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The bending responses of porous functionally graded (FG) thick rectangular plates are 
investigated according to a high-order shear deformation theory. Both the effect of shear 
strain and normal deformation are included in the present theory and so it does not need 
any shear correction factor. The equilibrium equations according to the porous FG plates 
are derived. The solution to the problem is derived by using Navier’s technique. Numerical 
results have been reported and compared with those available in the open literature for 
non-porous plates. The effects of the exponent graded and porosity factors are investigated.

© 2019 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

Functionally graded materials (FGMs) are known for them tailor-made properties that are achieved through the continu-
ous gradation of material phase from one surface to another. Due to FGMs being involved in the classification of composite 
materials, the material compositions of FGMs are assumed to vary smoothly and continuously throughout the gradient’s 
directions. The earliest FGMs were introduced by Japanese scientists in the mid-1980s as ultra-high-temperature-resistant 
materials for aerospace applications. Recently, these materials have found other uses in electrical devices, energy transfor-
mation, biomedical engineering, optics, etc. [1]. At the introduction of FGMs, most of the essential concepts and information 
about the materials were largely unknown outside of Japan. However, in the manufacture of FGM, porosities may occur in 
the materials during the sintering process. This is due to the large difference in coagulation temperature between the com-
ponents of the material [2]. Wattanasakulpong et al. [3] discussed the porosities that occur in lateral FGM samples made 
with a multistage sequential filtration technique. So, it is important to take under consideration the porosity effect when 
designing FG components under the effect of dynamic loadings.

Based on the open literature, it seems that many investigators have paid attention to the analysis of FGM structures 
with porosities. Most of these investigations are concerned with the vibration behavior of FG porous structures [4–28]. 
Additional researchers are restricted their attention to the buckling [29–38] or vibration and buckling [39–42] of many 
porous structures. Behravan Rad [43] presented the static response of porous multi-directional heterogeneous structures 
resting on the developed gradient elastic foundations.
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In the past three decades, researches on plates have received great attention, and a variety of plate theories has been 
proposed, in which the plates are generally subjected to various types of mechanical loads. In particular, knowledge pertain-
ing to bending is essential for optimal design of structures. For example, our numerical examples clearly show that, with a 
suitable volume fraction exponent “P” for FGM, one could achieve an optimal design for FGM plates.

It is worthwhile to present some developments in the plate theory. The first-order shear deformation theories (FSDPTs) 
based on Reissner [44] and Mindlin [45] accounted for the transverse shear effects by means of linear variation of in-plane 
displacements across the thickness. Since FSDPT violates the equilibrium conditions at the plate’s top and bottom faces, 
the shear correction factors are needed to rectify the unrealistic variation of the shear strain/stress across the thickness. In 
order to overcome the limitations of FSDPT, higher-order shear deformation theories (PSDPTs) involving higher-order terms 
in Taylor’s expansions of the displacements in the thickness coordinate were developed in Refs. [46–52]. A good review of 
these theories for the analysis of laminated composite plates is available in Refs. [53–57].

The objective of this article is to present the bending behavior of FG plates having porosities. The plate may be either 
perfectly porous homogeneous or has a perfect homogeneity shape depending on the values of the volume fraction of voids 
(porosity) or of the graded factors. The plate is assumed isotropic at any point within the plate, with its Young’s modulus 
varying across its thickness in accord with a power law in terms of the volume fractions of the plate constituents while 
the Poisson’s ratio remains constant. The present theory satisfies equilibrium conditions at the plate’s top and bottom faces 
without using shear correction factors. A Navier solution is used to obtain closed-form solutions for simply supported FG 
plates. Several important aspects, i.e. aspect ratios, thickness ratios, exponent graded factor as well as porosity volume 
fraction, which affect deflections and stresses, are investigated.

2. Basic assumptions of the present plate theory

Consider a FG thick rectangular plate of length a, width b, and thickness h. The coordinate system is taken such that 
the x–y plane coincides with midplane of the plate. Let the FG plate be subjected to a transverse load q(x, y). The plate is 
composed of a functionally graded material across the thickness direction. The assumptions of the present plate theory are 
as follows:

• the displacements are small in comparison with the plate thickness; therefore, the strains involved are infinitesimal;
• the transverse displacement w includes two components of bending wb, and shear ws; these components are functions 

of the coordinates x, y only,

w(x, y, z) = wb(x, y) + ws(x, y) (1)

• the transverse normal stress σz is negligible in comparison with in-plane stresses σx and σy ;
• the displacements u in the x-direction and v in the y-direction consist of extension, bending, and shear components,

U = u0 + ub + us, V = v0 + vb + vs (2)

The bending components ub and vb are assumed to be similar to the displacements given by the classical plate theory. 
Therefore, the expression for ub and vb can be given as

ub = −z
∂ wb

∂x
, vb = −z

∂ wb

∂ y
(3)

The shear components us and vs give rise, in conjunction with ws to the parabolic variations of the shear strains γ xz , 
γ yz , and hence to shear stresses τ xz , τ yz through the thickness of the plate in such a way that shear stresses τ xz , τ yz are 
zero at the top and bottom faces of the plate. Consequently, the expression for us and vs can be given as

us = − f (z)
∂ ws

∂x
, vs = − f (z)

∂ ws

∂ y
(4)

where

f (z) = z − h

π
sin

(
πz

h

)
(5)

3. Kinematics

In the present analysis, the shear deformation plate theory is suitable for the displacements [60]:

u(x, y, z) = u0(x, y) − z
∂ wb

∂x
+ f (z)

∂ ws

∂x

v(x, y, z) = v0(x, y) − z
∂ wb

∂ y
+ f (z)

∂ ws

∂ y

w(x, y, z) = w (x, y) + w (x, y)

(6)
b s



S. Merdaci, H. Belghoul / C. R. Mecanique 347 (2019) 207–217 209
Fig. 1. Geometry and coordinates of the FG porous plate.

The strains associated with the displacements in Eq. (7) are⎧⎨
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where
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(8)

g(z) = 1 − f ′(z) (9a)

f ′(z) = d f (z)

dz
(9b)

4. Constitutive equations

The plate is graded from aluminum (bottom) to alumina (top), as depicted in Fig. 1. The mechanical properties of FGM 
are determined from the volume fraction of the material constituents. Young’s modulus E is assumed to be a function of 
the volume fraction of the constituent materials. Let the present plate be converted from lower to upper surfaces according 
to an exponential or polynomial law. We will consider firstly a non-homogeneous material with a porosity volume function 
α (0 ≤ α ≤ 1). In such a way, the efficient material properties, as Young’s modulus, can be expressed as:

E = E0e( 1
2 − z

h )P − 2α
1−α (10)

where P (P ≥ 0) represents a factor that points out the material variation through the thickness. Note that the plate is 
perfectly porous homogeneous when k equals zero; it gets a perfect homogeneity shape when k = α = 0. E/E0 denotes the 
relative or reduced tensile modulus, with E being the effective tensile modulus of the porous material and E0 is the tensile 
modulus of the homogeneous one, and α represents the volume fraction of voids (porosity). Eq. (10) yields E = 0 as α = 1.

The functional relationship between E(z) for the ceramic and metal FGM plate is assumed to be [58,59]:

E(z) = (Ec − Em)V + Em − (Ec + Em)
α

2
, and V =

(
1

2
− z

h

)p

(11)

where Ec and Em are the corresponding properties of the ceramic and the metal, respectively, and P is the volume fraction 
exponent, which takes values greater than or equal to zero. The above power-law assumption reflects a simple rule of 
mixtures used to obtain the effective properties of the ceramic/metal plate. The rule of mixtures applies only to the thickness 
direction. Note that the volume fraction of the metal is high near the bottom surface of the plate, and that of the ceramic is 
high near the top surface. Furthermore, Eq. (10) indicates that the bottom surface of the plate (z = −h/2) is metal, whereas 
the top surface (z = h/2) of the plate is ceramic.

The stress–strain relations for a linear and isotropic elastic plate are written as⎧⎨
⎩

σx

σy

τxy

⎫⎬
⎭ =

⎡
⎣ Q 11 Q 12 0

Q 12 Q 22 0
0 0 Q 66

⎤
⎦
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τ
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0 Q
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γyz
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}
(12)
zx 55 zx
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where (σ x , σ y , τ xy , τ yz , τ yx) and (εx , ε y , γ xy , γ yz , γ yx) are the stress and strain components, respectively. Using the 
material properties defined in Eq. (8), the stiffness coefficients Q ij can be expressed as

Q 11 = Q 22 = E(z)

1 − ν2
, Q 12 = νE(z)

1 − ν2
, Q 44 = Q 55 = Q 66 = E(z)

2(1 + ν)
(13)

5. Governing equations

The static equations can be obtained by using the principle of virtual displacements. It can be stated in its analytical 
form as∫

(δU + δV ) = 0 (14)

where δU is strain energy variation and δV is potential energy variation. The variation of the strain energy of the plate 
writes

δU =
h/2∫

−h/2

∫
A

[σxδεx + σyδεy + τxyδγxy + τyzδγyz + τxzδγxz]dA dz (15a)

=
∫
A

[
Nxδε

0
x + N yδε

0
y + Nxyδε

0
xy + Mb

xδkb
x + Mb

yδkb
y + Mb

xyδkb
xy + Ms

xδks
x + Ms

yδks
y

+ Ms
xyδks

xy + Ss
yzδγ

s
yz + Ss

xzδγ
s
xz

]
dA (15b)

where A is the top surface, and the stress resultants N , M , and S are defined by:⎧⎨
⎩

Nx, N y, Nxy

Mb
x , Mb

y, Mb
xy

Ms
x, Ms

y, Ms
xy

⎫⎬
⎭ =

h/2∫
−h/2

(σx,σy, τxy)
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1
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f (z)

⎫⎬
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(
Ss

xz, Ss
yz

) =
h/2∫

−h/2

(τxz, τyz)
(n)g(z)dz (16)

The variation of potential energy of the applied loads can be expressed as

δV = −
∫
A

q(δwb + δws)dA (17)

Substituting the expressions for δU and δV from Eq. (15) and Eq. (17) and integrating the displacement gradients by 
parts and setting the coefficients δu, δv , δwb, and δws zero separately, one obtains the equilibrium equations associated 
with the present shear deformation theory,

δu : ∂Nx

∂x
+ ∂Nxy

∂ y
= 0

δv : ∂Nxy

∂x
+ ∂N y

∂ y
= 0

δwb : ∂2Mb
x

∂x2
+ 2

∂2Mb
xy

∂x∂ y
+ ∂2Mb

y

∂ y2
+ q = 0

δws : ∂2Ms
x

∂x2
+ 2

∂2Ms
xy

∂x∂ y
+ ∂2Ms

y

∂ y2
+ ∂ Ss

xz

∂x
+ ∂ Ss

yz

∂ y
+ q = 0

(18)

By substituting Eq. (7) into Eq. (12) and integrating through the thickness of the plate, the stress resultants are given as⎧⎨
⎩

N
Mb

Ms

⎫⎬
⎭ =

⎡
⎣ A B Bs

A D Ds

Bs Ds Hs

⎤
⎦

⎧⎨
⎩

ε

kb

ks

⎫⎬
⎭ , S = Asγ (19)

N = {Nx, N y, Nxy}t, Mb = {
Mb

x , Mb
y, Mb

xy

}t
, Ms = {

Ms
x, Ms

y, Ms
xy

}t
(20a)

ε = {
ε0

x , ε0
y, γ

0
xy

}t
, kb = {

kb
x ,kb

y,kb
xy

}t
, ks = {

ks
x,ks

y,ks
xy

}t
(20b)

A =
⎡
⎣ A11 A12 0

A12 A22 0
0 0 A

⎤
⎦ , B =

⎡
⎣ B11 B12 0

B12 B22 0
0 0 B

⎤
⎦ , D =

⎡
⎣ D11 D12 0

D12 D22 0
0 0 D

⎤
⎦ (20c)
66 66 66
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Bs =
⎡
⎣ Bs

11 Bs
12 0
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12 Bs

22 0
0 0 Bs
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⎤
⎦ , Ds =

⎡
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⎤
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⎡
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⎤
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S = {
Ss

xz, Ss
yz

}t
, γ = {γxz, γyz}t, As =

[
As

44 0
0 As

55

]
(20e)

where Aij , Bij , etc. are the plate stiffness defined by

{Aij, Bij, Dij} =
h/2∫

−h/2

(
1, z, z2)Q ijdz (i, j = 1,2,6)

{
Bs

i j, Ds
i j, Hs

ij

} =
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]2)
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(21)

Substituting from Eq. (19) into Eq. (18), the equations of motion can be expressed in terms of displacements (δu, δv , δwb, 
δws) as

A11
∂2u

∂x
+ A66

∂2u

∂ y2
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(22b)
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∂3 v
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− D11
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− D22
∂4 wb
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11
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) ∂3u
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+ (
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66
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+ Bs
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− 2

(
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12 + 2Ds
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) ∂4 wb

∂x2∂ y2

− Ds
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11
∂4 ws

∂x4
− 2

(
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12 + 2Hs
66

) ∂4 ws

∂x2∂ y2
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∂4 ws

∂ y4
+ As

55
∂2 ws

∂x2
+ As

44
∂2 ws

∂ y2
+ q = 0 (22d)

6. Analytical solutions for FG plates

Rectangular plates are generally classified according to the type of support used. This paper is concerned with the exact 
solution to Eqs. (22a) and (22d) for a simply supported FG plate. The following boundary conditions are imposed at the side 
edges:

v0 = wb = ws = 0,
∂ wb

∂ y
= ∂ ws

∂ y
= 0, Nx = 0, and Mb

x = Ms
x = 0 and x = 0 (23a)

u0 = wb = ws = 0,
∂ wb

∂x
= ∂ ws

∂x
= 0, N y = 0, and Mb

y = Ms
y = 0 and y = 0 (23b)

The external force according to Navier’s solution can be expressed as

q(x, y) =
∞∑

m=1

∞∑
n=1

qmn sin(λx) sin(μy) (24)

where λ = mπ/a and μ = nπ/b, m and n are mode numbers. For the case of a sinusoidally distributed load, we have

m = n = 1 and q11 = q0 (25)

where q0 represents the intensity of the load at the plate’s center.
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Table 1
Displacement models.

Model Theory Unknown 
variables

FSDPT First-order shear deformation theory [62] 5
PSDPT Parabolic shear deformation theory [49] 5
SSDPT Sinusoidal shear deformation plate theory [61] 5
Present Present higher-order shear deformation theory 4

Following the Navier solution procedure, we assume the following form of solution for (u, v , wb, ws), which satisfies 
the boundary conditions given in Eq. (21)⎧⎪⎪⎨

⎪⎪⎩
u
v

wb
ws

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

Umn cos(λx) sin(μy)

Vmn sin(λx) cos(μy)

Wbmn sin(λx) sin(μy)

W smn sin(λx) sin(μy)

⎫⎪⎪⎬
⎪⎪⎭ (26)

where Umn , Vmn , Wbmn , and W smn are arbitrary parameters. Eq. (15), in combination with Eq. (18), can be combined into a 
system of first-order equations as:

[K ]{�} = {F } (27)

where {�} and {F } denote the columns

{�}T = {Umn, Vmn, Wbmn, W smn}, and {F }T = {0,0,−qmn,−qmn} (28)

[K ] =

⎡
⎢⎢⎣

a11 a12 a13 a14
a12 a22 a23 a24
a13 a23 a33 a34
a14 a24 a34 a44

⎤
⎥⎥⎦ (29)

and the elements aij = a ji of the coefficient matrix [K ]. The elements of the symmetric matrix [K ] presented in Eq. (27) are 
given by

a11 = −(
A11λ

2 + A66μ
2)

a12 = −λμ(A12 + A66)

a13 = λ
[

B11λ
2 + (B12 + 2B66)μ

2]
a14 = λ

[
Bs

11λ
2 + (

Bs
12 + 2Bs

66

)
μ2]

a22 = −(
A66λ

2 + A22μ
2)

a23 = μ
[
(B12 + 2B66)λ

2 + B22μ
2]

a24 = μ
[(

Bs
12 + 2Bs

66

)
λ2 + Bs

22μ
2]

a33 = −(
D11λ

4 + 2(D12 + 2D66)λ
2μ2 + D22μ

4)
a34 = −(

Ds
11λ

4 + 2
(

Ds
12 + 2Ds

66

)
λ2μ2 + Ds

22μ
4)

a44 = −(
Hs

11λ
4 + 2

(
Hs

12 + 2Hs
66

)
λ2μ2 + Hs

22μ
4 + As

55λ
2 + As

44μ
2) (30)

7. Numerical results and discussions

In this section, the present theory is applied to the static analysis of FG plates. The Poisson ratio is fixed at ν = 0.3, and 
comparisons are made with available solutions. The different modes of displacement are presented in Table 1; a comparison 
with the numerical case studies is used to check the accuracy of the present analysis. The FG plate is supposed to be 
aluminum and alumina with the following material properties:

• metal (aluminum, Al): Em = 70 · 109 N/m2; ν = 0.3
• ceramic (alumina, Al2O3): Ec = 380 · 109 N/m2; ν = 0.3.

The various non-dimensional parameters used are: w = 10hE0
a2q0

w( a
2 , b2 ), σ x = 10h2

a2q0
σx(

a
2 , b2 , h2 ), τ xz = h

aq0
τxz(0, b2 , 0), thickness 

coordinate z = z/h.
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Table 2
Comparative study of deflections and dimensionless axial stress of FG plate for dif-
ferent volume fraction values and porosity coefficient α = 0.

Theory P w σ x τ xz

FSDPT [62] Ceramic 0.07791 1.97576 0.15915
PSDPT [49] 0.07791 1.99432 0.23857
SSDPT [61] 0.07790 1.99550 0.24618
Present 0.08122 1.99550 0.24618

FSDPT [62] 1 0.19609 0.93765 0.26880
PSDPT [49] 0.19604 0.94370 0.33433
SSDPT [61] 0.19604 0.94407 0.34103
Present 0.19703 0.94407 0.34103

FSDPT [62] 2 0.28661 1.36934 0.34892
PSDPT [49] 0.28490 1.37662 0.40919
SSDPT [61] 0.28479 1.37702 0.41426
Present 0.28479 1.37702 0.41426

FSDPT [62] 3 0.33851 1.61758 0.41003
PSDPT [49] 0.33624 1.62552 0.47133
SSDPT [61] 0.33606 1.62591 0.47502
Present 0.33606 1.62591 0.47502

FSDPT [62] 4 0.36738 1.75385 0.45817
PSDPT [49] 0.36474 1.76229 0.52541
SSDPT [61] 0.36452 1.76267 0.52827
Present 0.36452 1.76267 0.52827

FSDPT [62] 5 0.38402 1.83097 1.83097
PSDPT [49] 0.38116 1.83989 0.57337
SSDPT [61] 0.38090 1.84026 0.57591
Present 0.38090 1.84026 0.57591

FSDPT [62] 10 0.40768 1.94564 1.94564
PSDPT [49] 0.40799 1.95075 0.69891
SSDPT [61] 0.40790 1.95096 0.70450
Present 0.40703 1.95703 0.75376

FSDPT [62] Metal 0.41919 1.97576 1.97576
PSDPT [49] 0.42164 1.98354 0.19984
SSDPT [61] 0.42172 1.98392 0.20359
Present 0.42290 1.99550 0.24618

As a first example, consider the deflections and the dimensionless stresses (normal and transverse shear) of the square 
FG plate (a/h = 10 and a = b) for different values of the volume fraction P . The present predictions (present high-order 
theory) are compared with those obtained using the first-order (FSDPT) [62], parabolic (PSDPT) [49], and sinusoidal (SSDPT) 
shear deformation theories [61]. Table 2 includes the porosity factor α.

It should be noted that all theories (FSDPT, PSDTT and SSDPT) were obtained based on the sinusoidal variation of both 
in-plane and transverse displacements across the thickness. It can be seen that SSDPT presented sinusoidal theory with five 
unknowns. The present results in the non-porous case (α = 0) are almost more accurate than those obtained using other 
theories. Also, the present results are satisfactorily compared with other solutions, even for thicker plates. This evidences 
that the use of new assumption given in Eq. (6) has a maximal effect on the accuracy of the results. The stresses are 
compared with those of other theories. Generally, the present theory (with α = 0) gives a good prediction of in-plane 
normal stress as compared with different models (PSDTT and SSDPT). However, the transverse normal stress is in good 
agreement with the SSDPT solution.

Finally, additional results of deflections, normal stresses and transverse shear stresses are reported in Tables 3, 4, and 5, 
respectively, for porous and non-porous FG plates (α = 0, 0.1, 0.2, and 0.3). The inclusion of porosity parameter increases 
the deflection and the transverse shear stresses, and decreases the axial stress for different values of the volume-fraction-
graded-factor P .

Fig. 2 shows the increase in dimensionless displacements, which is explained by the influence of material stiffness, i.e. 
an increase in the value of porosity (α) leads to a decrease in the modulus of elasticity of the plate. An increase in the 
side-to-thickness ratios (a/h) leads to an increase in the adimensional displacements. We can also say that the thickness 
ratio (a/h) has a considerable effect on the dimensionless displacement.

In Fig. 3, we study the variations of the adimensional displacement as a function of the geometric ratio (a/b) for different 
values of the porosity coefficient with a ratio of equal thickness (a/h = 10) and a material index P = 2. In addition, the 
deflection of the non-porous (α) and non-porous (α = 0) FG plate decreases as the aspect ratio increases, whereas it may 
be unchanged as the side-to-thickness ratio increases.
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Table 3
Effects of the volume fraction and porosity coefficient of deflections in a 
square FG plate.

P α = 0.0 α = 0.1 α = 0.2 α = 0.3

Ceramic 0.07790 0.08122 0.08482 0.08877
1 0.19604 0.21876 0.24749 0.28499
2 0.28479 0.33573 0.40910 0.52402
3 0.33606 0.40946 0.52436 0.73018
4 0.36452 0.45243 0.59694 0.87922
5 0.38090 0.47780 0.64172 0.97968
Metal 0.42290 0.34624 0.29310 0.25410

Table 4
Effects of the volume fraction and porosity coefficient on the dimensionless 
axial stress in a square FG plate.

P α = 0.0 α = 0.1 α = 0.2 α = 0.3

Ceramic 1.99550 1.99550 1.99550 1.99550
1 0.94407 0.82120 0.66571 0.46260
2 1.37702 1.26609 1.10626 0.85584
3 1.62591 1.54558 1.41992 1.19499
4 1.76267 1.70732 1.61657 1.43973
5 1.84026 1.80177 1.73700 1.60414
Metal 1.99550 1.99550 1.99550 1.99550

Table 5
Effects of volume fraction and porosity coefficient on the dimensionless 
transverse shear stresses in a square FG-plate.

P α = 0.0 α = 0.1 α = 0.2 α = 0.3

Ceramic 0.24618 0.24618 0.24618 0.24618
1 0.34103 0.34764 0.35539 0.36466
2 0.41426 0.42864 0.44641 0.46953
3 0.47502 0.49672 0.52408 0.56107
4 0.52827 0.55720 0.59391 0.64400
5 0.57591 0.61219 0.65850 0.72175
Metal 0.24618 0.24618 0.24618 0.24618

Fig. 2. Variation of the dimensionless displacement as a function of the thickness ratio a/h for different values of the porosity factor α.
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Fig. 3. Variation of the adimensional displacement as a function of the geometric ratio a/b for different values of the porosity factor α.

Fig. 4. Through-the-thickness distribution of the axial stress σ x of the FGM plates for different values of the porosity factor α.

Fig. 4 displays the variation of the axial stress across the plate thickness in FGM. The effect of the porosity of the FGM 
plate was taken into account by means of the introduction of coefficient α. Four values are therefore retained (α = 0, 0.1, 0.2, 
and 0.3). It can be seen that an increase in the index of porosity (α) leads to an increase in stress. This can be justified by 
the fact that the porosity reduces the rigidity of the plate. The stresses are tensile above the median plane and compressive 
below the median plane. It is important to observe that the maximum stress depends on the value of the exponent of the 
volume fraction P .

Shear stresses are plotted through the transverse thickness distribution in Fig. 5. It can be seen from this figure that the 
porosity effect has a remarkable direct influence starting at a point on the median plane of the FG plate, which decreases 
the transverse shear stress.

8. Conclusions

A new simple theory of high-order shear and normal deformation theory is developed for ceramic/metal functionally 
graded plates. This theory satisfies the nullity of the stresses at the upper and lower surfaces of the plate without using 
the shear correction factor, contrary to other theories. The law of the modified mixture covering the porosity phases is used 
to roughly describe the variations with porosity of the properties of FG plates. The effects of various parameters, such as 
thickness ratio, gradient index, and volume fraction of porosity on the flexion of FG ceramic–metal plates are all discussed. 
Many validation examples are reported, and the numerical results obtained with the present high-order shear plate theory 
are accurate for predicting the static analysis of non-porous plates. In addition, the present theory gave control results that 
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Fig. 5. Through-the-thickness distribution of transverse shear stress τ xz of FGM plates for different values of the porosity factor α.

can be used to evaluate various plate theories, and also to compare the results of the latter with the those obtained by 
other methods (FSDPT, PSDPT and SSDPT). From this work, it can be inferred that the present theory is a simple allowing 
one to solve the problem of the mechanical behavior of FG plates with porosity caused by press manufacturing defects.
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