
C. R. Mecanique 347 (2019) 91–100
Contents lists available at ScienceDirect

Comptes Rendus Mecanique

www.sciencedirect.com

Bifurcation indicator for geometrically nonlinear elasticity 

using the Method of Fundamental Solutions

Omar Askour a, Abdeljalil Tri b,c, Bouazza Braikat a,∗, Hamid Zahrouni d,e, 
Michel Potier-Ferry d,e

a Laboratoire d’ingénierie et matériaux (LIMAT), Faculté des sciences Ben M’Sik, Hassan II University of Casablanca, BP 7955, Sidi Othman, 
Casablanca, Morocco
b Institut supérieur des études maritimes (ISEM), Km 7, route d’El Jadida, Casablanca, Morocco
c Laboratoire de mécanique, Faculté des sciences Aïn Chok, Hassan II University of Casablanca, Casablanca, Morocco
d Université de Lorraine, CNRS, Arts et Métiers ParisTech, LEM3, 57000 Metz, France
e DAMAS, Laboratory of Excellence on Design of Alloy Metals for low-mAss Structures, Université de Lorraine, 57000 Metz, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 16 November 2018
Accepted 7 January 2019
Available online 21 January 2019

Keywords:
Bifurcation indicator
Method of Fundamental Solutions
Asymptotic Numerical Method
Nonlinear computation

In the present work, we propose a numerical analysis of instability and bifurcations for 
geometrically nonlinear elasticity problems. These latter are solved by using the Asymptotic 
Numerical Method (ANM) associated with the Method of Fundamental Solutions (MFS). 
To compute bifurcation points and to determine the critical loads, we propose three 
techniques. The first one is based on a geometrical indicator obtained by analyzing the 
Taylor series. The second one exploits the properties of the Padé approximants, and the 
last technique uses an analytical bifurcation indicator. Numerical examples are studied to 
show the efficiency and the reliability of the proposed algorithms.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Bifurcation and buckling are instability phenomena very common in structural mechanics, which occur when the load 
reaches a critical value, leading to large deformations or to collapse of the structure. Consequently, it is necessary to develop 
numerical tools to predict this critical loading.

The main objective of this work consists in associating the Method of Fundamental Solutions (MFS) with the Asymptotic 
Numerical Method (ANM) to solve large-strain elasticity problems and to compute bifurcation points.

ANM consists in expanding the unknowns of nonlinear problems into Taylor series with respect to a path parameter. 
This allows one to transform the nonlinear problem into a sequence of linear ones that can be solved by using the classical 
finite element method or a meshless method [1–3]. A large part of the asymptotic solution is obtained analytically with 
high accuracy inside the validity range of the Taylor series. To improve this validity range, Padé approximants can be used. 
It consists in transforming the polynomial series into rational fractions having the same denominator [2,4]. To compute 
the entire response curve, a continuation procedure is needed to obtain the solution in a step-by-step manner. The step 
length, computed a posteriori, is adaptive and depends on the local nonlinearity of the response branch [1]. ANM has 
been successfully applied in nonlinear solid mechanics and fluid mechanics [3,5] and extended to instability analysis in 
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solid and fluid mechanics by using bifurcation indicators well adapted to ANM. Three techniques are used to detect the 
bifurcation points. The first method permits to determine the singular points geometrically by localizing zones of asymptotic 
step accumulations. The root of the denominator of the Padé approximants represents the second technique of computing 
bifurcation. The third method consists in computing a scalar bifurcation indicator, along the nonlinear solution branches, 
which is null at the singular points. Generally, the ANM algorithm is associated with the classical finite element method. 
Recently, this technique has been combined with a meshless method and particularly with the Method of Fundamental 
Solutions [1,6].

MFS is a meshless method introduced by Kupradze and Aleksidze [7]. It has been proven to be an effective method 
for problems where the fundamental solutions are available [8]. For non-homogeneous problems, Radial Basis Functions 
(RBF) are used [9]. For elasticity problems, Marin et al. [10] have applied MFS to solve two-dimensional linear Cauchy 
problem. Karageorghis et al. [11] have studied the inverse problem of the coupled thermo-elasticity in the static regime. 
Naffa et al. [12] have used a classical iterative method associated with RBF to solve large deflection problem of thin plates. 
More recently, elastic-plastic deformation of plate has been studied by combining the incremental technique with meshless 
methods [13]. Askour et al. [6] have associated MFS with ANM to solve nonlinear elasticity problems. They have shown that 
this technique is efficient to compute nonlinear response curves. The present work represents an extension of this algorithm 
to predict instability phenomena in structural mechanics. We are mainly interested in buckling by applying the bifurcation 
indicators presented before. We note that we have already presented these algorithms for eigenvalue problems governed by 
nonlinear Poisson’s equations [2].

The present paper is organized as follows. In section 2, governing equations of nonlinear elasticity problem are formu-
lated. In section 3, the principle of ANM is presented and applied to the geometrically nonlinear elasticity problem. Section 4
details bifurcation indicators based on Taylor series. Section 5 explains how to use Padé approximants to compute bifurca-
tion points. In section 6, we present the principle of MFS and its application to the nonlinear elasticity problem. In the last 
section, numerical examples are studied to show the effectiveness of the proposed algorithm and the work is achieved by a 
conclusion.

2. Problem formulation

We consider a domain � with an external boundary ∂� describing the structure at a reference state. This structure 
is subjected to prescribed displacements U d and traction T d on the disjointed complementary parts of the boundary 
∂�u (Dirichlet boundaries) and ∂� f (Neumann boundaries). Large strains are considered and a Lagrangian formulation 
is adopted. The equilibrium equations by neglecting the body forces associated with the boundary conditions are defined as 
follows:⎧⎪⎪⎨⎪⎪⎩

∇ · � = 0 in �

� · n = λT d over ∂� f

U = U d over ∂�u

(1)

where � is the first Piola–Kirchhoff stress tensor associated with a point in its reference configuration, n is the outward 
unit normal vector to ∂�, λ is a scalar parameter, and U denotes the displacement field. Moreover, we assume that the 
material is elastic, homogeneous, and isotropic, that the constitutive relation is linear. We take into account the geometric 
nonlinearities that can be written under the following form:

S = C : γ (2)

where C represents the fourth-order elastic tensor, S is the second Piola–Kirchhoff stress tensor, which is linked to the first 
Piola–Kirchhoff stress tensor � by the relation:

� = F S (3)

the tensor γ represents the Green–Lagrange strain tensor defined by:

γ = 1

2
(t F F − I) (4)

such that F is the transformation gradient tensor defined by F = ∇U + I and I is the second-order identity tensor. Equations 
(3) and (4) can be written under the following simple form:{

γ = Lγ (U ) +Qγ (U , U )

� = L�(S) +Q�(U , S)
(5)

where L∗(·) represents a linear operator and Q∗(·, ·) a quadratic one. Equations (1), (2) and (5) constitute the strong for-
mulation of the boundary value problem. We collect all the unknowns into a single unknown vector {U} = t<�, S, γ , U >.
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3. Computation of the solution branch by ANM

The basic idea of ANM consists in searching the solution path to the nonlinear problem (1), (2) and (5) under an 
asymptotic expansion form with respect to a control parameter a. This expansion is developed in the neighborhood of a 
known regular solution (U0, λ0),⎧⎨⎩ U

λ

⎫⎬⎭ =
⎧⎨⎩ U0

λ0

⎫⎬⎭ +
p∑

k=1

ak

⎧⎨⎩ Uk

λk

⎫⎬⎭ (6)

where p is the truncation order of the asymptotic expansions. The control parameter a can be defined as:

a =< U − U0, U1 > + (λ − λ0)λ1 (7)

with < ·, · > denotes the Euclidean scalar product. Equation (7) provides an adaptive path parameter a, which can be 
identified with an arc-length parameter. By substituting (6) into (1), (2), (5) and (7) and equating the coefficients of the 
same power of a, one transforms the nonlinear problem into a sequence of linear ones as follows.

Order 1:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ1 = Lγ (U1) + 2Qγ (U0, U1) in �

S1 = C : γ1 in �

�1 = L�(S1) +Q�(U0, S1) +Q�(U1, S0) in �

L∇
t (U1) = 0 in �

Lf
t(U1) = λ1T d over ∂� f

U1 = 0 over ∂�u

< U1, U1 > +λ2
1 = 1 in �

(8)

Order k (with 2 ≤ k ≤ p):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γk = Lγ (Uk) + 2Qγ (U0, Uk) + ∑k−1
r=1 Qγ (Ur, Uk−r) in �

Sk = C : γk in �

�k = L�(Sk) +Q�(U0, Sk) +Q�(Uk, S0) + ∑k−1
r=1 Q�(Ur, Sk−r) in �

L∇
t (Uk) = Q∇

k in �

Lf
t(Uk) = λk T d +Qf

k over ∂� f

Uk = 0 over ∂�u

< Uk, U1 > +λkλ1 = 0 in �

(9)

The tangent operators are denoted by L∇
t and Lf

t , which depend on the initial solution U0, the operators denoted by Q∇
k

and Qf
k are the quadratic ones, which depend on the solutions computed at the previous orders. Finally, all vectors Uk and 

the scalar parameters λk of series (6) can be determined by solving the system of Eqs. (8) and (9) at each truncation order. 
We recall that all the linear problems (8) and (9) have the same tangent operator and different forms of right-hand sides. 
In fact, only one matrix decomposition in each ANM-step is needed. The expressions of these operators are given in the 
appendix.

The validity range of the series (6) is limited by the convergence radius. To obtain the whole solution branch, a contin-
uation technique is used. It consists in computing the step length of the solution automatically by the following formula 
[5]:

amax =
(
ε

‖U1‖
‖U p‖

) 1

p − 1 (10)

Here, ε is a small number and the norm ‖ · ‖ in (10) is chosen as the Euclidean norm. The solution {{U(amax)}, λ(amax)}
is a new starting solution for the following step. This technique allows us to compute a posteriori the step length of the 
solution, which is naturally adaptive and depends on the local nonlinearity of the considered problem.

Indeed, in a neighborhood of a bifurcation point, we observe step accumulations that are considered as geometrical 
indicators of singular points. In the following sections, we will be interested in developing a second indicator, well adapted 
to the framework of ANM, and a third one based on Padé approximants.
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4. Bifurcation indicator based on Taylor series

In this section, we define a scalar bifurcation indicator well adapted to ANM, which is obtained by introducing a ficti-
tious perturbation in the problem. By evaluating this indicator through the equilibrium branch, the critical points and the 
associated bifurcation modes can be determined.

Let δμ fμ be a fictitious perturbation force applied to the structure at a given deformed state, where fμ is a random 
function and δμ is the unknown intensity of the perturbation. The primary solution U is then perturbed by the fluctuation 
δU. By superposing the perturbation and the applied load, the fictitious perturbed equilibrium is described by

⎧⎪⎪⎨⎪⎪⎩
∇ · (� + δ�) = 0 in �

(� + δ�) · n = λT d + δμ fμ over ∂� f

(U + δU ) = U d over ∂�u

(11)

Considering the equilibrium state and taken into account Eq. (2) and (5) and neglecting the quadratic terms, we obtain 
the following perturbed problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δγ = Lγ (δU ) + 2Qγ (U , δU ) in �

δS = C : δγ in �

δ� = L�(δS) +Q�(U , δS) +Q�(δU , S) in �

∇ · δ� = 0 in �

δ� · n = δμ fμ over ∂� f

δU = 0 over ∂�u

(12)

To obtain a well-posed problem, the following equation is added to system (12):

< δU − δU0, δU0 >= 0 (13)

The initial fluctuation δU0 is a solution to the perturbed problem for δμ = 1. Bifurcation points correspond to the zero of 
the function δμ(λ). Unknowns of the resulting system (δU and δμ) are developed in Taylor series according to the path 
parameter a:

⎧⎨⎩δU

δμ

⎫⎬⎭ =
⎧⎨⎩ δU0

δμ0 = 1

⎫⎬⎭ +
p∑

k=1

ak

⎧⎨⎩δUk

δμk

⎫⎬⎭ (14)

where δU0 and δμ0 are the initial solution to the perturbed problem. By introducing Eqs. (6) and (14) into (12) and (13)
and by identifying according to the powers of a, we obtain a series of following linear problems.

Order 0:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δγ0 = Lγ (δU0) + 2Qγ (U0, δU0) in �

δS0 = C : δγ0 in �

δ�0 = L�(δS0) +Q�(U0, δS0) +Q�(δU0, S0) in �

L∇
t (δU0) = 0 in �

Lf
t(δU0) = δμ0 fμ over ∂� f

δU = 0 over ∂�

(15)
0 u



O. Askour et al. / C. R. Mecanique 347 (2019) 91–100 95
Order k (with 1 ≤ k ≤ p):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δγk = Lγ (δUk) + 2Qγ (U0, δUk) + ∑k
r=1 2Qγ (Ur, δUk−r) in �

δSk = C : δγk in �

δ�k = L�(δSk) +Q�(U0, δSk) +Q�(δUk, S0) + ∑k
r=1 Q�(Ur, δSk−r) +Q�(δUk−r, Sr) in �

L∇
t (δUk) = δQ∇

k in �

Lf
t(δUk) = δμk fμ + δQf

k over ∂� f

δUk = 0 over ∂�u

< δUk, δU0 > = 0 in �

(16)

The vectors Uk are already determined during the computation of the equilibrium branch. It will be noted that the 
resultant linear problems (15) and (16) have the same tangent operators (L∇

t , Lf
t ) computed for the equilibrium branch 

(8) and (9) and differ only by their right-hand sides (δQ∇
k , δQf

k), which are given in the appendix. The bifurcation points 
correspond to the values of the parameter λ = λcritical for which the function δμ(λcritical) vanishes. The bifurcation mode is 
given by the corresponding vector δU (λcritical).

5. Bifurcation indicator based on Padé approximants

The Padé approximants [14] consist in transforming polynomial series into rational fractions, which permits to improve 
the validity range of the series. Indeed, Eq. (6) is replaced by the following representation:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{
U

λ

}
=

{
U0

λ0

}
+ ∑p−1

k=1 fk[a]ak

{
Uk

λk

}

fk[a] = P p−k−1[a]
P p−1[a]

(17)

where fk[a] are rational fractions admitting the same denominator and Pk[a] is a polynomial in a of degree k. This repre-
sentation has been introduced in reference [4]. A simple method to detect bifurcation points can be established by analyzing 
a posteriori the rational representation (17). It has been early recognized that a bifurcation point corresponds to a real root 
of the denominator of the fraction fk[a] [2].

6. The Method of Fundamental Solutions

In this section, we propose to discretize linear Eqs. (8), (9), (15), and (16) using the MFS–RBF method [6]. The principle 
of this method consists in searching the unknowns of the problem in the form of a superposition of homogeneous and 
particular solutions. The homogeneous solution is defined as a linear combination of the fundamental solutions in terms of 
the source points located outside the domain. The computation of a particular solution is based on Radial Basis Functions 
(RBF) in terms of the collocation points. The Analogous Equations Method (AEM) [15] is used to transform the resulting 
linear Eqs. (8), (9), (15), and (16) into a system of equations for which the linear operator of two-dimensional elasticity is 
available [2]. To facilitate the comprehension, we use the MFS–RBF to solve only the system (9), which has the same generic 
form as the problems (8), (15), and (16). For that, we search the unknowns U as follows:

{U (Mi)} = ∑Ns
j=1

[
Ûhh(Mi, Q j)

]{
α jhh

β jhh

}
+ ∑N

j=1

[
Û par(Mi, M j)

]⎧⎨⎩α
par
j

β
par
j

⎫⎬⎭ (18)

where Q j(X j
1, X

j
2) and Mi(xi

1, x
i
2) are respectively the coordinates of the Ns source points and the coordinates of the N

collocation points.
[Ûhh(Mi, Q j)] represents the matrix of fundamental solutions to the two-dimensional linear elasticity operator. These 

fundamental solutions are given by the following formula [10]:

Ûklhh(ri j) = −r2
i j

8πμ(1 − ν)

(
(3 − 4ν) log(ri j)r2

i jδkl − (xi
k − X j

k)(xi
l − X j

l )
)

(19)

where k and l vary between 1 and 2, and ri j represents the distance between the collocation point Mi and the source 
points Q j taken on a fictitious boundary  f containing the domain �, whereas the matrix [Û par(Mi, M j)] of the particular 



96 O. Askour et al. / C. R. Mecanique 347 (2019) 91–100
Fig. 1. Buckling of a thin plate.

solution is built from the Radial Basis Functions [16]. The efficiency and accuracy of the approximation are conditioned by 
the judicious choice of the Radial Basis Function (RBF). Here, the multi-quadrics RBF type is considered. Thereafter, it is 
proposed to rewrite expression (18) in a compact form in which the matrices of the particular and homogeneous solutions 
are concatenated in a single matrix [Û ] and the coefficients of linear combinations α jhh, β jhh, αpar

j and βpar
j are collected 

into a single vector {X} in the following form:

{U (Mi)} = [
Û (Mi)

] {X} (20)

By introducing the approximation (20) into the set of Eqs. (9), we obtain a linear algebraic system at a truncation order k
(2 ≤ k ≤ p), which is written under the following form:

[KT ] {Xk} = λk {F } + {
F nl

k

}
(21)

where [KT ], F nl
k and F are respectively given by:

[KT ] =

⎡⎢⎢⎣
L∇

t ([Û (Mi)])
Lf

t([Û (Mi)])
[Û (Mi)]

⎤⎥⎥⎦ ; {F nl
k } =

⎧⎪⎪⎨⎪⎪⎩
{Q∇

k }
{Qf

k}
{0}

⎫⎪⎪⎬⎪⎪⎭ ; {F } =

⎧⎪⎪⎨⎪⎪⎩
{0}
{T d}
{0}

⎫⎪⎪⎬⎪⎪⎭ (22)

We denote by Nf the number of collocation points on the boundary ∂�. The system (21) is of order 2((N + Nf) × (Ns +
N)). To have an unique solution, Ns and Nf must satisfy the following inequality Ns ≤ Nf . Generally, we assumed that the 
number of source points Ns is equal to the number of collocation points on the boundary Nf .

7. Numerical results and discussions

The first example deals with buckling of an elastic and homogeneous thin plate having a length L = 100 mm, a width 
l = 10 mm, and a thickness h = 1 mm. The characteristics of the material are Young’s modulus E = 10 GPa and Poisson’s 
ratio ν = 0.3. The plate is embedded at its left edge and subjected to an axial compressive load λT d as shown in Fig. 1. In 
this study, we are interested in the first bifurcated branch, which is symmetric and stable.

For numerical data, we adopt N = 467 collocation points arbitrarily distributed on the domain occupied by the plate 
and Ns = 113 source points on the fictitious boundary, which is considered as a circle of radius R = 70 mm and of center 
(x1 = 50, x2 = 0). The optimal shape parameter of the multi-quadrics RBF (

√
r2 + c2) is given by the best residual. According 

to numerical tests, we chose the shape parameter as c = 0.03. We use the TSVD method as a regularization method with 
a GCV-type criterion for the choice of the optimal regularization parameter. In a recent paper [6], we have analyzed and 
discussed the influence of different parameters of the proposed algorithm (MFS–ANM) as well as different regularization 
methods. The Asymptotic Numerical Method has been applied with a truncation order p = 15 and a tolerance parameter 
ε = 10−6. The results of the MFS–ANM algorithm will be compared with those given by FEM–ANM.

For the analysis of MFS–ANM parameters, the reader can refer to the work of Tri et al. [2]. To assess the validity of 
the proposed algorithm, the results of MFS–ANM are compared to those obtained with finite element code FEM–ANM. In 
Figs. 2a and 2b, the response curves are reported at point (x1 = 100, x2 = 5) for components U1 and U2, respectively. To 
follow the bifurcated branch, a small perturbation load is introduced in the initial problem. In Fig. 2a, one observes two 
branches. The first one corresponds to the fundamental branch that switches with the bifurcated one in the neighborhood 
of the bifurcation point. In this area appear step accumulations of the continuation asymptotic solution, which represents 
a geometrical indicator of the bifurcation point. The FEM–ANM algorithm requires a time CPU greater than this of the 
proposed algorithm MFS–ANM to compute the whole solution. For this solution, the FEM–ANM algorithm requires a CPU 
time 729.22 s, but the MFS–ANM algorithm only requires 97.32 s. The bifurcation point is then located geometrically and 
corresponds to the critical load λc = 20.50. Since the bifurcation is symmetrical, to obtain the two bifurcated branches one 
change the sign of the perturbation load. Indeed, in Fig. 2b, these two branches are separated near the critical value.

This critical point can also be computed by using the bifurcation indicator given by Eq. (11). To this end, we introduce a 
random fictitious perturbation force fμ given in Eq. (11). The variations of the scalar function δμ versus the load parameter 
λ are reported in Fig. 3 for different truncation orders of the Taylor series. We observe that the three curves are null inside 
their validity range and for λc = 20.50, which correspond to the value obtained by using the geometrical indicator described 
previously.
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Fig. 2. Solution branches at point (x1 = 100, x2 = 5) by the MFS–ANM–Continuation technique and by FEM–ANM–Continuation technique.

Fig. 3. Bifurcation indicator δμ, along the fundamental branch, as a function of the load parameter λ.

Table 1
Bifurcation indicator using Taylor series and the denominator of the Padé approximants for 
different truncation orders.

p = 5 p = 10 p = 15

ε = 10−2 Bifurcation indicator by Taylor series 20.5089 20.5087 20.5088
Bifurcation indicator by Padé approximants 20.4966 20.4966 20.4966

ε = 10−6 Bifurcation indicator by Taylor series 20.5089 20.5087 20.5088
Bifurcation indicator by Padé approximants 20.4966 20.4966 20.4966

The second indicator is based on Padé approximants. Indeed, by transforming the Taylor series into rational fractions, 
one obtains directly the bifurcation point by computing the first real root denominator of these fractions [2]. In Table 1, we 
report the critical load obtained by the polynomial and the Padé approximants indicators for different truncation orders p
and different accuracy parameters ε. We remark that, for this example, the critical load is not sensitive to these parameters. 
In other words, the indicator based on the Taylor series (14) and the pole of the Padé approximants (17) give the same 
value as the geometrical one. This result confirms the effectiveness of our algorithms in computing bifurcation points.

We consider a second example, which deals with the buckling of a simple supported plate subjected to axial compres-
sion as shown in Fig. 4. For symmetry reasons, only a half of the structure is considered. The three techniques to detect 
bifurcations are applied.

In Fig. 5a, we have plotted the evolution of the displacement U2 versus the load parameter λ. A numerical solution 
obtained with the proposed MFS–ANM algorithm is compared with the FEM–ANM one. The bifurcation point is localized 
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Fig. 4. Buckling of a thin plate subjected to compressive load and its numerical model.

Fig. 5. Solution branches at point (x1 = 0, x2 = 5) by the MFS–ANM–Continuation technique and by FEM–ANM–Continuation technique. Bifurcation indicator 
δμ(λ).

Table 2
Bifurcation indicator using series expansion and the denominator of Padé approximant for dif-
ferent truncation orders.

p = 5 p = 10 p = 15

Bifurcation indicator by Taylor series 20.3885 20.3886 20.3887
Bifurcation indicator by Padé approximants 20.3795 20.3795 20.3795

geometrically by step accumulations. In Fig. 5b, the bifurcation indicator is computed with high accuracy by Taylor series 
which vanishes at the critical load λ = 20.38. This value is confirmed by computing the Padé approximants (see Table 2).

These results confirm that the three techniques associating MFS with ANM permit to detect accurately the bifurcation 
points. This algorithm can be used for complex structural buckling.

8. Conclusion

In this work, we have presented an extended algorithm associating the Method of Fundamental Solutions with the 
Asymptotic Numerical Method to compute bifurcation points for nonlinear elasticity problems. Three bifurcation indicators 
have been used. A geometrical indicator permits to localize the bifurcation by observing step accumulations on the solution 
branches. The second indicator is based on Padé approximants, where the bifurcation point corresponds to the real root 
of the denominator of the rational fraction. The last one consists in constructing a scalar indicator based on Taylor series 
that vanishes exactly at the bifurcation points. The effectiveness of these algorithms have been shown throughout two main 
examples. Work is in progress for other applications in solid and fluid mechanics.

Appendix A

Our study is limited to two-dimensional structures U ≡ {U } = t< U1 U2 >. Taking into account the non-symmetry of the 
first Piola–Kirchhoff stress tensor and the symmetry of the second one as well as of the Green–Lagrange strain tensor, we 
will have � ≡ {�} = t<�11 �22 �12 �21 >, S ≡ {S} = t< S11 S22 S12 > and γ ≡ {γ } = t<γ11 γ22 γ12 >. By introducing 
the generalized gradient vector {θ} which is written as {θ} = t< U1,1 U1,2 U2,1 U2,2 >, the operators of Eq. (5) are defined 
in the two-dimensional framework as follows:
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⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Lγ (U ) = [I I]{θ}

Qγ (U , U ) = 1

2
[A(θ)]{θ}

L�(S) = [I I I]{S}
Q�(U , S) = [B(θ)]{S}

(23)

The matrices [A(θ)], [B(θ)], [I I I] and [I I] are given by:

[A(θ)] =

⎡⎢⎢⎣
U1,1 0 U2,1 0

0 U1,2 0 U2,2

U1,2 U1,1 U2,2 U2,1

⎤⎥⎥⎦ ; [B(θ)] =

⎡⎢⎢⎢⎢⎢⎣
U1,1 0 U1,2

0 U2,2 U2,1

0 U1,2 U1,1

U2,1 0 U2,2

⎤⎥⎥⎥⎥⎥⎦ ;

[I I] =

⎡⎢⎢⎣
1 0 0 0

0 0 0 1

0 1 1 0

⎤⎥⎥⎦ ; [I I I] =

⎡⎢⎢⎢⎢⎢⎣
1 0 0

0 1 0

0 0 1

0 0 1

⎤⎥⎥⎥⎥⎥⎦ (24)

Here, Ui, j = ∂Ui
∂x j

(i, j = 1, 2) indicates the derivative of the component Ui with respect to the jth variable. The behavior 
matrix [C] for a homogeneous and isotropic elastic material can be written as follows:

[C] = E

1 − ν2

⎡⎢⎢⎣
1 ν 0

ν 1 0

0 0 1−ν
2

⎤⎥⎥⎦ (25)

where E = E , ν = ν for the plane stress condition and E = E/(1 − ν2), ν = ν/(1 − ν2) for the plane strain condition, E
and ν are respectively the Young’s modulus and the Poisson’s coefficient. The operators of Eqs. (8) and (9) are defined as 
follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

L∇
t (Uk) = [div] ((([I I I] + [B(θ0)])[C]([I I] + [A(θ0)]) + [̂S0]

) {θk}
)

Lf
t(Uk) = [N] ((([I I I] + [B(θ0)])[C]([I I] + [A(θ0)]) + [̂S0]

) {θk}
)

Q∇
k = −[div]

(
([I I I] + [B(θ0)])[C]∑k−1

r=1 Qγ (Ur, Uk−r) + ∑k−1
r=1 Q�(Ur, Sk−r)

)
Qf

k = −[N]
(
([I I I] + [B(θ0)])[C]∑k−1

r=1 Qγ (Ur, Uk−r) + ∑k−1
r=1 Q�(Ur, Sk−r)

)
(26)

the matrix [̂S0] contains the stress of the starting solution, defined as:

[̂S0] =

⎡⎢⎢⎢⎢⎢⎣
S0

11 S0
12 0 0

0 0 S0
12 S0

22

S0
12 S0

22 0 0

0 0 S0
11 S0

12

⎤⎥⎥⎥⎥⎥⎦ (27)

The operators δQ∇
k and δQf

k of Eq. (16) are defined as follows:⎧⎪⎨⎪⎩
δQ∇

k = −[div]
(

2([I I I] + [B(θ0)])[C]∑k−1
r=1 Qγ (Ur, δUk−r) + ∑k−1

r=1 Q�(Ur, δSk−r) +Q�(δUr, Sk−r)
)

δQf
k = −[N]

(
([I I I] + [B(θ0)])[C]∑k−1

r=1 Qγ (Ur, δUk−r) + ∑k−1
r=1 Q�(Ur, δSk−r) +Q�(δUr, Sk−r)

) (28)
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