the remaining three coefficients, which are given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k1

G0
= K0

G0
+ 1

3
+

l1
G0

+ n1

G0
− 2

K0

G0
− 2

3
− 2 fc(2G0kp − G0lp − G0np)

(
l1
G0

− K0

G0
+ 2

3

)2

2

(
1 − fc(2G0kp − G0lp − G0np)

(
n1

G0
− K0

G0
− 4

3

)2
)

p1

G0
= 1 + �̃A

n1

G0
− 2

l1
G0

− 3
K0

G0
− 4 fc�̃A(G0lp + G0 pp − G0kp)

m1

G0
= 1 +

p1

G0
− 1

1 + 4 fc

(
p1

G0
− 1

)
(G0 pp − G0mp)

(24)

where �̃A is given in terms of n1/G0 and l1/G0 using Eqs. (21) and (24)1. Thus, if one explores accurately the space of 
n1/G0 and l1/G0, it is possible to obtain a large set of admissible values for the material constants and thus deduce the set 
of admissible particles for a given matrix behavior, shape, and volume fraction of particles.

4.2. Correlation between transverse and longitudinal shear moduli

First, we study the relation between transverse and longitudinal dimensionless shear moduli Gt/G0 and G l/G0, which 
are given by⎧⎪⎪⎨

⎪⎪⎩
Gt

G0
= m1

G0

G l

G0
= p1

G0

(25)

where m1/G0 and p1/G0 are related to each other by Eq. (24)3. Thus, the transverse shear modulus Gt/G0 can be expressed 
in terms of the longitudinal shear modulus G l/G0 by the equation

Gt

G0
= 1 +

G l

G0
− 1

1 +
(

G l

G0
− 1

)
× g

(
fc, w,

K0

G0

) (26)

where the function g

(
fc, w,

K0

G0

)
is given by

g

(
fc, w,

K0

G0

)
= fc

16 − 27h(w) − 6w2 + 12h(w)w2 + (4 − 9h(w) + 6w2 − 6w2h(w))3
K0

G0

4(1 − w2)

(
4 + 3

K0

G0

) (27)

It is remarkable that the shear moduli Gt/G0 and G l/G0 of a particle achieving macroscopic isotropy are related to 
each other through a formula that only depends on the particle shape w , the ratio K0/G0 related to the Poisson ratio 
of the matrix, and the parameter fc, which is related to the volume fraction f0. For illustrative purpose, the transverse 
shear modulus Gt/G0 versus the longitudinal shear modulus G l/G0 is represented in Fig. 1 for the value fc = 1 (which 
corresponds to the dilute scheme), various values of the particle shape w , and various values of K0/G0 corresponding to 
different families of matrix materials: K0/G0 = 1/6 or ν0 = −1/2 (auxetic matrix), K0/G0 = 4/3 or ν0 = 2/5 (concrete), 
K0/G0 = 8/3 or ν0 = 1/3 (metallic alloys), K0/G0 = 100 or ν0 = 0.495 (rubber).

Some comments are in order.
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Fig. 1. Dimensionless transverse shear modulus Gt/G0 versus longitudinal shear modulus G l/G0 in the case fc = 1 (high dilution). (a) K0/G0 = 1/6 or 
ν0 = −1/2 (auxetic matrix), (b) K0/G0 = 4/3 or ν0 = 2/5 (concrete), (c) K0/G0 = 8/3 or ν0 = 1/3 (metallic alloys), and (d) K0/G0 = 100 or ν0 = 0.495
(rubber).

• For prolate particles (w > 1), the transverse shear modulus of a particle achieving macroscopic isotropy is greater 
than the longitudinal shear modulus. Thus, the morphological anisotropy induced by the particle shape is balanced by 
an increase of the transverse shear modulus. In the asymptotic geometrical case w → +∞ corresponding to fibers, 
Eq. (26) reduces to

Gt

G0
= 1 +

G l

G0
− 1

1 − 3 fc ×
(

G l − 1

) (28)
2(4 + 3K0/G0) G0
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It is thus possible to achieve macroscopic isotropy with parallel anisotropic cylindrical fibers, but their shear modulus 
is limited by the value(

G l

G0

)
max

= 1 + 2

3 fc
(4 + 3K0/G0) (29)

• For spherical particles (w = 1), one gets g = 0 and thus Gt = G l . This is of course expected since in this case, the only 
way to achieve macroscopic isotropy is to consider isotropic particles.

• For oblate particles (w < 1), the transverse shear modulus of a particle achieving macroscopic isotropy is lower than 
the longitudinal shear modulus. Again, the morphological anisotropy induced by the particle shape is balanced by an 
increase of material anisotropy. In the asymptotic case w → 0 corresponding to penny shape particles, Eq. (26) reduces 
to

Gt

G0
= 1 +

G l

G0
− 1

1 + fc

(
G l

G0
− 1

) (30)

Thus, it is also possible to achieve macroscopic isotropy with parallel penny shape particles, but their transverse shear 
modulus is limited by the value(

Gt

G0

)
max

= 1 + 1

fc
(31)

4.3. Correlation between transverse and longitudinal Young’s moduli

We study now the correlation between transverse and longitudinal Young’s moduli. From Eq. (5), the dimensionless 
transverse and longitudinal Young’s moduli Et/E0 and E l/E0 are given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

E l

E0
=

(
9K0/G0

3K0/G0 + 1

)(
n1

G0
−

(
l1
G0

)2 G0

k1

)

Et

E0
= 36K0/G0

3K0/G0 + 1
× 1

G0

k1
+ G0

m1
+ 1

n1

G0

(
k1

G0

)2 (
G0

l1

)2

− k1

G0

(32)

where the coefficients k1/G0 and m1/G0 are given in terms of n1/G0 and l1/G0 by Eq. (24). It appears that the transverse 
and longitudinal Young’s moduli are both expressed only in terms of n1/G0 and l1/G0 in a very nonlinear way. In contrast to 
the case of the shear moduli studied in Section 4.2, it is impossible to obtain an analytic relation between Et/E0 and E l/E0
involving only fc, w and K0/G0. However, it is still possible to determine a set of admissible values E l/E0 and Et/E0 by 
exploring the space of n1/G0 and l1/G0 as explained in Section 4.1. A large number of values is considered, which permits 
to plot in Fig. 2 the ratio Et/E0 versus E l/E0 for the same K0/G0 values as in Fig. 1. Again, the value fc = 1 is considered 
in all cases.

Overall, the results are similar to those obtained for the shear moduli, in particular for K0/G0 = 4/3 and K0/G0 = 8/3. It 
is worth noting that the relation between the transverse and longitudinal moduli is no longer a bijection: for a given value 
E l/E0, there are multiple admissible values Et/E0 that are bounded, the size of the domain depending on the values of w
and K0/G0. For prolate particles achieving macroscopic isotropy, the transverse Young’s modulus is in general greater than 
the longitudinal one. Conversely, for oblate particles achieving macroscopic isotropy, the transverse Young’s modulus is in 
general lower than the longitudinal one. It should be noted that peculiar behaviors are observed mainly for a rubber matrix 
(K0/G0 = 100 or ν0 = 0.495), where the transverse Young’s modulus can be lower than the longitudinal one for prolate 
particles and the transverse Young’s modulus greater than the longitudinal one for oblate particles. These peculiar behaviors 
are notably due to admissible materials that possess a negative transverse Poisson ratio given by νt = Et/(2Gt) − 1.

4.4. Application to metal-matrix composites

We investigate finally the design of particles for aluminum and steel matrix composites, and notably their possible 
relation with popular particles such as silicon carbide (SiC) and titanium diboride (TiB2).

If it is unlikely that a 9-tuplets (K0, G0, k1, l1, n1, m1, p1, w , fc) could lead to macroscopic isotropy in the exact case of 
Al–SiC and Fe–TiB2 composites, it is however possible to determine admissible materials constituting the particles achieving 
macroscopic isotropy, called ideal materials, which are close to the desired materials (SiC or TiB2), called real materials. The 
closeness between real and ideal materials is characterized by the distance between their stiffness tensors, denoted by Creal
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Fig. 2. Dimensionless transverse Young’s modulus Et/E0 versus longitudinal Young’s modulus E l/E0 in the case fc = 1 (high dilution). (a) K0/G0 = 1/6 or 
ν0 = −1/2 (auxetic matrix), (b) K0/G0 = 4/3 or ν0 = 2/5 (concrete), (c) K0/G0 = 8/3 or ν0 = 1/3 (metallic alloys), and (d) K0/G0 = 100 or ν0 = 0.495
(rubber).

and Cideal, respectively. The Log-Euclidean distance [16,17] is used in order to provide a relative error between tensors, 
denoted by dist(Creal, Cideal) and given by:

dist(Creal,Cideal) = ||log(Creal)−log(Cideal)||√
6

(33)

The procedure to obtain the logarithm of a matrix can be found in [16]. The choice of the Log-Euclidean distance over the 
classical Euclidean distance is motivated by the fact that it preserves the invariance under the operation of inversion and 
thus the duality between stiffness and compliance [16,17]. It should be noted that the coefficient 

√
6 in Eq. (33) has been 
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Table 1
Closest materials to a real 6H–SiC [20] achieving macroscopic isotropy for various aspect ratios w . The elastic moduli Cijkl , E l , Et , G l
and Gt are expressed in GPa.

Material C1111 C1122 C1133 C3333 C2323 E l Et G l Gt νl dist.

6H–SiC Case 1 [20] 498 186 176 567 141 476 404 141 156 0.257 –

Ideal particle
f1 = 0.1, w = 0.5 333 140 186 685 168 538 254 168 96 0.39 0.354
f1 = 0.1, w = 0.8 447 178 192 595 164 477 350 164 134 0.31 0.136
f1 = 0.1, w = 0.9 478 186 191 546 160 435 376 160 146 0.29 0.096
f1 = 0.1, w = 0.96 492 189 191 517 157 410 388 157 151 0.28 0.091
f1 = 0.1, w = 2 544 177 188 331 125 233 426 125 184 0.26 0.311

Table 2
Closest materials to a real 6H–SiC [21] achieving macroscopic isotropy for various aspect ratios w . The elastic moduli Cijkl , E l , Et , G l , 
and Gt are expressed in GPa.

Material C1111 C1122 C1133 C3333 C2323 E l Et G l Gt νl dist.

6H–SiC Case 2 [21] 501 111 52 553 163 544 473 163 195 0.085 –

Ideal particle
f1 = 0.1, w = 0.5 298 87 82 625 212 590 267 212 106 0.21 0.441
f1 = 0.1, w = 0.8 416 101 86 573 204 544 384 204 158 0.17 0.203
f1 = 0.1, w = 0.9 449 98 89 522 198 493 418 198 175 0.16 0.157
f1 = 0.1, w = 0.97 471 97 94 492 194 461 439 194 187 0.17 0.145
f1 = 0.1, w = 2 526 43 118 295 146 246 479 146 241 0.21 0.375

added to the classical Log-Euclidean distance so that the distance between two tensors C1 and αC1, with α a non-negative 
scalar, reduces to dist(C1, αC1) = log(α); this permits to extend the notion of “relative error” to the tensorial case.

Case of Al–SiC First, we consider the case of an aluminum matrix (E0 = 68.8 GPa, G0 = 26 GPa, ν0 = 0.32) reinforced by 
silicon carbide particles (Al–SiC), which constitutes one of the most popular metal-matrix composites due to an increase of 
tensile strength, hardness and wear resistance [18]. Silicon carbides can be found under various polytypes (cubic, hexagonal, 
or rhombohedral) inducing various elastic behaviors, according to the Landolt–Bornstein database. We consider here the 
6H–SiC polytype, which is the most commonly used SiC polytype [19], for which there are several existing sets of elastic 
constants in the literature. We consider two sets of elastic constants, obtained from (i) a bond charge model calculation [20]
(case 1) and (ii) Brillouin scattering experiments [21] (case 2). The stiffness tensors obtained from these two approaches are 
slightly different (see Tables 1 and 2), and the relative error between these two tensors takes the value

dist(Ccase1
real ,Ccase2

real ) = 0.231 (34)

This value permits to express the degree of uncertainty that is made on the knowledge of the material behavior. The elastic 
constants of the closest ideal particles achieving macroscopic isotropy, together with the associated relative errors, are given 
for various particle shapes in Tables 1 and 2, for the cases 1 and 2 respectively. For the case 1, it is possible to achieve 
isotropy with a material reasonably close to the real 6H–SiC [20] for f1 = 0.1 and w = 0.96, with a distance that takes the 
value 0.091. For the case 2, it is possible to achieve isotropy with a material also reasonably close to the second real 6H–SiC 
[21] for f1 = 0.1 and w = 0.97, with a distance that takes this time the value 0.145. Thus, in both cases, it is possible to 
achieve macroscopic isotropy with slightly oblate particles made of materials that are close to real SiC, with a relative error 
that is of the order of the uncertainty made on the SiC constants.

Case of Fe–TiB2 Then, we consider the case of a steel (E0 = 208 GPa, G0 = 80 GPa, ν0 = 0.3) reinforced by titanium diboride 
(Fe–TiB2), which is a promising material with improved specific properties [22]. As in the case of SiC, there are several sets 
of elastic constants available in the literature. We consider two sets obtained from (i) the pulse-echo method [23] (case 3), 
(ii) the rectangular parallelepiped resonance method [24] (case 4). The associated stiffness tensors are again quite different 
(see Tables 3 and 4), and their distance takes the value

dist(Ccase3
real ,Ccase4

real ) = 0.556 (35)

The elastic constants of the closest ideal particles achieving macroscopic isotropy, together with the associated relative 
errors, are given for various particle shapes in Tables 3 and 4, for the cases 3 and 4 respectively. For the case 3, it is possible 
to achieve isotropy with a material reasonably close to the real TiB2 [23] for f1 = 0.1 and w = ∞, with a distance that takes 
the value 0.312. For the case 4, it is possible to achieve isotropy with a material very close to the second real TiB2 [24]
for f1 = 0.1 and w = 4, with a distance that takes this time the value 0.066. Thus, in both cases, it is possible to achieve 
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Table 3
Closest materials to a real TiB2 [23] achieving macroscopic isotropy for various aspect ratios w . The elastic moduli Cijkl , E l , Et , G l , 
and Gt are expressed in GPa.

Material C1111 C1122 C1133 C3333 C2323 E l Et G l Gt νl dist.

TiB2 Case 3 [23] 690 410 320 440 250 254 389 250 140 0.29 –

Ideal particle
f1 = 0.1, w = 0.5 593 276 298 692 176 487 417 176 158 0.34 0.353
f1 = 0.1, w = 1.5 682 338 327 630 165 420 457 165 172 0.32 0.337
f1 = 0.1, w = 2 682 333 319 604 165 404 461 165 175 0.31 0.333
f1 = 0.1, w = 5 703 343 324 577 166 376 471 166 180 0.31 0.321
f1 = 0.1, w = ∞ 714 342 325 565 171 366 482 171 186 0.31 0.312

Table 4
Closest materials to a real TiB2 [24] achieving macroscopic isotropy for various aspect ratios w . The elastic moduli Cijkl , E l , Et , G l , 
and Gt are expressed in GPa.

Material C1111 C1122 C1133 C3333 C2323 E l Et G l Gt νl dist.

TiB2 Case 4 [24] 660 48 93 432 260 408 639 260 306 0.13 –

Ideal particle
f1 = 0.1, w = 0.5 519 90 51 614 278 605 501 278 215 0.08 0.274
f1 = 0.1, w = 1.5 627 54 89 556 255 532 610 255 287 0.13 0.116
f1 = 0.1, w = 2 637 37 96 527 252 499 619 252 300 0.14 0.088
f1 = 0.1, w = 4 643 22 113 485 247 446 617 247 310 0.17 0.066
f1 = 0.1, w = ∞ 645 9 124 458 252 411 611 252 318 0.19 0.074

macroscopic isotropy with elongated particles made of materials that are close to TiB2 with a relative error that is smaller 
than the uncertainty made on TiB2 elastic constants.

5. Conclusion

The aim of this paper was to study the design of isotropic composites made of an isotropic matrix reinforced by aligned 
transversely isotropic particles of spheroidal shape.

First, we derived analytical conditions for macroscopic isotropy of composites reinforced by aligned transversely isotropic 
particles of spheroidal shape in the framework of mean-field homogenization using the dilute and Mori–Tanaka’s schemes. 
This has permitted to express the isotropy condition as a system of three nonlinear equations liking nine parameters. Sets 
of admissible anisotropic particles were then provided for a given matrix behavior and shape of the particles. Correla-
tions between transverse and shear moduli have permitted to investigate the coupling between material and morphological 
anisotropies. In general, the transverse modulus is greater than the longitudinal modulus for prolate particles. Conversely, 
the transverse modulus is in general lower than the longitudinal modulus for oblate particles. Finally, the design of metal-
matrix composite was investigated. In the case of an aluminum matrix, admissible oblate particles close to SiC have been 
found to achieve macroscopic isotropy, permitting the design of isotropic Al–SiC composites. In the case of a steel matrix, 
admissible elongated particles close to TiB2 have been found to achieve macroscopic isotropy, permitting the design of 
isotropic Fe–TiB2 composites.

The obtained design may be directly used in industrial applications to provide new isotropic composites made of 
standard, anisotropic reinforcements such as SiC or TiB2, for instance. Interestingly, it could be also employed in more 
complicated situations where the mechanical properties are designed to be isotropic, but other physical properties, such as 
electrical or acoustic properties, may stay anisotropic due to the particle shape.

Finally, it should be noted that the design tool proposed in this paper only applies to some ideal situations. In order to 
extend this design to more realistic situations, several directions can be explored.

• The spatial distribution of the particles’ centers, which was supposed to be random, could be introduced in order to 
account for a more realistic microstructure. The effect of spatial distribution was investigated, in the theoretical ho-
mogenization framework, by Ponte Castañeda and Willis [25] through a distribution tensor that modifies Mori–Tanaka’s 
estimate. Thus, it would be possible to derive a condition of macroscopic isotropy including this effect (at the cost of 
additional parameters).

• Particles were supposed to be perfectly aligned and material anisotropy axes of the particles were supposed to coincide 
with the geometric anisotropy axes; these assumptions permitted to obtain a first estimate of the parameters achieving 
macroscopic isotropy. It could be interesting to complement the proposed approximate design by full-field simulations 
performed on real microstructures in order to investigate the effect of these assumptions on macroscopic isotropy.
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Appendix A. Walpole formalism

Walpole formalism [15] is a convenient framework to manipulate transversely isotropic fourth-order tensors. Let us 
consider two transversely isotropic tensors given by

L1 = [2k1, l1, n1, 2m1, 2p1] , L2 = [2k2, l2, n2, 2m2, 2p2] (36)

The product between L1 and L2 is given by

L1 : L2 = [4k1k2 + 2l1l2, 2k1l2 + n2l1, 2l1l2 + n1n2, 4m1m2, 4p1 p2] (37)

and the inverse of L1 is given by

L
−1
1 =

[
n1

2�1
, − l1

2�1
,

k1

�1
,

1

2m1
,

1

2p1

]
, �1 = k1n1 − l21 (38)

An isotropic stiffness tensor Ciso, with bulk and shear moduli denoted by K iso and G iso, respectively, can be written 
under the form

Ciso = [2(α + β), α, α + 2β, 2β, 2β] (39)

where

β = G iso, α = K iso − 2

3
G iso (40)

The corresponding isotropic compliance tensor Siso =C
−1
iso can also be written under the form

Siso = [2(γ + δ), γ , γ + 2δ, 2δ, 2δ] (41)

where

δ = 1

4β
= 1

4G iso
, γ = 1

9α + 6β
− 1

6β
= 1

9K iso
− 1

6G iso
(42)

Appendix B. Eshelby polarization tensor

The components of the Eshelby polarization tensor P for a spheroidal inclusion with aspect ratio w and axis of symmetry 
e3 embedded in an isotropic matrix with shear and bulk moduli G0 and K0 are given, in Walpole formalism, by [25]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

kp =
(
7h(w) − 2w2 − 4w2h(w)

)
G0 + 3

(
h(w) − 2w2 + 2w2h(w)

)
K0

8(1 − w2)G0(4G0 + 3K0)

lp = (2w2 − h(w) − 2w2h(w))(G0 + 3K0)

8(1 − w2)G0(4G0 + 3K0)

np = (6 − 5h(w) − 8w2h(w))G0 + 3(h(w) − 2w2 + 2w2h(w))K0

2(1 − w2)G0(4G0 + 3K0)

mp = (15h(w) − 2w2 − 12w2h(w))G0 + 3(3h(w) − 2w2)K0

16(1 − w2)G0(4G0 + 3K0)

pp = 2(4 − 3h(w) − 2w2)G0 + 3(2 − 3h(w) + 2w2 − 3w2h(w))K0

8(1 − w2)G0(4K0 + 3K0)

(43)

For oblate spheroids (w < 1), the function h is given by

h(w) =
w

(
arccos(w) − w

√
w2 − 1

)
(1 − w2)

3
2

(44)

and for prolate spheroids (w > 1), it reads

h(w) =
w

(
w

√
w2 − 1 − argcosh(w)

)
(w2 − 1)

3
2

(45)

The limit w → 1 gives h(1) = 2/3 for a sphere.
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