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To accomplish a proper conception and further modeling of the mechanical behavior of 
soils, observations at the micro and macro scales need to be merged. The authors believe 
that the link between scales can be achieved using the effective stress concept. In this 
paper, we present a model that quantifies the air and water volumes contained within the 
pores of a solid when their pore pressure is varied. The macroscopic consequences of this 
are expressed in terms of a single stress that is used to formulate a simple elastoplastic 
constitutive model to predict volume strains and shear strength of soils.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Conventional materials such as steel or concrete can be considered homogeneous from the point of view of their internal 
particle arrangement. Unlike soils, the tight arrangement of their individual components makes them barely compressible 
when they are compared to other materials such as soils. Because soils are compressible materials, the fluids in their voids 
largely influence their behavior and therefore, hydraulic and mechanical coupling occurs.

The aim of this paper is to propose a fully coupled effective stress constitutive model for soils that accounts for their 
shearing resistance as well as for the volumetric and hydraulic behavior. The main objective of this development is to show 
that simple fully coupled models can be built for unsaturated soils.

The authors believe by that an important element to correctly model the hydromechanical coupling of unsaturated soils 
lays in the correct modeling of the evolution of the pore size distribution, which in turn affects the soil–water retention 
curves.

The choice of a suitable stress–strain framework to describe the behavior of soils is of paramount importance. Recent 
developments related to constitutive modeling of soils have led researchers to conclude that there is no preferred stress 
framework because they all offer different features [1,2]. There are two main trends when choosing the suitable framework 
that may be used to derive the constitutive equations for unsaturated soils. One of them considers that the state of stress 
of a soil is a combination between the external stresses σ t

i j and matric suction s. The other one, is based on the ideas 
established by Terzaghi [3] and Fillunger [4]. It assumes that a single stress, called the effective stress, controls their me-
chanical and hydraulic behavior. While Terzaghi and Fillunger settled the basis for the behavior of porous materials with 
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their voids saturated with a single fluid, Bishop [5] proposes an expression for the effective stress of porous materials with 
two immiscible phases:

σ ′
i j = σ t

i j − uaδi jχ(ua − uw)δi j (1)

In Eq. (1), σ ′
i j represents the effective stress tensor. ua and uw refer to the internal air and water pressures, δi j is the 

Kronecker delta. The difference between air pressure ua and water pressure uw is known as matrix suction (s = ua − uw), 
whereas the term χ(ua − uw) is called suction stress. The sign convention for soil mechanics is adopted here: positive 
stresses and strains denote compressive stresses and volume reductions, respectively.

If the condition ua = 0 is imposed in Eq. (1), the pore water pressure will be computed as in Eq. (2):

uw = (
σ t − σ ′)/χ (2)

If we assume positive values for uw, then σ t > σ ′ . This is the case for soils under saturated conditions where pore-water 
pressures are positive inducing outward compressive stresses on the walls of the voids contained within the soil. If we 
assume negative values for uw, then σ t < σ ′ . This negative stress acts as a tensile stress that tends to close the internal 
walls of a pore. This stress is termed matric suction and only occurs upon the appearance of air–water interfaces, that is, 
when the soil is in unsaturated conditions.

Here, Eq. (1) should be valid for both cases, saturated and unsaturated. To allow a smooth transition between the sat-
urated and unsaturated states, the scalar χ must take the limiting values 0 and 1. This discussion points out the intuitive 
idea that χ equals the degree of saturation of the soil Sr. If this simplification is assumed, as Sr approaches zero, uw in-
creases indefinitely to negative values if ua = 0. This is an unreal situation since this leads to cavitation of the liquid phase. 
Experimentally χ would be capable of being measured just before water cavitation. This is a reason to discard the condition 
χ = Sr, since low degrees of saturation would bring conceptual and physical inconsistencies and χ = Sr would not hold. 
Nonetheless, it has been recognized that χ is strongly related to Sr implicitly assigning a hysteretic nature to the effective 
stress.

2. Hydromechanical coupling

Coupling hydraulic and mechanical behaviors for unsaturated soils is one of the most challenging tasks. This is because, 
as Laloui and Nuth [6] state, three levels of agreement should be accomplished. First, a suitable stress is required, which 
allows handling a discontinuous media such as an unsaturated soil on the ground of a continuous one. In this work, we 
assume the existence of an effective stress that complies with Terzaghi’s classical definition. Such effective stress can be 
expressed as a dependency law written as a function of the stresses that arise in compacted soils, including a suction stress 
ua − uw and a mean net stress p. This dependency law takes the form of Eq. (1).

In terms of effective stresses, the isotropic part of the stress tensor (Eq. (1)) for the triaxial case is expressed as:

p′ = p + χ s (3)

The final ingredients to be presented are a consistent stress–strain framework and a constitutive context. In this section, we 
present both of them.

The model proposed herein is formulated under elastoplastic theory. The hardening equation proposed by Juárez-Badillo 
[7] and later modified by Rojas and Chavez [8] writes:

dp′
0 = 1 + e0

e

p′

λ − κ
dε

p
v (4)

Eq. (4) is a function of the initial void ratio e0 and the compressibility indexes λ and κ for virgin loading and unloading–
reloading, respectively. dε

p
v represents the plastic volumetric strain increment. Eq. (4) resembles that used by Alonso et al. 

[9], with the difference that it is a function of the current void ratio of the material.

2.1. Suction hardening

The goal of this section is to describe hardening laws on the plane of effective mean stress against suction. Assume that 
the porous material is initially saturated and subsequently subjected to drying at constant net stress. Consider also that 
suction reaches the air entry value (s = aev). In these conditions the effective stress moves from point A to B such that 
p′ = p′

B (see Fig. 1).
Now, if the stress increment χaevaev is released (wetting), an elastic recovery occurs, although, plastic strains will endure. 

These plastic volumetric strains are directly related to the increment in the preconsolidation stress. When suction surpasses 
its maximum historical value, the plastic volumetric strains can be computed considering Eq. (4) written in the form:

(
dε

p
vp′

)
AB = (

dp′
0

)
AB

eB

(1 + e )

(λ − κ)

p′ = χaevaev
eB

(1 + e )

(λ − κ)

p′ (5)

A B A B
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Fig. 1. Evolution of the yield surface at drying.

Eq. (5) gives information not only about the evolution of plastic volumetric strains, but also regarding the material 
hardening in terms of effective stress when suction is increased. Therefore, an increment in the apparent preconsolidation 
stress (dp′

0)AB occurs when the material shows a plastic volumetric strain (dε
p
vp′ )AB:

(
dp′

0

)
AB = (

dε
p
vp′

)
AB

(1 + eA)

eB

p′
B

(λ − κ)
= χaevaev (6)

Fig. 1 shows the evolution of the preconsolidation stress as suction progresses.
If suction is increased up to point D, the apparent preconsolidation stress at suction s2 will be (p′

0)s2 = p′
A + (�p′)AD +

χs2 s2. As indicated in Eq. (6), (�p′)AD = χs2 s2. Therefore, the apparent preconsolidation stress at point D is (p′
0)s2 = p′

A +
2χs2 s2. Hence, the yield surface will gradually displace to the right-hand side as suction increases. This displacement is due 
to the phenomenon of suction hardening.

2.2. Hardening law for effective stress increments on constant suction

Assume that the yield criterion has been met in a soil sample subjected to mean net stress and suction increments, then, 
the plastic volumetric strain can be expressed as follows:

dε
p
vp′ = (

dp′
0

) (λ − κ)

(1 + e0)

e

p′ = (dp + sdχ + χds)
(λ − κ)

(1 + e0)

e

p′ (7)

When a sample is loaded at constant suction, the net stress increment produces a volumetric strain generated by the 
reduction of the sizes of the larger pores in the sample. This reduction in the size of pores, displaces the retention curves, 
which in turn affects the values of parameter χ . Therefore, in order to solve Eq. (7), all loads are treated incrementally and 
the value of dχ in Eq. (7) corresponds to the value of the previous increment. With these considerations in mind, when 
loading occurs at constant suction, Eq. (7) reduces to:

dε
p
vp′ = (

dp′
0

) (λ − κ)

(1 + e0)

e

p′ = (dp + sdχ)
(λ − κ)

(1 + e0)

e

p′ (8)

To identify the evolution of the yielding surface at constant suction, consider a saturated soil subjected to the initial 
stress p′

A, then dried up to suction s2 reaching point p′
B (see Fig. 2). At this stage, the loading collapse yield surface (LCYS) 

appears in the position CFD indicated in Fig. 2. If the soil is loaded with dp′ = dp = d(s2χs2 ), the stress state reaches point C 
on the yield surface and the soil behaves elastically.

With a further net stress increment (dp′
0)CE = p′

E − p′
C = (dp = sdχ)CE, the material yields and the LCYS tilts. By com-

puting the increment in the plastic volumetric strain, it is possible to derive the equation for the tilted yield surface. This 
increment is:(

dε
p
v
)

CE = (λ − κ)
eE

(1 + eC)

(dp − sdχ)CE

(p′
E)s2

(9)

Now, assume that a neutral loading is followed from point E to G where eE = eG, and from C to F where eC = eF. 
Furthermore, the increment in the preconsolidation stress for suction stress level s3 is (dp′

0)s3 = 1+eF
eG

p′
G

(λ−κ)
(dε

p
ν)FG. With 

these equations in addition to Eq. (9), and considering that p′
G = p′

F(dp′
0), it can be written:

(
dp′

0

)
s3

= 1 + eF

e

p′
G

(λ − κ)

(
dε

p
ν

)
FG = 1 + eF

e

p′
G

(λ − κ)
(λ − κ)

eE

1 + e

(dp + sdχ)CE

(p′ )
= p′

F

(p′ )
(dp + sdχ)CE (10)
G G C E s2 C s2
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Fig. 2. Evolution of the yield surface due to the mean net stress increase.

where (p′
C)s2 is the stress state before yielding. In conclusion, the increment of the preconsolidation stress for suctions 

lower or equal to s2 due to a net mean stress increment at constant suction is:

(
dp′

0

)
s3

= p′
F

(p′
C)s2

(dp + sdχ)CE (11)

Note that the amount of increment will depend on the ratio p′
F/(p′

C)s2 . If full saturation of the sample occurs after the 
tilting of the LCYS, it may occur that the wetting path crosses the LCYS. This case has been extensively treated by Rojas 
[8,10] and shows that this elastoplastic framework is suitable for simulating the collapse upon wetting phenomenon.

With these ingredients in hand, constitutive relationships for unsaturated soils based on an elastoplastic framework can 
be proposed. A simple and practical model can be built, which requires a reduced number of parameters.

3. The hydraulic model

It has been shown elsewhere [8,10] that the scalar χ depends on the distribution of water and air contained in the soil 
mass as it undergoes wetting–drying cycles. This, of course, presents a practical difficulty, since the porous structure needs 
to be known with precision. These difficulties can be overcome using a porous-solid model, as described below.

Because the internal structure of soils is too complicated to be modeled, various authors joined together to simplify the 
geometries of pores. It has been shown [11–15] that pores can be modeled considering two main types of entities: sites 
and bonds, both of them contributing to the total volume of the pores. Sites contribute with most of the volume of voids 
and are responsible for most of the volume change of soils [16]. These elements have large sizes and therefore control the 
wetting process. Bonds interconnect sites and have little contribution to the volume of voids. Because these elements show 
smaller sizes than sites, they control the drying process.

Despite the fact that assigning regular geometries to the pores may seem rather simplistic, experimental data have 
shown that the critical stages of drying or wetting in regular pores resembles that of real-shaped irregular pores [17–19]. 
This is why authors have modeled sites and bonds in a bi-dimensional network as circles and rectangles, respectively. For 
tri-dimensional modeling, spheres and cylinders are implemented, respectively.

This hydraulic model has been extensively described elsewhere [20]. It is based on the behavior of the micro-structure 
and macro-structure expressed in terms of the description and evolution of the pore-size distribution. A suitable choice is a 
normal distribution function [21,22], hence, the pore-size distribution function V R(μ, σ) depends only on the mean size μ
and the standard deviation σ , of each entity.

In order to make the model as real as possible, the frequency of each size appearing in the porous space needs to be 
established. A set of published results [23–27] indicates that the frequency of the pores shows a normal distribution. Here, 
a normal logarithmic density function is used:

f (R) = 1

σ R
√

2π
exp

[−(ln R − μ)2

2σ 2

]
(12)

where f (R) is the frequency distribution of the pores of size R contained within the porous space. Considering a bi-
dimensional network where pores show circular shapes, the volume of pores of size R is given by V = Nπ 

∫ R+dR
R f (R)R2dR , 

where N represents the total number of pores contained within the pore space. Fig. 3 shows a plot for the volume of pores 
of different sizes (ν(R)). The total volume of pores within the porous network is then: V s = Nπ 

∫ inf f (R)R2dR .
0
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Fig. 3. Relative volume distribution evaluation.

Fig. 4. Fitting the experimental pore-size distribution of a soil with the porous-solid model.

A relative volume distribution V R(R) is defined as:

V R(R)
V

V s
=

∫ R+dR
R f (R)(R2)dR∫ inf

0 f (R)(R2)dR
(13)

Note that Eq. (13) is no longer a function of N . Both functions (numerator and denominator) are evaluated numerically 
dividing integrals in thin slices with thickness �R of logarithmic spacing. The convergence of the solution depends on the 
size of �R .

Compacted soils usually exhibit a bimodal pore-size distribution. To differentiate two classes of sites, the terms “macro-
sites” and “micro-sites” will be used regardless other classifications. Hence, a function for macro-sites V MS

R (μM
S , σ M

S ) and 
a function for micro-sites V mS

R (μm
S , σ m

S ) are needed (see Fig. 4). The overlap between these functions depends on the 
soil structure. Small overlap means that the soil structure shows two very different main sizes of cavities: one for the 
macrostructure and another for the microstructure. Furthermore, different functions for macro-bonds V MB

R (μM
B , σ M

B ) and 
micro-bonds V mB

R (μm
B , σ m

B ) will be needed too. To complete the description of the material, solids are also required. 
Two functions can be used for this purpose one for large grains V SOLM

R (μSOLM
S , σ SOLM

S ) and other for small particles 
V SOLm

R (μSOLm
S , σ SOLm

S ). Functions V SOLM
R and V SOLm

R are obtained when the combined values of μSOLM
S , σ SOLM

S , μSOLm
S and 

σ SOLm
S are such that they fit the grain-size-distribution curve of the soil.

With this information, it is possible to determine the number of pores of each size needed to fill a porous grid of 
a certain size. A regular grid is chosen to place at random the different entities of the model (sites, bonds and solids) 
(Fig. 5b). The full process to create the network has been described elsewhere [20].

Once the network is set up, it is possible to simulate wetting–drying processes as suction changes. During a wetting 
process, all pores are initially dried, then suction is reduced by steps, and the grid is analyzed to identify those cavities that 
can be filled with water (see Fig. 5a). This is done by identifying those cavities that comply with the following rules that let 
pores saturate [22]: (a) its radius R must be smaller than the critical value RC given by the Young–Laplace equation, and 
(b) it must be connected to the bulk of water following a continuous path from the boundaries.

The Young–Laplace equation writes s = ua − uw = 2Ts cosφ/RC, where φ is the contact angle that is usually considered 
as 0 [13] and Ts = 7.36 N/m represents the air–water interfacial tensional force. Hence, the critical radius can be computed 
as follows:

RC = 2Ts cosφ

s
(14)

For the case of a drying process, a site will dry when it complies with the following conditions: (a) the radius R of the 
site is larger than the critical radius RC and (b) it must be connected to the boundaries by a continuous path of dried pores.



6 H. Arroyo, E. Rojas / C. R. Mecanique 347 (2019) 1–18
Fig. 5. (a) Wetting–drying processes simulated from a certain PSD. (b) Rectangular grid built with a characteristic frequency distribution and grain-size 
distribution.

With every suction increase/decrease, the rectangular grid is analyzed to search for sites that comply with these two 
conditions during a drying or wetting path, respectively. It can be seen from Fig. 5a that the total volume supersedes the 
saturated volume of pores. This is because not all sites able to saturate or dry according the Young–Laplace equation fulfill 
the second condition.

Solids are also considered at every suction step to compute the saturated and the dry fractions – Eq. (15) and Eq. (16), 
respectively. Saturated solids are defined as those grains exclusively surrounded by saturated pores. Similarly, dry solids are 
defined as those grains exclusively surrounded by dry pores. The total volume of the material is constituted by the volume of 
solids and the volume of cavities (V = V SOL + V v). The volume of the saturated sites V s

v is constituted by water-filled pores 
that surround the saturated solids with volume V s

SOL. The volume of dry sites V d
v is constituted by dry pores surrounding 

dry solids V d
SOL. Finally, the unsaturated fraction can be obtained from the condition that the addition of all fractions is one 

(Eq. (17)).

ϕs = V s
SOL + V s

v

V
(15)

ϕd = V d
SOL + V d

v

V
(16)

ϕu = 1 − ϕs − ϕd (17)

The degree of saturation of the unsaturated fraction plays a major role in the model formulation, and it is defined as:

Su
r = V u

w/V u
v (18)

Here, V u
w represents the volume of pores of the unsaturated fraction that are filled with water. V u

v stands for the volume of 
cavities of the unsaturated fraction.

Notice that the volume of bonds is not taken into consideration for the computation of the fractions. This is because their 
contribution to the total volume of pores is negligible compared to that of the sites. It is even rather difficult to detect their 
volume by the mercury intrusion porosimetry tests. However, they play a major role in correctly simulating wetting/drying 
cycles. The fact that a unique pore-size distribution can be derived from the soil–water retention curves (SWRCs) is used to 
determine the functions V MB

R (μM
B , σ M

B ) and V mB
R (μm

B , σ m
B ). This means that wetting and drying retention curves maintain a 

one-to-one relationship with the pore-size distribution [28,29]. Because the imbibition process is controlled by larger pores 
[20], the fitting of the wetting curve is made by iteratively modifying parameters μM

S , σ M
S , μm

S , and σ m
S until the best fit is 

obtained (see Fig. 6).
Similarly, the drying curve is fitted, but this time by modifying the values for parameters μM

B , σ M
B , μm

B , and σ m
B .

When the void ratio modifies due to stress increments, the values of parameters φs , φd, φu, and Su
r change [30]. There-

fore, the values of V R for sites and bonds also change.
Fig. 7a shows the PSD of a bentonite/sand mixture as a function of the material density. When comparing the PSDs of 

samples compacted at 1.67 and 1.97 ton/m3, the denser sample exhibits a smaller volume of a first class of pores contained 
between 1 and 300 microns, while those contained between a second class of pores (ranging between 0.003 and 0.1) slightly 
increase. In addition, the peak of the first class of pores of the denser sample displaces from 50 to 10 microns.

Fig. 7b shows the PSDs of two samples of a clayey soil subjected to two different suctions. One of the samples was 
initially subjected to 1000 kPa and then its suction reduced until the saturated condition was reached. Notice that the 
saturated sample exhibits a smaller volume of the pores contained between 4 and 20 microns. This volumetric reduction is 
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Fig. 6. Recovering the material pore-size distribution from the SWRC.

Fig. 7. (a) Pore size distribution of bentonite/sand mixtures compacted to different dry densities with a water content of about 11.0% (experimental data 
from Wang et al. [33]). (b) Clayey soil containing kaolin minerals (experimental data after Thom, Sivakumar, Sivakumar, Murray and Mackinnon [23]).

termed collapse upon wetting in unsaturated soil mechanics terminology and it is due to the reduction of suction stresses 
(χ s) as water intrudes into the pores of the soil [31,32].

From these experimental reports, two observations can be made.

1. As the soil compresses due to collapse, the larger pores reduce in size and, consequently, their distribution displaces to 
smaller sizes and consequently reduces its peak value.

2. Because of the collapse of large pores, the distribution of the small pores apparently increases.

Many assumptions and improvements can be made to model the volume change, however, for the sake of simplicity, 
the volume change is related to the displacement of the V MS

R function. Moreover, it is assumed that only the mean size 
of larger sites changes (μM

S ). A complete description of the influence of volume change on the retention curves and its 
implementation is reported elsewhere [20].

3.1. Evaluation of parameter χ

In practice, the simplification χ = Sr is usually assumed, since the exact value of χ is difficult to obtain. Rojas [34]
shows (as confirmed experimentally by Khalili and Zargarbashi [35]) that χ = Sr is not an accurate assumption, as pointed 
out by Nuth and Laloui [36] and Arroyo et al. [21], especially for the case of double structured soils. To evaluate χ , we 
propose to look into the microstructural behavior of the material.

When water changes are present in the mass of soil, air–water interfaces appear, increase, reduce, or disappear as the 
soil dries and wets, inducing localized additional stresses between soil grains. Because soils are extremely heterogeneous 
in terms of pore-size distribution (PSD), water may be trapped between relatively large grains or between packets of clay. 
Tensile stresses within each of these fractions contribute in their own particular way to strengthen the material.

Moreover, most soils show a bimodal structure meaning that they show a macrostructure and a microstructure. The 
macrostructure is formed by the arrangement of large grains and aggregates with large pores or macropores. Instead, the 
microstructure is formed by the internal structure of aggregates showing small pores or micropores. At certain value of 
suction, the largest macropores can be dry and some solids will be surrounded by dry pores forming a dry fraction. Instead, 
most aggregates remain saturated and represent the saturated fraction. In addition, some solids will be surrounded by a 
combination of dry and saturated pores; they form the unsaturated fraction. This is a general description of an elementary 
volume of an unsaturated soil. The addition of all these three fractions is one. Each fraction behaves differently under 
suction increase. For example, suction has no effect on the dry fraction. Instead, for the saturated fraction, an increase in 
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Table 1
Model parameters for the hydraulic model.

Hydraulic model parameters

Macro-solids Micro-solids Macro-sites Micro-sites Macro-bonds Micro-bonds

μSOLM
S σ SOLM

S μSOLm
S σ SOLm

S μM
S σ M

S μm
S σ m

S μM
B σ M

B μm
B σ m

B

6 3.5 0.0001 6 10 2.5 0.0005 3 8 4 0.00001 13

Fig. 8. Evolution of χ s with saturated and unsaturated fractions during wetting drying paths. (a) Sr–s path, (b) χ s during wetting and drying, (c) saturated 
fraction, (d) unsaturated fraction.

suction is similar to an increase in mean net stress. For this reason, it is necessary to establish the contribution of each 
fraction to the value of Bishop’s parameter χ , indicated in Eq. (1).

Rojas [22], considered the problem of evaluating the “average” stress induced by all these constituents over an elemen-
tary representative volume of soil containing packets of clay, silt and large grains distributed in a random fashion, they all 
immerse in a soil mass containing air and water phases. This analysis results in Eq. (19):

χ = ϕs + ϕu · Su
r (19)

In Eq. (19), ϕ represents a soil fraction superscripts “d”, “s”, and “u” denote dry, saturated, and unsaturated fractions, 
respectively. Here, Ss

r = V ws/V vs, Su
r = V wu/V vu and Sd

r = V wd/V vd = 0 are the relation between the volume of water 
and the volume of voids that form the corresponding fraction.

The parameters involved in Eq. (19) are retrieved from a hydraulic model as presented in section 3.
Hydromechanical coupling is achieved through evaluating parameter χ . Fig. 8a shows the SWRC of a soil with the 

parameters reported in Table 1. Fig. 8b shows the evolution of χ s in wetting–drying trajectories. Fig. 8c and d allow the 
reader to visualize the influence of the porous parameters, of which χ is a function.

From Fig. 8b and d, it can be seen that there is a clear relationship between the peaks of the suction stress (χ s) and 
the unsaturated fraction (ϕu). Observe that the range of suction for the SWRC goes from 0.001 MPa to 400 kPa. It can be 
observed that the maximum suction stress appears at a lower value of suction for the wetting path than for the drying path. 
In addition, the suction stress is larger during drying than during wetting. This happens because the drying path occurs at 
larger values of suction.

It has been shown that the parameters involved in the function χ(ϕs, ϕu, Su
r ) depend on the pore-size distribution of 

the material. Even if suction remains constant, χ can be stress-affected due to hydromechanical coupling. This phenomenon 
means that an increment of net stresses reduces the size of macropores, which in turn affects the value of χ . Consequently, 
and according to Eq. (20), this will induce additional volumetric strains.

Hydromechanical coupling can be easily introduced in the model as the SWRC depends on the size of pores. Hence, 
after computing the volumetric strains produced by an increase in the effective stress, a new pore size distribution can be 
established by considering that only macropores reduce in size. This reduction in the size of the macropores generates new 
retention curves. This implies that suction stress keeps modifying with each variation in volumetric strains and, at the same 
time, generates additional volumetric strains.
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Fig. 9. Yield surfaces and hardening process in the (p,q) space.

Fig. 10. Fitting to the experimental SWRC of a residual gneiss [21]. Experimental data reported by Futai and Almeida [39].

4. Stress–strain relations (mechanical model)

The model is written in terms of the usual variables, i.e. the deviator stress q = σ1 − σ3 and the mean effective stress 
p′ = (σ ′

1 +2σ ′
3)/3. As stated by Wood [37], the ingredients needed to build an elastoplastic mechanical model are the elastic 

properties, a yield surface, a plastic potential, and a hardening rule.
Here, the yield function in the (p, q) stress plane proposed by Roscoe and Burland [38] will be used in addition to an 

associated flow rule. The ellipse-shaped yield surface requires a single hardening parameter p0.
Considering Eq. (4) and according to the modified critical state model, the stress–strain relationship for plastic stages can 

be expressed in matrix form as follows:[
dε

p
v

dε
p
d

]
= − 1

−M2 p′(p′
0

(1+e0)
e(λ−κ)

)

[
M2(2p′ − p′

0) 2q

2q 4q2

M2(2p′−p′
0)

][
dp′
dq

]
(20)

In Eq. (20), dε
p
d represents the plastic deviator strain increment, M is the slope of the critical state line (CSL). For the 

elastic stress–strain relationship, nonlinear behavior is disregarded at this stage and first-order elasticity is used:[
dεe

v
dεe

d

]
=

[
κ e

(1+e0)p′ 0

0 1
3G

][
dp′
dq

]
(21)

In Eq. (21), G stands for the elastic shear modulus, dεe
v and dεe

d represent the increments of elastic volumetric and 
deviator strains, respectively. Fig. 9 sums up all the features of the proposed model in the (p, q) stress space.

5. Comparison of the numerical and experimental results

5.1. Residual gneiss

Parameters for both the hydraulic and mechanical model need to be established. For the hydraulic model, a fitting 
procedure is carried out to retrieve the V R functions. Fig. 10 depicts with triangles and circles some experimental points of 
the SWRCs during wetting and drying, respectively. Undisturbed soil samples composed of residual gneiss containing 46% 
of clay, 9% of silt and 45% of sand were used for the experimental program. The data are provided by Futai and Almeida 
[39]. The parametric analysis has been described elsewhere [21]. The best fit for the retention curves was obtained with the 
values contained in Table 2.
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Table 2
Model parameters for the hydraulic model [21].

Hydraulic model parameters

Macro-solids Micro-solids Macro-sites Micro-sites Macro-bonds Micro-bonds

μSOLM
S σ SOLM

S μSOLm
S σ SOLm

S μM
S σ M

S μm
S σ m

S μM
B σ M

B μm
B σ m

B

6 3.5 0.0001 6 10 2.5 0.0005 3 8 4 0.00001 13

Fig. 11. Fitting to the experimental pore-size distribution of a soil [21]. Experimental data reported by Futai and Almeida [39].

Table 3
Parameters for the mechanical model [21].

Normal compression 
slope

Loading–reloading 
compression slope

Saturated preconsolidation 
stress (MPa)

Shear modulus 
(MPa)

Critical state line 
slope

λ κ (p′
0)sat G M

0.2 0.005 0.1 10 1.14

The best fit for the SWRC is also plotted in Fig. 10. The experimental program included a pore-size distribution performed 
on undisturbed samples of the same soil. The results arising from these tests are plotted in Fig. 11 along with the V R
functions obtained from the fitting process (depicted in Fig. 11 as well). The V R functions for the solid phase are obtained 
by fitting the grain-size distribution curve of the material using a similar procedure as for the SWRC.

The parameters for the mechanical model are shown in Table 3. They were obtained from a series of triaxial compression 
tests on saturated undisturbed samples reported elsewhere [39].

The friction angle is related to the critical state slope through the relationship M = 6 sin φ/(3 − sinφ). (p′
0)sat is the 

preconsolidation stress when the suction of the material is zero.
The testing procedure for triaxial tests consisted of three stages: suction equalization, isotropic compression, and shearing 

stage. Samples were set in an equalization cell where an air pressure was applied from the top. A high air-entry ceramic 
disc located at the base of the cell allowed water to drain. This equalization stage modified the preconsolidation stress of 
soil samples. At the end of equalization, samples were transferred to a triaxial cell.

In general, it is difficult to determine accurately the preconsolidation stress p′
0 of undisturbed samples and the initial 

position of the LCYS. Here, it is assumed that the soil reached its stress state departing from a saturated condition. In such 
a case, the stress path moves from point A to point B. Compression due to suction increase induces changes in the initial 
SWRC (see Fig. 12).

For the case of a sample subjected to a suction of 0.3 MPa, the effective stress state at the end of the equalization stage 
equals p′

A + (�p′)A−B = 0.1 + 0.19 = 0.29 MPa. In addition, the preconsolidation stress due to this suction increment is 
(according to Fig. 1) (p0)

′
0.3 = p′

A + 2(ϕs + Su
r ϕ

u)0.3(ua − uw) = 0.1 + (2)0.963(0.3) = 0.478 MPa.
Notice that the behavior of the stress path AB and that of curves LCYS0 and LCYSf is rather linear. This behavior is 

reserved for saturated states [1], but the sample is clearly beyond the “aev”. Let us explain this. As stated by Peron et al. 
[40], on samples subjected to free desiccation, the larger volume strains are expected very close to full saturation. This 
enables us to consider that beyond s = 0.002 MPa, volume strains can be neglected to some extent (�V = �V ν ≈ 0). 
Indeed, if we consider no volume change, differentiating Eq. (19) leads us to:

dχ

ds
= 1

V

(
d(V ss + V sols)

ds
+ d(V su + V solu)

ds
Sru + dSru

ds

(
V su + V solu

))
(22)

According to Eq. (22) dχ depend on the change of V ss and V su. Here, the only way to achieve dχ/ds = 0 is by preventing 
changes of V ss and V su. We can observe that between s = 0.02 MPa and s = 1.0 MPa, dSru

ds = 1
V V

dV w
ds = 1

V V

d(V ws+V wu)
ds ≈ 0, 

hence, V ss and V su remain unchanged and so will V sols and V solu. With this in mind, we can conclude that, if dSru/ds = 0, 
dχ/ds = 0. Fig. 13 depicts the evolution of χ with suction, where it is confirmed that χ does not change within this suction 
range.
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Fig. 12. Stress path followed for samples subjected to loading after drying. LYCS0 is the position of the yielding surface after suction equalization. LCYSf is 
the final position of the yielding surface after loading.

Fig. 13. Variation of χ when drying.

Therefore, the product χ s will actually evolve as suction times a constant, exhibiting a straight line with slope χ that 
remains unchanged up to s = 1.0 MPa.

Now, suction has no influence on the degree of saturation within this range because the distribution of bonds is between 
the two large distributions of sites (see Fig. 11). Of course, if a site is surrounded by smaller bonds, this will prevent it from 
drying, and it will not do so until suction reaches such a value that dries at least a surrounding bond. As previously stated, 
the volume of bonds can be neglected. Therefore, almost no change in the degree of saturation is observed between the 
suction states we are interested in.

Once samples were suction-equalized (at s = 0.3 MPa), they were transferred to a triaxial chamber where a mean net 
stress of 0.005 MPa was applied (Futai and Almeida [39]). As the effective stress increment from point A to point B (p′

B −
p′

A) = 0.19 MPa remains when the sample is transferred from the first chamber to the second, the initial mean effective 
stress in the last chamber was p′

C = 0.005 + 0.19 = 0.195 MPa (point C in Fig. 12). Then a mean net stresses of 0.1 MPa 
was applied to reach point E in Fig. 11. Plastic and elastic strains can be computed using Eqs. (20) and (21). The evolution 
of the yielding surface is calculated using Eq. (11). The same equalization–loading procedure was carried out for all samples 
tested at a suction of 0.1 MPa. Comparisons between theoretical and experimental results are plotted in Fig. 14.

A set of four triaxial tests on saturated samples was carried out. Fig. 15a depicts the stress path followed by these 
samples where the initial configuration of the yield surface f̄ is shown. Fig. 15b shows the numerical (N) stress–strain 
relationships compared with the experimental (E) results reported by Futai and Almeida [39]. According to the results for 
the saturated sample shown in Fig. 11, a confining stress of 0.1 MPa generates a normally consolidated sample. The same 
occurs for the rest of the samples subjected to larger confining stresses.

A set of three triaxial tests was carried out for suctions s = 0.30 MPa and s = 0.10 MPa. The results of these tests are 
shown in Figs. 16 and 17, respectively, in terms of effective stress. For the case s = 0.30 MPa, the suction stress is given 
by the value 0.3(ϕs + Su

r ϕ
u) = 0.19 MPa. The stress–strain comparisons between the numerical and experimental results in 

terms of mean net stress are plotted in Figs. 16 and 17.
In order to visualize the influence of volumetric strains on the hydraulic properties of the sample subjected to s =

100 kPa, Fig. 18 depicts the experimental drying SWRCs at the “initial conditions” and at the end of the shearing stage for a 
confining stress p = 200 kPa. The black circle shows the degree of saturation of the soil sample before triaxial compression. 
The gray circle shows the evolution of the degree of saturation at the end of the shearing stage for the sample subjected 
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Fig. 14. Comparison of numerical (N) and experimental (E) results for samples subjected to isotropic compression. Experimental data after Futai and Almeida 
[39].

Fig. 15. Stress–strain relationship of saturated samples subjected to triaxial compression. (b) Relationships between numerical (N) and experimental (E) 
stress–strain results. Experimental results reported by Futai and Almeida [39].

to p = 200 kPa. Notice that the model predicts full saturation at the end of the shearing stage. Unfortunately, Futai and 
Almeida [39] did not report the final degree of saturation of the samples.

5.2. Silty sand

Remolded samples of a soil containing 50% silt and 50% sand were tested at the School of Civil and Environmental 
Engineering at the University of New South Wales. The experimental program was hosted by Prof. Nasser Khalili. Samples 
with a void ratio of 0.8 were taken from the construction site of the Lyell dam located in the central-western part of 
Australia.

The preparation of the material involved a stage of oven-drying for at least 24 h. Then, the soil was prepared at a water 
content of 8%. Bags containing the wet soil were sealed for at least 48 h. Samples 10 cm in height and 5 cm in diameter 
were statically compacted at a speed rate of 0.23 mm/min.

To retrieve the V R function for this soil, a fitting procedure was carried out with the experimental SWRCs in the same 
way as described earlier in this paper. Fig. 19 depicts in small triangle-shaped markers, experimental data of the SWRC. This 
is a drying-wetting cycle that departs from the as-compacted condition.
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Fig. 16. (a) Stress path followed by samples subjected to s = 0.30 MPa in triaxial compression. (b) Deviator stress vs. axial strain, (c) Volumetric strain vs. 
axial strain for different mean net stresses.

Fig. 17. (a) Stress path followed by samples subjected to s = 0.10 MPa during triaxial compression. (b) Deviator stress vs. axial strain (up), (c) volumetric 
strain vs. Axial strain for different mean net stresses.

Using the filter paper technique [41], an initial mean suction of 0.056 MPa was determined for these samples. The 
wetting SWRC was obtained using the axis translation technique [42]. Air at a pressure of up to 0.70 MPa was injected into 
a chamber provided with a pressure transducer and a high air entry ceramic disc of 15 bar at the bottom. The sample was 
initially subjected to a suction of 0.70 MPa from the as-compacted conditions. Then, water could drain into the sample by 
reducing the air pressure up to a value of 0.010 MPa to obtain the wetting path.

The grain-size distribution of the material is shown in Fig. 20. Best fits for both the wetting SWRC and the grain-size 
distribution were obtained using the values indicated in Table 4.

With this information it is possible to set up the porous-solid network used to simulate wetting–drying paths. The best fit 
for the SWRC is also plotted in Fig. 19. The main drying curve was obtained considering that the initial part corresponds to a 
scanning curve, as explained elsewhere [21]. This arises from experimental observations: when samples suffer compression 
during the preparation stage, later they show elastic recovery before they are placed in the equalization cell. In agreement 
with the description of the porous model, the volumetric recover increases the size of macrosites. The latter translates into 
a reduction of the degree of saturation Sr = w Ss/e of the material (where w is the water content and Ss is the solids 
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Fig. 18. Drying SWRC evolution with volume strains.

Fig. 19. A fitting to the experimental SWRC of a silty sand.

Fig. 20. Experimental grain-size distribution of the soil.

Table 4
Model parameters for the hydraulic model [21].

Hydraulic model parameters

Macro-solids Micro-solids Macro-sites Micro-sites Macro-bonds Micro-bonds

μSOLM
S σ SOLM

S μSOLm
S σ SOLm

S μM
S σ M

S μm
S σ m

S μM
B σ M

B μm
B σ m

B

6.0 3.5 0.01 6.0 1.3 4.0 0.5 3.0 7.0 4.0 0.0001 13.0

density). This phenomenon, along with the increase in size of the pores due to volumetric recovery, tends to increase 
suction. With these ideas in mind, it is possible to say that the initial conditions of samples are in fact a drying scanning 
path that begun when the final compressive stress was released (see Fig. 19). Hence, the fitting procedure to retrieve the 
parameters for the main drying curve is carried out assuming that the experimental results are showing a scanning curve 
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Table 5
Model parameters for the mechanical model [21].

Normal compression 
slope

Loading–reloading 
compression slope

Saturated preconsolidation 
stress (MPa)

Shear modulus 
(MPa)

Critical state 
line slope

λ κ (p′
0)sat G M

0.1 0.011 0.15 10 1.374

Fig. 21. Fitting to the experimental pore-size distribution of a soil.

Fig. 22. Stress path followed for samples subjected to isotropic compression.

that further aligns with the main drying curve. The convenience of these assumptions will be further evaluated when the 
model’s predictions are compared with the experimental observations. However, a more complete study, evaluation, and 
description of this consideration has already been made available elsewhere [21].

Again, model parameters were obtained from a series of triaxial saturated tests and are displayed in Table 5. The ex-
perimental program included pore-size distribution tests performed on samples of the same soil with an Autopore IV 9500 
series. The results of these tests are plotted in Fig. 21 along with V R functions obtained from the parametric analysis. It 
can be observed that the experimental and numerical main values approximately correspond; however, the numerical V R
function shows a larger range of pores sizes.

The mechanical testing procedure consisted of three stages: suction equalization (up to 0.300, 0.235, and 0.170 MPa), 
isotropic compression, and shearing stage. The same procedure as that applied for the simulation of the experimental results 
of the residual gneiss in the previous section has been used for these samples. Fig. 22b shows the stress path in terms of 
mean net stresses and shows the final preconsolidation stresses imposed during drying. Here, it was considered that the 
equalization process can be simulated as the simultaneous increase of mean net stress and suction (path AB) departing from 
a saturated state (point A in Fig. 22a). As explained before, it is difficult to track down the evolution of effective stresses 
during the compaction procedure.

Once the corresponding suction level was reached, mean net stress increments of 0.123, 0.200, and 0.350 MPa were 
applied. Comparisons of the theoretical results with the experimental ones for this last stage are plotted in Fig. 23.

Then samples with suctions of 0.170 and 0.235 MPa were subjected to shearing. Two sets of triaxial tests performed at 
suctions s = 0.170 MPa and s = 0.235 MPa and at different confining stresses were carried out. Fig. 24 and Fig. 25 exhibit 
the stress–strain relationship and the volumetric behavior during the shearing stage for each value of suction.

From Figs. 24 and 25, it can be noticed that the stress–strain curves are correctly predicted by the proposed model for 
both suction levels. However, the model underestimates and overestimates volumetric strains for low and high confining 
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Fig. 23. Comparisons of the numerical and experimental results for samples subjected to isotropic compression.

Fig. 24. Strength and volumetric behavior for samples at confined stresses of 0.123 MPa (a–b), 0.200 MPa (c–d), and 0.350 MPa (e–f).

Fig. 25. Deviatoric stress vs. axial strain, volumetric strain vs. axial strain for mean net stresses of 0.167 (a–b), 0.260 (c–d), 0.465 MPa (e–f).

pressures, respectively. More sophisticated and complicated shapes for the yield surface have been shown to produce more 
accurate results [36,43].

Because the model used here has been maintained as simple as possible, these results show some of the limitations 
of the present model. In other stages of this research, different alternatives to increase the precision of the model will be 
explored as, for example, the shape of the yield surface [43–45], the use of non-associated flow rules [46–48], or the use of 
the bounding surface approach [49,50].
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6. Conclusions

Because the pore-size distribution is used to predict the hydraulic behavior and the stress state of the material, the 
model proposed herein allows the hydromechanical coupling of compacted soils in a rather simple manner. Moreover, these 
ideas enlighten the comprehension of the mechanics of fabric evolution of porous materials.

Despite the fact that the model accurately predicts the transition between saturated and unsaturated states, as well as the 
transition between elastic and elastoplastic states, there are some limitations to the prediction of volumetric deformations. 
Different alternatives may be considered to increase the precision of the model as, for example, modify the geometry of the 
yield surface, introduce a non-associated flow rule, or use the bounding surface approach.
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