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We consider the anti-plane shear deformation of a three-phase inhomogeneity-coating-
matrix composite containing a coated non-elliptical inhomogeneity whose surrounding 
matrix is subjected to the action of a screw dislocation and uniform remote anti-plane 
shear stresses. Our objective is to establish conditions under which the inhomogeneity 
maintains an internal uniform stress field. Our analysis, which is based on a carefully 
chosen conformal mapping function, clearly indicates that such an internal uniform stress 
distribution can be achieved independently of the action of the screw dislocation, which 
influences the shape of the inhomogeneity depending on its proximity to the dislocation. In 
fact, we find that when the screw dislocation is located far from the coated inhomogeneity, 
the corresponding material interfaces become two confocal ellipses as reported previously 
in the literature. A simple criterion for the convergence of the series in the conformal 
mapping function is established.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In the design of fiber-reinforced composites, it is commonplace to introduce an intermediate layer consisting of a thin 
or thick coating between the internal fiber (or the inhomogeneity) and the surrounding matrix to improve the overall 
mechanical performance of the composite (see, for example, [1–5]). For example, the coating is often used to improve the 
quality of fiber–matrix bonding as well as to reduce stress concentrations at the fiber–matrix interface. Uniformity of an 
internal stress distribution has been observed in the following cases when the composite is subjected to uniform remote 
anti-plane shearing: in a three-phase concentric circular inhomogeneity; a three-phase confocal elliptical inhomogeneity; 
and in a three-phase non-elliptical inhomogeneity with appropriately designed coating thickness (see, respectively, Ru and 
Schiavone [6], Ru et al. [7], Wang and Gao [8]). It has also been observed that the stress field within a three-phase concentric 
circular inhomogeneity interacting with a screw dislocation is intrinsically non-uniform [9]. However, it has been shown 
quite recently that the internal stress distribution can indeed remain uniform within a single or even two non-elliptical 
inhomogeneities interacting with a screw dislocation when the inhomogeneities are assumed to be perfectly bonded to the 
surrounding matrix (i.e. in the absence of any coating) [10,11].
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Fig. 1. A coated non-elliptical inhomogeneity interacting with a screw dislocation.

Recognizing that an internal uniform stress distribution is optimal in the sense that it eliminates stress peaks within 
the inhomogeneity, we continue our investigations by establishing conditions under which a non-elliptical inhomogeneity 
surrounded by a coating of separate elastic properties can be designed to maintain the desired uniform internal stress dis-
tribution when the corresponding composite is subjected to anti-plane shear deformations with prescribed uniform remote 
stresses and the action of a screw dislocation somewhere in the matrix. Interestingly, the internal uniform stress field inside 
the inhomogeneity is found to be independent of the action of the screw dislocation whilst the shape of the coated inho-
mogeneity is influenced by the presence of a nearby screw dislocation. The two non-elliptical interfaces of the three-phase 
composite as well the location of the screw dislocation, which permit the desired internal uniform stress field, can be con-
veniently designed via the introduction of a particular conformal mapping function which maps the region occupied by the 
coating and the matrix onto the exterior of the unit circle in the image ξ -plane. A simple criterion for the convergence of 
the series in the conformal mapping function is established based on the D’Alembert’s ratio test.

2. Formulation

Under anti-plane shear deformations of an isotropic elastic material, the two shear stress components σ31 and σ32, the 
out-of-plane displacement w and the stress function φ can be expressed in terms of a single analytic function f (z) of the 
complex variable z = x1 + ix2 as [12]

σ32 + iσ31 = μ f ′(z), φ + iμw = μ f (z) (1)

where μ is the shear modulus, and the two stress components can be expressed in terms of the single stress function as 
[12]

σ32 = φ,1, σ31 = −φ,2 (2)

Let S1, S2 and S3 denote the internal inhomogeneity, the intermediate coating and the surrounding unbounded matrix, 
respectively, all of which are perfectly bonded through the inner and outer non-elliptical interfaces L1 and L2, as shown 
in Fig. 1. The matrix is subjected to uniform anti-plane shear stresses at infinity (σ∞

31 , σ∞
32 ) and the action of a screw 

dislocation with Burgers vector b applied at z = z0 (see Fig. 1). Our main objective is to examine whether uniform stresses 
remain possible inside the internal (non-elliptical) inhomogeneity even in the presence of the nearby screw dislocation. In 
what follows, the subscripts 1, 2 and 3 are used to identify the respective quantities in S1, S2 and S3.

3. Internal uniform stress field

The boundary value problem for the three-phase composite takes the following form

f2(z) + f2(z) = Γ1 f1(z) + Γ1 f1(z)

f (z) − f (z) = f (z) − f (z), z ∈ L
(3a)
2 2 1 1 1



X. Wang et al. / C. R. Mecanique 347 (2019) 181–190 183
Fig. 2. The problem in the ξ -plane.

f3(z) + f3(z) = Γ2 f2(z) + Γ2 f2(z)

f3(z) − f3(z) = f2(z) − f2(z), z ∈ L2
(3b)

f3(z) ∼= b

2π
ln(z − z0) + O (1), z → z0 (3c)

f3(z) ∼= σ∞
32 + iσ∞

31

μ3
z + b

2π
ln z + O (1), |z| → ∞ (3d)

where Γ1 and Γ2 are two stiffness ratios defined by

Γ1 = μ1

μ2
, Γ2 = μ2

μ3
(4)

Equations (3a) and (3b) describe the continuity conditions of traction and displacement across the inner and outer perfect 
interfaces L1 and L2, respectively; Eq. (3c) characterizes the singular behavior of f3(z) at the location of the screw disloca-
tion z = z0; Eq. (3d) gives the remote asymptotic behavior of f3(z) due to the remote loading and the Burgers vector of the 
screw dislocation.

To solve the above boundary value problem, it is more convenient to introduce the following conformal mapping function

z = ω(ξ), ξ = ω−1(z), |ξ | ≥ 1 (5)

the specific form of which is to be determined in the ensuing analysis. Using this mapping function, the exterior of the 
inhomogeneity (a simply-connected domain) is mapped onto the exterior of the unit circle in the ξ -plane. More specifically, 
as shown in Fig. 2, the regions S2 and S3 are mapped onto 1 ≤ |ξ | ≤ ρ− 1

2 and |ξ | ≥ ρ− 1
2 , respectively; the two interfaces 

L1 and L2 are mapped onto the two concentric circles |ξ | = 1 and |ξ | = ρ− 1
2 ; the location of the screw dislocation z = z0 is 

mapped onto ξ = ξ0 (i.e., z0 = ω(ξ0) or ξ0 = ω−1(z0)). Here ρ(0 < ρ < 1) can be considered as a dimensionless parameter 
measuring the relative thickness of the coating. In order to ensure that the mapping in Eq. (5) is “one-to-one” for z ∈ S2 ∪ S3, 
it is necessary that ω′(ξ) �= 0 for |ξ | > 1. For convenience and without loss of generality, we write f2(ξ) = f2(ω(ξ)) and 
f3(ξ) = f3(ω(ξ)).

To ensure that the internal stresses inside the inhomogeneity are uniform, f1(z) defined in the inhomogeneity must take 
the following form:

f1(z) = kz, z ∈ S1 (6)

where k is a complex number to be determined.
By enforcing continuity of traction and displacement across the inner interface L1 in Eq. (3a), we arrive at the following 

expression for f2(ξ)
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f2(ξ) = k(Γ1 + 1)

2
ω(ξ) + k̄(Γ1 − 1)

2
ω̄

(
1

ξ

)
, 1 ≤ |ξ | ≤ ρ− 1

2 (7)

Similar conditions across the outer interface L2 in Eq. (3b) lead to the following expression for f3(ξ)

f3(ξ) = k(Γ1 + 1)(Γ2 + 1)

4
ω(ξ) + k(Γ1 − 1)(Γ2 − 1)

4
ω(ρξ)

+ k̄(Γ1 − 1)(Γ2 + 1)

4
ω̄

(
1

ξ

)
+ k̄(Γ1 + 1)(Γ2 − 1)

4
ω̄

(
1

ρξ

)
, |ξ | ≥ ρ− 1

2

(8)

A careful inspection of the above expression suggests that it is sufficient for our purposes to adopt the mapping function in 
the following specialized form

z = ω(ξ) = R

(
ξ + p

ξ
+

+∞∑
j=1

q j ln
ξ − ρ j−1ξ̄−1

0

ξ

)
, |ξ | ≥ 1 (9)

where R is a real scaling constant, p is a given complex constant, q j, j = 1, 2, · · · , +∞ are complex constants to be deter-

mined. The branch cut for the multi-valued logarithmic function ln
ξ−ρ j−1 ξ̄−1

0
ξ

in Eq. (9) is chosen to be the line segment 
within the unit circle connecting ξ = ρ j−1ξ̄−1

0 and ξ = 0. Thus, all the logarithmic functions appearing in Eq. (9) for differ-
ent values of j are analytic and single-valued for |ξ | ≥ 1. Note that by using the mapping function in Eq. (9), f2(ξ) given 
by Eq. (7) is analytic and single-valued in its region of definition 1 ≤ |ξ | ≤ ρ− 1

2 since each of the logarithmic functions 
ln(ξ − ρ1− jξ0), j = 1, 2, · · · , +∞ appearing in ω̄( 1

ξ
) are analytic and single-valued in 1 ≤ |ξ | ≤ ρ− 1

2 in view of the fact that 

ρ1− j |ξ0| > ρ− 1
2 , j = 1, 2, · · · , +∞.

By substituting Eq. (9) into Eq. (8) and ensuring that f3(ξ) is regular at the points ξ = ρ− jξ0, j = 1, 2, · · · , +∞ and that 
it exhibits the logarithmic singularity at ξ = ξ0 in Eq. (3c), we obtain the following recurrence relation

q j+1 = Λq j, j = 1,2, · · · ,+∞ (10)

where Λ is a real material parameter defined by

Λ = (Γ1 + 1)(1 − Γ2)

(Γ1 − 1)(Γ2 + 1)
(11)

and

q1 = q = 2 b

πkR(Γ1 − 1)(Γ2 + 1)
(12)

Using Eqs. (10) and (12), the mapping function in Eq. (9) can now be further specified as

z = ω(ξ) = R

(
ξ + p

ξ
+ q

+∞∑
j=0

Λ j ln
ξ − ρ j ξ̄−1

0

ξ

)
, |ξ | ≥ 1 (13)

which indicates that the non-elliptical shape of the coated inhomogeneity and the location of the screw dislocation can be 
readily determined once the five parameters p, q, ρ, Λ and ξ0 are known. As |ξ0| → ∞ (i.e., the screw dislocation is located 
far from the coated inhomogeneity), the interfaces become two confocal ellipses as observed by Ru et al. [7] in the absence 
of the screw dislocation.

By using D’Alembert’s ratio test, it is seen that the series in the mapping function (13) is convergent when ρ|Λ| < 1. 

The specific procedure is as follows: if we set b j = Λ j ln
ξ−ρ j ξ̄−1

0
ξ

in Eq. (13), then

lim
j→∞

∣∣∣∣b j+1

b j

∣∣∣∣ = |Λ| lim
j→∞

∣∣∣∣ ln(1 − ρ j+1ξ̄−1
0 ξ−1)

ln(1 − ρ j ξ̄−1
0 ξ−1)

∣∣∣∣ = |Λ| lim
j→∞

∣∣∣∣
∑∞

n=1
(ρ j+1 ξ̄−1

0 ξ−1)n

n∑∞
n=1

(ρ j ξ̄−1
0 ξ−1)n

n

∣∣∣∣ = ρ|Λ|

from which the convergence criterion is established. It is clear that the series in Eq. (13) is also analytic, single-valued and 
convergent for the annulus ρ

1
2 ≤ |ξ | ≤ 1 in addition to the region |ξ | ≥ 1 by considering the fact that all the logarithmic 

singularities in Eq. (13) are located within the circle |ξ | = ρ
1
2 .

Remark. Using Eq. (13), the sum of the two terms containing analytic continuations in Eq. (8) will finally become as follows 
after appropriate cancellations:
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k̄(Γ1 − 1)(Γ2 + 1)

4
ω̄

(
1

ξ

)
+ k̄(Γ1 + 1)(Γ2 − 1)

4
ω̄

(
1

ρξ

)

= k̄q̄R(Γ1 − 1)(Γ2 + 1)

4
ln(ξ − ξ0) + Rk̄(Γ1 − 1)(Γ2 + 1)

4

(
1

ξ
+ p̄ξ

)
+ Rk̄(Γ1 + 1)(Γ2 − 1)

4

(
1

ρξ
+ p̄ρξ

)

whilst both ω(ξ) and ω(ρξ) in Eq. (8) are analytic for |ξ | ≥ ρ− 1
2 except at infinity by considering the fact that ω(ξ) is 

analytic in |ξ | ≥ ρ
1
2 again except at infinity.

By enforcing the remote asymptotic condition in Eq. (3d), we arrive at the following relationship

k
[
(Γ1 + 1)(Γ2 + 1) + ρ(Γ1 − 1)(Γ2 − 1)

] + p̄k̄
[
(Γ1 − 1)(Γ2 + 1) + ρ(Γ1 + 1)(Γ2 − 1)

] = 4(σ∞
32 + iσ∞

31 )

μ3
(14)

through which the complex number k can be uniquely determined as

k = 4(σ∞
32 + iσ∞

31 )[(Γ1 + 1)(Γ2 + 1) + ρ(Γ1 − 1)(Γ2 − 1)] − 4p̄(σ∞
32 − iσ∞

31 )[(Γ1 − 1)(Γ2 + 1) + ρ(Γ1 + 1)(Γ2 − 1)]
μ3{[(Γ1 + 1)(Γ2 + 1) + ρ(Γ1 − 1)(Γ2 − 1)]2 − |p|2[(Γ1 − 1)(Γ2 + 1) + ρ(Γ1 + 1)(Γ2 − 1)]2}

(15)

It follows from Eqs. (1) and (6) that the internal stresses are uniformly distributed inside the inhomogeneity according to

σ32 + iσ31 = μ1k, z ∈ S1 (16)

It is then clearly seen from Eqs. (15) and (16) that the internal uniform stress field inside the inhomogeneity is independent 
of the action of the screw dislocation. By using Eq. (15), the complex parameter q in Eq. (12) can then be uniquely expressed 
in terms of the remote loading (σ∞

31 , σ∞
32 ), the Burgers vector b, the two stiffness ratios Γ1 and Γ2, the shear modulus μ3

of the matrix, the given complex number p and the scaling constant R . It is seen that when q is a real number, σ∞
31 = 0

and σ∞
32 �= 0, whereas when q is a purely imaginary number we have σ∞

32 = 0 and σ∞
31 �= 0. Apparently, the non-elliptical 

shape of the coated inhomogeneity derives solely from the existence of the screw dislocation in the matrix.

4. Numerical examples

For our calculations, the series in Eq. (13) is truncated at j = 100. In this section, several specific numerical examples will 
be presented to demonstrate the analytical results obtained in the previous section. In fact, Fig. 1 is obtained by adopting 
the following parameters:

p = 0.2, q = 0.5, ρ = 0.6, Λ = 0.4, ξ0 = 1.5 exp

(
i π
4

)
(17)

In what follows, the shape of the coated inhomogeneity and the location of the screw dislocation are shown in Figs. 3–5 for 
the following respective sets of parameters:

p = 0.2, q = 0.5, ρ = 0.8, Λ = 0.4, ξ0 = 1.5 (18)

p = 0, q = 0.5i, ρ = 0.8, Λ = 0.4, ξ0 = 1.5 (19)

p = 0, q = −0.5, ρ = 0.8, Λ = −0.4, ξ0 = 1.5 (20)

As a fifth example, the shape of the coated inhomogeneity and the location of the screw dislocation are shown in Fig. 6
when

p = 0.2, q = 0.334, ρ = 0.8, Λ = 1, ξ0 = 1.5 (21)

Here Λ = 1 implies that the inhomogeneity and the matrix have the same shear modulus (i.e., μ1 = μ3). We see from Fig. 6
that one part of the inner interface almost touches another part.

As a sixth example, we consider the case when (see Fig. 7)

p = 0, q = −0.5, ρ = 0.8, Λ = −1, ξ0 = 1.343 (22)

Here Λ = −1 implies that μ2 = √
μ1μ3. From Fig. 7, we can see the presence of a sharp corner on the inner interface.

In the next example (Fig. 8) we consider a case when Λ > 1:

p = 0.2, q = 0.5, ρ = 0.5, Λ = 1.2, ξ0 = 2 (23)

Here, despite the fact that Λ > 1, the series in Eq. (13) remains convergent in view of the fact that ρ|Λ| = 0.6 < 1.
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Fig. 3. The shape of the coated inhomogeneity and the location of the screw dislocation by choosing the parameters in Eq. (18). The star is the location of 
the screw dislocation.

Fig. 4. The shape of the coated inhomogeneity and the location of the screw dislocation by choosing the parameters in Eq. (19). The star is the location of 
the screw dislocation.

In the final example, the shape of the coated inhomogeneity and the location of the screw dislocation are shown in Fig. 9
for the following parameters

p = 0, q = −0.5, ρ = 0.5, Λ = −1.2, ξ0 = 2 (24)

In this example, we have Λ < −1. The series in Eq. (13) again remains convergent since the fact that ρ|Λ| = 0.6 < 1.
It is clear that, by adjusting the values of the five parameters in the mapping function (13), it is possible to generate 

many configurations of the three-phase composite admitting our design criterion of an internal uniform stress distribution.
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Fig. 5. The shape of the coated inhomogeneity and the location of the screw dislocation by choosing the parameters in Eq. (20). The star is the location of 
the screw dislocation.

Fig. 6. The shape of the coated inhomogeneity and the location of the screw dislocation by choosing the parameters in Eq. (21). The star is the location of 
the screw dislocation.

5. Conclusions

We have shown that the internal stress distribution inside a coated non-elliptical inhomogeneity interacting with a screw 
dislocation under uniform remote stresses can still be maintained uniform when the corresponding composite is subjected 
to anti-plane shear. The conformal mapping function characterizing the shape of the coated inhomogeneity and the location 
of the screw dislocation is given explicitly by Eq. (13), which contains five non-trivial parameters, p, q, ρ, Λ, and ξ0. The 
main novelty in our analysis lies in the introduction of the infinite series in the mapping function (13) with a goal to 
completely removing the logarithmic singularity at the points ξ = ρ− jξ0, j = 1, 2, · · · , +∞ in f3(ξ). Numerical results are 
presented to validate the feasibility and effectiveness of the solution technique. We mention that our method can be easily 
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Fig. 7. The shape of the coated inhomogeneity and the location of the screw dislocation by choosing the parameters in Eq. (22). The star is the location of 
the screw dislocation.

Fig. 8. The shape of the coated inhomogeneity and the location of the screw dislocation by choosing the parameters in Eq. (23). The star is the location of 
the screw dislocation.

extended to study the uniformity of stresses inside a coated non-elliptical inhomogeneity interacting with an arbitrary 
number of screw dislocations located in the matrix. In closing, we would like to make two additional comments. Firstly, 
despite extensive efforts, an extension of our present method to the case of an edge dislocation has not been successful: at 
this stage we believe such an extension is not possible. Secondly, our method can be applied to the case when the screw 
dislocation with Burgers vector b is located at z = z0 inside the coating. In this case, the three analytic functions f1(z), f2(ξ)

and f3(ξ) are also given by Eqs. (6)–(8). The mapping function is eventually derived as

z = ω(ξ) = R

(
ξ + p

ξ
+ q

+∞∑
Λ j ln

ξ − ρ j ξ̄−1
0

ξ
+ qK

+∞∑
Λ j ln

ξ − ρ jξ0

ξ

)
, 1 < |ξ0| < ρ− 1

2 , |ξ | ≥ 1 (25)

j=0 j=1
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Fig. 9. The shape of the coated inhomogeneity and the location of the screw dislocation by choosing the parameters in Eq. (24). The star is the location of 
the screw dislocation.

Fig. 10. The shape of the coated inhomogeneity and the location of the screw dislocation with p = 0.2, q = ρ = Λ = 0.5, K = 0.4, ξ0 = ρ− 1
4 = 1.1892 in 

Eq. (25). The star is the location of the screw dislocation located in the coating.

where Λ has been defined in Eq. (11), z0 = ω(ξ0) and

q = b

πkR(Γ1 − 1)
, K = Γ1 − 1

Γ1 + 1
(26)

with k being determined by Eq. (15). Both series in Eq. (25) are convergent when ρ|Λ| < 1. An example of the conformal 
mapping function in Eq. (25) is illustrated in Fig. 10. In this example, the coating is softer than both the inhomogeneity and 
the matrix.
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