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In this paper, an automated numerical simulation of the propagation of multiple cracks in a 
finite elastic plane by the distributed dislocation method is developed. Firstly, a solution to 
the problem of a two-dimensional finite elastic plane containing multiple straight cracks 
and kinked cracks is presented. A serial of distributed dislocations in an infinite plane 
are used to model all the cracks and the boundary of the finite plane. The mixed-mode 
stress intensity factors of all the cracks can be calculated by solving a system of singular 
integral equations with the Gauss–Chebyshev quadrature method. Based on the solution, 
the propagation of multiple cracks is modeled according to the maximum circumferential 
stress criterion and Paris’ law. Several numerical examples are presented to show the 
accuracy and efficiency of this method for the simulation of multiple cracks in a 2D finite 
plane.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Engineering materials or components usually contain cracks that were formed during manufacturing or localized damage. 
Those cracks may propagate until brittle fracture happens when the structures are subjected to cyclic loading. In this case, 
the analysis of the growth of fatigue cracks is very important to ensure the reliability of the structures. In linear fracture 
mechanics, the stress intensity factor of the crack is usually used to model crack propagation by successive crack growth. 
The propagation of multiple cracks is much more complicated than the propagation of a single crack because of interactions 
between the cracks. It requires the development and use of numerical methods to simulate the propagation of multiple 
cracks considering interactions between crack. Such an analysis requires an accurate knowledge of how the effects between 
each crack on the stress intensity factor and the fatigue propagation of the cracks.

The classic FEM is a typical numerical method to study the crack growth behavior for elastic materials [1–3]. However, 
the classic finite element method is not a good choice to perform the simulation of crack propagation for multiple cracks. 
Very good meshes are to be made near the crack tips to improve the accuracy of the stress intensity factors and remesh the 
structure after each crack extension. This needs a large computational cost, especially when the structure contains a large 
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number of cracks. Besides, the computational efficiency is not high, since this method cannot transform the two-dimensional 
problem to a one-dimensional problem.

Recently, the XFEM was wildly used to simulate the crack growth behavior of two-dimensional materials [4–6]. This 
method is a convenient computational tool for modeling crack growth compared with traditional FEM, since it allows for 
the modeling of cracks to be independent of the finite element mesh. However, XFEM still cannot reduce the problem’s 
dimensions and simplify the input requirements.

To solve the drawbacks mentioned above, we present a fully automatic simulation system of the growth of fatigue 
multiple cracks for a two-dimensional finite elastic plane based on the distributed dislocation method. The distributed 
dislocation method was firstly used to solve various kinds of crack problems in infinite mediums [7–13]. The principle of 
this method is to model the cracks by a serial of continuous dislocations in infinite media. Then the influence function 
of the dislocations is reduced to formulate a system of singular integral equations with Cauchy-type kernel. Moreover, the 
Gauss–Chebyshev quadrature method is usually used to deal with the singular integral equations. Some researchers also 
employed this method to study crack problems in a half plane [14–16]. This method was later extended to the study of 
cracking problems in a finite plane [17–19]. The boundaries of the plane were also modeled by the dislocations based on 
the boundary conditions. Besides, previous research also shows that the present method is very good at solving problems 
of multiple cracks and kinked cracks [15,16,19–21].

In this paper, firstly, we extend this method to solve the problem of a finite plane containing both multiple straight 
cracks and kinked cracks, which has never been reported. Then, based on the maximum circumferential stress criterion and 
Paris’ law, fatigue propagation of multiple cracks was realized. However, we need to mention that the crack closure effects 
are not considered in this study.

This paper is structured as follows: Section 2 presents a detailed description of the distributed dislocation method to 
solve the problem of multiple cracks in a finite plane. Section 3 introduces the fatigue growth of multiple cracks in the 
frame of this paper. Section 4 shows some typical numerical examples of the presented method. Finally, some conclusions 
are given in Section 5.

2. Description of the presented numerical method

2.1. Decomposition of the problem of a finite plane containing multiple straight cracks and kinked cracks

A finite plane containing ms straight cracks and mk kinked cracks is subjected to an arbitrary applied load on the 
boundary, as shown in Fig. 1. All the cracks can have arbitrary lengths and inclination angles. The i-th kinked crack has pi

branches and the boundary of the plane contains mb segments. This finite-plane problem, shown in Fig. 1, can be treated 
as a cut-out problem from an infinite plane [14]. The boundary also can be treated as a special kinked crack containing mb
branches. Now all the cracks can be modeled by continuous distributed dislocations in an infinite plane, as shown in Fig. 2. 
The original problem shown in Fig. 1 is essentially the same as that shown in Fig. 2, provided that, on the boundary, the 
stress matches the applied tractions and that the cracks lines are free of any traction:

• for cracks:

T (n̂) = σî ĵ(x̂i,0) · n ĵ(x̂i,0) =
[

σx̂x̂(x̂i,0) σx̂ ŷ(x̂i,0)

σx̂ ŷ(x̂i,0) σ ŷ ŷ(x̂i,0)

][
n1̂(x̂i,0)

n2̂(x̂i,0)

]

=
[

σx̂x̂(x̂i,0) σx̂ ŷ(x̂i,0)

σx̂ ŷ(x̂i,0) σ ŷ ŷ(x̂i,0)

][
0

1

]
=

[
0

0

]
(1)

• for the boundary:

T (n̂) = σî ĵ(x̂i,0) · n ĵ(x̂i,0) =
[

σ i
x̂x̂

(x̂i,0) σ i
x̂ ŷ

(x̂i,0)

σ i
x̂ ŷ

(x̂i,0) σ i
x̂ ŷ

(x̂i,0)

][
0

1

]
=

[
σ 0

x̂x̂
(x̂i,0)

σ 0
x̂ ŷ

(x̂i,0)

]
(2)

In Eqs. (1) and (2), x̂i is the local coordinate of a point on the i-th boundary branch as shown in Fig. 1, T (n̂) is the applied 
traction outward unit vector normal to the i-th boundary, n ĵ(x̂i, 0) is the direction cosine of the outer normal victor of 
the i-th crack line, σî ĵ(x̂i, 0) are the stresses induced by the distributed dislocations in the local coordinates for the i-th 
boundary, and σ 0

î
(x̂i, 0) are the applied stresses on the boundaries in the local coordinates for the i-th boundary. σ 0

1̂
, σ 0

2̂
are the applied stress along and perpendicular to the crack line, respectively.

Equations (1) and (2) can be rewritten under the following form for simplicity:

• for cracks:
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Fig. 1. A finite plane containing multiple straight and kinked cracks.

Fig. 2. A finite geometry as a cut-out from an infinite plane [14].⎧⎨
⎩

σ i
x̂ ŷ

(x̂i,0) = 0

σ i
ŷ ŷ

(x̂i,0) = 0
(3)

• for the boundary:⎧⎨
⎩

σ i
x̂ ŷ

(x̂i,0) = σ 0
1̂
(x̂i,0)

σ i
ŷ ŷ

(x̂i,0) = σ 0
2̂
(x̂i,0)

(4)

2.2. Dislocation influence function in an infinite elastic plane

Dislocation can be seen as a point source of strain or stress in this study. Then a crack can be modeled by a series of 
continuous dislocations along the crack line, if the unwanted tractions caused by the stresses of the dislocations along the 
crack line are canceled. So, in this part, we will firstly introduce the stress caused by an edge dislocation.

As shown in Fig. 3, an infinite plane contains an edge dislocation located at (ξ, η) with Burgers vector bx, by . A point 
located at (x, y) in the plane has an induced stress field induced by the dislocation and can be expressed as follows [10],⎡

⎢⎣
σxx(x, y)

σyy(x, y)

σ (x, y)

⎤
⎥⎦ = 2μ

π(κ + 1)

⎡
⎢⎣

Gxxx(x, y; ξ,η) G yxx(x, y; ξ,η)

Gxyy(x, y; ξ,η) G yyy(x, y; ξ,η)

G (x, y; ξ,η) G (x, y; ξ,η)

⎤
⎥⎦

[
bx(ξ,η)

by(ξ,η)

]
(5)
xy xxy yxy
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Fig. 3. Stresses induced due to the dislocation in an infinite plane.

where μ is the shear modulus of the plane, κ is Muskhelishvili’s constant, κ = (3 − ν)/(1 + ν) for plane stress, κ = 3 − 4ν

for plane strain. ν is Poisson’s ratio. Here the dislocation influence function Gijk can be expressed in the global coordinates 
system by the following equations [10]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Gxxx =
(

− 1

r2
1

)(
1 + 2x2

1

r2
1

)
; G yxx =

(
− x1

r2
1

)(
1 − 2x2

1

r2
1

)

Gxyy =
(

− x1

r2
1

)(
1 − 2x2

1

r2
1

)
; G yyy =

(
− 1

r2
1

)(
3 − 2x2

1

r2
1

)

Gxxy =
(

− x1

r2
1

)(
1 − 2x2

1

r2
1

)
; G yxy =

(
− 1

r2
1

)(
1 − 2x2

1

r2
1

)
(6)

where r2 = x2
1 + y2

1, x1 = x − ξ , y1 = y − η.

2.3. The governing integral equations

Based on previous research [10,15,19], we will deduce the governing integral equations for a finite plane containing 
multiple straight cracks and kinked cracks.

Consider a dislocation located at (ξ̂ j, 0) on the j-th crack branch. The induced stresses of the point (x̂i , 0) on the i-th 
crack branch can be given, based on Eq. (4), by:⎡

⎢⎢⎣
σ

i j
x̂x̂

(x̂i,0)

σ
i j
ŷ ŷ

(x̂i,0)

σ
i j
x̂ ŷ

(x̂i,0)

⎤
⎥⎥⎦ = 2μ

π(κ + 1)

⎡
⎢⎢⎢⎣

Gij
x̂x̂x̂

(x̂i,0; ξ̂ j,0) Gij
ŷx̂x̂

(x̂i,0; ξ̂ j,0)

Gij
x̂ ŷ ŷ

(x̂i,0; ξ̂ j,0) Gij
ŷ ŷ ŷ

(x̂i,0; ξ̂ j,0)

Gij
x̂x̂ ŷ

(x̂i,0; ξ̂ j,0) Gij
ŷx̂ ŷ

(x̂i,0; ξ̂ j,0)

⎤
⎥⎥⎥⎦

[
bx̂(ξ̂ j,0)

bŷ(ξ̂ j,0)

]
(7)

It is more convenient to calculate the stress intensity factor if all the equations are expressed in the local coordinates 
of every crack branch. The corresponding transformation rules from global coordinates system to local coordinates can be 
summarized as follows [17]:[

b j
x(ξ̂ j,0)

b j
x(ξ̂ j,0)

]
=

[
cos θ j − sin θ j

sin θ j cos θ j

][
bx̂(ξ̂ j,0)

bŷ(ξ̂ j,0)

]
(8)

⎡
⎢⎢⎢⎣

Gij
x̂x̂x̂

(x̂i,0; ξ̂ j,0) Gij
ŷx̂x̂

(x̂i,0; ξ̂ j,0)

Gij
x̂ ŷ ŷ

(x̂i,0; ξ̂ j,0) Gij
ŷ ŷ ŷ

(x̂i,0; ξ̂ j,0)

Gij
x̂x̂ ŷ

(x̂i,0; ξ̂ j,0) Gij
ŷx̂ ŷ

(x̂i,0; ξ̂ j,0)

⎤
⎥⎥⎥⎦

=
⎡
⎢⎣

cos2 θi sin2 θi sin 2θi

sin2 θi cos2 θi − sin 2θi

− sin 2θi
2

sin 2θi
2 cos 2θi

⎤
⎥⎦

⎡
⎢⎢⎣

Gij
xxx(x̂i,0; ξ̂ j,0) Gij

yxx(x̂i,0; ξ̂ j,0)

Gij
xyy(x̂i,0; ξ̂ j,0) Gij

yyy(x̂i,0; ξ̂ j,0)

Gij
xxy(x̂i,0; ξ̂ j,0) Gij

yxy(x̂i,0; ξ̂ j,0)

⎤
⎥⎥⎦

[
cos θ j − sin θ j

sin θ j cos θ j

]
(9)

where θi , θ j are the crack inclination angle in the global coordinates for the i-th crack branch and the j-th crack branch, 
respectively.
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Now, considering the j-th crack branch to be a distribution of continuous dislocation on the crack line, the induced 
stresses for (x̂i , 0) on the i-th crack branch due to the dislocations of crack branch j can be given by⎡

⎣ σ
i j
ŷ ŷ

(x̂i,0)

σ
i j
x̂ ŷ

(x̂i,0)

⎤
⎦ = 2μ

π(κ + 1)

a j∫
−a j

⎡
⎣ Gij

x̂ ŷ ŷ
(x̂i,0; ξ̂ j,0) Gij

ŷ ŷ ŷ
(x̂i,0; ξ̂i,0)

Gij
x̂x̂ ŷ

(x̂i,0; ξ̂ j,0) Gij
ŷx̂ ŷ

(x̂i,0; ξ̂ j,0)

⎤
⎦

[
Bx̂(ξ̂ j)

B ŷ(ξ̂ j)

]
dξ̂i (10)

where Bx̂(ξ̂ j) = dbx̂(ξ̂ j)/dξ̂ j , B ŷ(ξ̂ j) = dbŷ(ξ̂ j)/dξ̂ j are the density functions for the distributed dislocations along crack j
and a j is the half crack branch length of crack j.

Considering all the straight cracks, the kinked cracks and the boundary are modeled by dislocations, the induced stresses 
for (x̂i, 0) due to all the dislocations can be calculated by the principle of superposition,[

σ i
ŷ ŷ

(x̂i,0)

σ i
x̂ ŷ

(x̂i,0)

]
= 2μ

π(κ + 1)

M∑
j=1

a j∫
−a j

⎡
⎣ Gij

x̂ ŷ ŷ
(x̂i,0; ξ̂ j,0) Gij

ŷ ŷ ŷ
(x̂i,0; ξ̂ j,0)

Gij
x̂x̂ ŷ

(x̂i,0; ξ̂ j,0) Gij
ŷx̂ ŷ

(x̂i,0; ξ̂ j,0)

⎤
⎦

[
Bx̂(ξ̂ j)

B ŷ(ξ̂ j)

]
dξ̂ j (11)

where M = mb + ms + ∑mk
i=1 pi is the total number of crack branches shown in Fig. 1.

Inserting Eq. (11) into Eqs. (3) and (4) for cracks and boundary respectively, we obtain the governing integral equations,

• for cracks:[
σ i

ŷ ŷ
(x̂i,0)

σ i
x̂ ŷ

(x̂i,0)

]
= 2μ

π(κ + 1)

M∑
j=1

a j∫
−a j

⎡
⎣ Gij

x̂ ŷ ŷ
(x̂i,0; ξ̂ j,0) Gij

ŷ ŷ ŷ
(x̂i,0; ξ̂ j,0)

Gij
x̂x̂ ŷ

(x̂i,0; ξ̂ j,0) Gij
ŷx̂ ŷ

(x̂i,0; ξ̂ j,0)

⎤
⎦

[
Bx̂(ξ̂ j)

B ŷ(ξ̂ j)

]
dξ̂ j =

[
0

0

]
(12)

for boundary:[
σ i

ŷ ŷ
(x̂i,0)

σ i
x̂ ŷ

(x̂i,0)

]
= 2μ

π(κ + 1)

M∑
j=1

a j∫
−a j

⎡
⎣ Gij

x̂ ŷ ŷ
(x̂i,0; ξ̂ j,0) Gij

ŷ ŷ ŷ
(x̂i,0; ξ̂ j,0)

Gij
x̂x̂ ŷ

(x̂i,0; ξ̂ j,0) Gij
ŷx̂ ŷ

(x̂i,0; ξ̂ j,0)

⎤
⎦[

Bx̂(ξ̂ j)

B ŷ(ξ̂ j)

]
dξ̂ j =

[
σ 0

2̂
(x̂i,0)

σ 0
1̂
(x̂i,0)

]
(13)

Now, Eqs. (12) and (13) exactly provide the integral equations for the solution to the problem of a finite plane containing 
multiple straight and kinked cracks when tractions are applied on the boundary. We need to note that if displacements are 
given on the boundary, it can also be solved in a similar way, which will not be presented in this paper.

2.4. Numerical solution of integral equations

The Gauss–Chebyshev quadrature method can be used to solve the integral equations (12) and (13) [10,15].
Firstly, we need to transform the integral over the j-th crack branch 

[−a j,a j
]

to the standard interval [−1, 1] by making 
the following substitutions:{

ξ̂i = ξ̂ j(ŝ j) = a j ŝ j

x̂i = x̂i(t̂i) = ait̂i
(14)

Combining Eqs. (14), (12), and (13), we can write:

• for cracks:[
σ i

ŷ ŷ
(x̂i(t̂i),0)

σ i
x̂ ŷ

(x̂i(t̂i),0)

]
= 2μ

π(κ + 1)

M∑
j=1

a j

a j∫
−a j

⎡
⎣ Gij

x̂ ŷ ŷ
(x̂i(t̂i),0; ξ̂ j(ŝ j),0) Gij

ŷ ŷ ŷ
(x̂i,0; ξ̂ j(ŝ j),0)

Gij
x̂x̂ ŷ

(x̂i(t̂i),0; ξ̂ j,0) Gij
ŷx̂ ŷ

(x̂i(t̂i),0; ξ̂ j(ŝ j),0)

⎤
⎦[

Bx̂(ξ̂ j(ŝ j))

B ŷ(ξ̂ j(ŝ j))

]
dξ̂ j

=
[

0

0

]
(15)

• for the boundary:[
σ i

ŷ ŷ
(x̂i(t̂i),0)

σ i
x̂ ŷ

(x̂i(t̂i),0)

]
= 2μ

π(κ + 1)

M∑
j=1

a j

a j∫
−a j

⎡
⎣ Gij

x̂ ŷ ŷ
(x̂i(t̂i),0; ξ̂ j(ŝ j),0) Gij

ŷ ŷ ŷ
(x̂i,0; ξ̂ j(ŝ j),0)

Gij
x̂x̂ ŷ

(x̂i(t̂i),0; ξ̂ j,0) Gij
ŷx̂ ŷ

(x̂i(t̂i),0; ξ̂ j(ŝ j),0)

⎤
⎦[

Bx̂(ξ̂ j(ŝ j))

B ŷ(ξ̂ j(ŝ j))

]
dξ̂ j

=
[

σ 0
2̂
(x̂i(t̂i),0)

σ 0(x̂i(t̂i),0)

]
(16)
1̂
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Though multiple kinked cracks are included in this study, however, previous research [10,15] showed that ignoring the 
exact singularity at the kinks does not make large errors if our primary interest is on the dislocation densities of the crack 
tips.

So, we can decompose the dislocation density functions for the i-th crack in the following form,[
Bx̂(ξ̂i(ŝi))

B ŷ(ξ̂i(ŝi))

]
= 1√

1 − ŝ2
i

[
φi

x̂
(ŝi)

φi
ŷ
(ŝi)

]
(17)

where φi
x̂
(ŝi) and φi

ŷ
(ŝi) are the new unknown functions to be determined and −1 ≤ ŝi ≤ 1 is a non-dimensional parameter 

along i-th crack branch.
Assuming that the i-th crack branch has N integration points and that there are N − 1 collocation points, the integration 

and collocation points can be denoted by ŝi
t (t = 1, 2, . . . , N) and t̂ i

k (k = 1, 2, . . . , N − 1) respectively:

t̂i = cos

(
2i − 1

2N
π
)

, x̂k = cos

(
k

N
π
)

(18)

For straight cracks in the plane, the condition that there is no-net-dislocation on each embedded crack must be satisfied. 
So, the following two extra equations are needed to solve the algebraic equations:

N∑
i=1

φi
x̂(ŝi) = 0

N∑
i=1

φi
ŷ(ŝi) = 0

(19)

For each kinked crack, the extra equations can be established based on the connection conditions at the kinks and no-net 
dislocations for the overall crack [10,15],

pi∑
i=1

[
ai cos θi

N

N∑
i=1

φi
x̂(ŝi) − ai sin θi

N

N∑
i=1

φi
ŷ(ŝi)

]
= 0

pi∑
i=1

[
ai sin θi

nI

N∑
i=1

φi
x̂(ŝi) + ai sin θi

nI

N∑
i=1

φi
ŷ(ŝi)

]
= 0

(20)

cos θiφ
i
x̂i
(+1) − sin θiφ

i
ŷi

(+1) = cos θi+1φ
i+1
x̂i+1

(+1) − sin θi+1φ
i+1
ŷi+1

(+1)

sin θiφ
i
x̂i
(+1) + cos θiφ

i
ŷi

(+1) = sin θi+1φ
i+1
x̂i+1

(+1) + cos θi+1φ
i+1
ŷi+1

(+1)
(21)

where pi is the total number of branches of the kinked crack containing the i-th crack, θi is the crack angle of the i-th 
crack in global coordinates. φ(+1), φ(−1) can be determined by [10]

φ(+1) =
N∑

i=1

sin((2i − 1)(2N − 1)π/(4N))

sin((2i − 1)/(4N))
φ(si)

φ(−1) =
N∑

i=1

sin((2i − 1)(2N − 1)π/(4N))

sin((2i − 1)/(4N))
φ(sN+1−i)

(22)

To this end, all the unknown functions φ1
x̂
(ŝi) and φ1

ŷ
(ŝi) at the end points in the linear algebraic system can be obtained 

by solving the above equations.
The stress intensity factor of each crack can be readily obtained by the following relationship:(

K −
I

)
i = −√

πa1
2μ

κ + 1

(
φ1

ŷ1
(−1)

)
i,

(
K −

II

)
i = −√

πa1
2μ

κ + 1

(
φ1

x̂1
(−1)

)
i(

K +
I

)
i = −√

πam
2μ

κ + 1

(
φm

ŷm
(+1)

)
i,

(
K +

II

)
i = −√

πam
2μ

κ + 1

(
φm

x̂m
(+1)

)
i

(23)

where, for a kinked crack, (K −
I )i , (K −

II )i represent the mode-I and mode-II stress intensity factors of the left crack tip of 
crack branch 1 for the i-th kinked crack, and a1 is the half crack length of the first crack branch for the i-th kinked crack. 
Similarly, (K +

I )i , (K +
II )i represent the mode-I and mode-II stress intensity factors of the right crack tip of crack branch m

for the i-th kinked crack, and am is the half crack length of the last crack branch for the i-th kinked crack. For a straight 
crack, (K −

I )i , (K −
II )i represent the mode-I and mode-II stress intensity factors of the left crack tip, and (K +

I )i , (K +
II )i represent 

the mode-I and mode-II stress intensity factors of the right crack tip. a1 is the half crack length of crack i.
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Fig. 4. Crack propagation in the local coordinate system of the crack for the n + 1th step.

3. Fatigue crack growth analysis

Fatigue crack propagation can be realized by a number of incremental steps extending the crack tips to a new position 
based on Paris’s equation,

da

dN
= C(	K I eq)

m (24)

where C and m are the material constants, a is the crack length, N is the number of loading cycles. 	K I eq can be calculated 
by the following equation with 	K I and 	K II instead of K I and 	K II .

K I eq = K I cos3 θc

2
− 3K II cos2 θc

2
sin

θc

2
(25)

The complexity of the simulation of the propagation of multiple cracks is that all the cracks simultaneously have different 
growth increments 	ai and different crack turning angles θ̂ i

c for crack tip i.
The maximum circumferential stress criterion is selected to determine the crack propagation turning angle θ̂c as shown 

in Fig. 4:

θ̂c = 2 arctan
−2K II

K I +
√

K 2
I + 8K 2

II

(26)

In Fig. 4, xn
tip, yn

tip represent the location of the crack tip in the local coordinate system of the crack, respectively, after n-step 
propagation. 	a(n+1) , θ̂n+1

c represent the crack propagation length and the crack propagation turning angle for the n + 1th 
step.

The crack propagation length of each crack tip can be calculated by the following equation for multiple cracks:

	ai = 	amax

(
	K i

I eq

	K i
I eq,max

)m

(27)

where 	ai is the propagation length of the i-th crack tip. 	amax is the maximum value of the crack propagation length 
corresponding to the crack tip with the largest 	K I eq. The maximum crack propagation length is fixed in this study.

Once the crack growth increment and the turning angle for every crack tip are obtained, we can readily extend the crack 
tip to a new position by the following equation,

θ(n+1) = θ(n) + θ̂
(n)
c

x(n+1)
tip = x(n)

tip + 	a
(
cos

(
θ(n+1)

) · sin
(
θ(n+1)

)) (28)

Then a new model containing multiple cracks is obtained. By modeling the new cracks by a series of distributed disloca-
tions, the stress intensity factors of the new cracks will be obtained. In this end, fatigue propagation of multiple cracks can 
be realized by repeating the whole process.

4. Numerical examples

In this section, numerical examples for calculating the intensity factors of multiple cracks in a finite plane will be 
presented first. Then examples of the simulation of the propagation of multiple cracks in a finite plane will be given. All the 
calculations are carried out using a personal computer with 2.0 GHz and i5 CPU and in all examples, plane strain conditions 
are assumed.
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Fig. 5. A rectangular plate containing a central straight crack.

Table 1
Normalized stress intensity factor for a central crack in a finite plane.

a/w h/w F I (presented 
method)
N = 5

F I (presented 
method)
N = 10

F I (presented 
method)
N = 15

F I (presented 
method)
N = 20

F I

(reference [22])
F I

(reference [23])

0.1 0.35 1.0208 1.1007 1.0888 1.0895 1.0895 1.0881
0.1 0.5 1.0263 1.0465 1.0457 1.0457 1.0457 1.0450
0.1 0.75 1.0202 1.0232 1.0232 1.0232 1.0233 1.0227
0.1 1.0 1.0129 1.0139 1.0139 1.0139 1.0139 1.0136
0.1 1.25 1.0083 1.0091 1.0091 1.0091 1.0092 1.0090
0.1 2 1.0045 1.0062 1.0061 1.0061 1.0060
0.3 0.35 1.2378 1.6213 1.6401 1.6407 1.6407 1.6325
0.3 0.5 1.2612 1.3690 1.3706 1.3707 1.3709 1.3654
0.3 0.75 1.1838 1.2038 1.2043 1.2045 1.2047 1.1995
0.3 1.0 1.1139 1.1227 1.1230 1.1231 1.1232 1.1198
0.3 1.25 1.0735 1.0825 1.0826 1.0827 1.0827 1.0816
0.3 2 1.0424 1.0606 1.0580 1.0583 1.0580
0.5 0.35 2.5865 2.4825 2.4628 2.4634 2.4639 2.4441
0.5 0.5 1.9239 1.9636 1.9649 1.9658 1.9671 1.9463
0.5 0.75 1.5145 1.5505 1.5524 1.5534 1.5537 1.5366
0.5 1.0 1.2998 1.3329 1.3333 1.3335 1.3337 1.3255
0.5 1.25 1.1983 1.2397 1.2381 1.2384 1.2383 1.2358
0.5 2 1.1376 1.2058 1.1839 1.1883 1.1865
0.7 0.35 6.2538 4.0626 4.0168 4.0226 4.0313 3.9407
0.7 0.5 3.1044 3.0194 3.0297 3.0340 3.0395 2.9547
0.7 0.75 1.9366 2.0529 2.0518 2.0529 2.0534 2.0202
0.7 1.0 1.5414 1.6927 1.6749 1.6778 1.6771 1.6654
0.7 1.25 1.4104 1.5847 1.5403 1.5497 1.5480 1.5431
0.7 2 1.3942 1.5933 1.4398 1.4890 1.4848
0.8 0.35 5.7187 5.6645 5.7023 5.7085 5.4528
0.8 0.5 3.7968 3.7568 3.7604 3.7712 3.7726 3.6316
0.8 0.75 2.1160 2.4370 2.3820 2.3922 2.3897 2.3542
0.8 1.0 1.7325 2.0910 1.9638 1.9913 1.9908 1.9773
0.8 1.25 1.6465 2.0140 1.8105 1.8688 1.8677 1.8595
0.8 2 1.7233 1.9960 1.6618 1.8171 1.8068

Example 1. A rectangular plate containing a central straight crack.

A rectangular plate of height 2h and width 2w containing a central straight crack of length 2a is subjected to a uniform 
tensile stress σ0 at its top and bottom edges, as shown in Fig. 5. The computed normalized stress intensity factor of the 
crack tip is defined as

F I = K I/σ0
√

πa

In this example, the ratio a/w is set at 0.1, 0.3, 0.5, 0.7, and 0.8, h/w is chosen as 0.35, 0.5, 0.75, 1.0, 1.25, and 2.0. 
Meanwhile, the numbers of integration points N are set at 5, 10, 15, and 20. The values of F I for different values of a/w , 
h/w , and N are shown in Table 1. For comparison purposes, Table 1 also lists the numerical results reported in Refs. [23]
and [24].



J. Zhang et al. / C. R. Mecanique 347 (2019) 191–206 199
Fig. 6. A rectangular plate containing a straight crack and a kinked crack.

Fig. 7. The finite element model: (a) mesh for the whole model; (b) the mesh near the crack tip.

As we can see from Table 1, the results obtained by the present method become more accurate when increasing the 
number of integration points. The results obtained by the presented method agree very well with the previous research 
and yield a very high accuracy when the number of integration points is 20. So, if not specified otherwise, the number of 
integration points is fixed at 20 in the following study.

Example 2. A rectangular plate containing a straight crack and a kinked crack.

A rectangular plate of height 2h and width 2w containing a straight crack of length 2as and a kinked crack is subjected 
to a uniform tensile stress σ0 at its top and bottom edges. The kinked crack has two branches of length 2ak and the kinked 
branch makes an angle of 45◦ with the main crack, as shown in Fig. 6. In order to validate the present method for this 
problem, finite element analysis was used to study the same problem and the detailed mesh model in the finite element 
analysis is shown in Fig. 7.

In this example, the following geometric parameters are selected:

2b = 2h = 80 mm, 2ak = 10 mm, d = 20 mm

The calculated normalized stress intensity factors of the crack tips A, B, C, D are defined as

F I(A) = K I(A)/σ
√

πas, F I(B) = K I(B)/σ
√

πas, F I(C) = K I(C)/σ
√

π(2ak)

F I(D) = K I(D)/σ
√

π(2ak), F II(D) = K II(D)/σ
√

π(2ak)
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Fig. 8. Variation of the normalized stress intensity factor for a straight crack and a kinked crack in a plate.

Fig. 9. A rectangular plate containing multiple straight cracks and kinked cracks.

In the calculation, we chose the length of the straight crack 2as to be 10 mm, 20 mm, 30 mm, 40 mm, 50 mm, 60 mm. 
The variation of F I(A) , F I(B) , F I(C) , F I(D) , F II(D) are shown in Fig. 8.

As we can see from Fig. 8, the results obtained by the presented method and those of the FEA method are in very good 
agreement. The maximum error between them is 6.47% for F II(D) when 2as = 60 mm. This is because the straight crack 
is very long and F II(D) is very small (about 0.15). All the other errors between these two methods are less than 2%. This 
problem can only be solved in about 0.9 s only by the presented method; however, the finite element method would take 
about 30 s. We can see that the solution is accurate enough and efficient if the number of integration points used for the 
cracks is 20.

In this example, there are only one straight crack and one kinked crack. However, the presented method is capable of 
solving the problem for any number of straight cracks and kinked cracks.

Example 3. A rectangular plate containing 20 straight cracks and 20 kinked cracks.

A rectangular plate (height 2h, width 2w) containing 20 straight cracks and 20 kinked cracks is subjected to a uniaxial 
loading. The geometry and arrangement of these cracks are shown in Fig. 9. All the straight cracks have the same length 2a. 
All the kinked cracks have the same inclination angle of 45◦ and length a. They are equally spaced in the plane with 
distances d1 and d2.

In the simulation, the following geometric parameters are selected:

2w = 2h = 100 mm, d1 = 5 mm, d2 = 20 mm, a = 5 mm
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Fig. 10. Stress intensity factor for 20 straight cracks and 20 kinked cracks.

Fig. 11. A plate containing a central inclined crack.

Here we need to mention that all the straight cracks have their own crack tips A and B. Similarly, all the kinked cracks 
have their own crack tip C and D. The normalized stress intensity factors of the crack tip A, B, C, D are defined as

F I(A) = K I(A)/σ
√

πa F I(B) = K I(B)/σ
√

πa F I(C) = K I(C)/σ
√

πa

F I(D) = K I(D)/σ
√

πa F II(D) = K II(D)/σ
√

πa

The normalized stress intensity factors of all the cracks are shown in Fig. 10.
As we can see from Fig. 10, the outside cracks (crack number 1 and number 20) usually have higher normalized stress 

intensity factors than the inner cracks. The normalized stress intensity factors almost distribute symmetrically along crack 
number 10 and number 11. In this example, there are totally 64 cracks in total and the computation time is about 3 min 
when the number of integration points used for both cracks and boundary is 20.

Example 4. Fatigue crack growth for a rectangular plate containing a central crack.

A rectangular plate (2h = 2w = 50 mm) containing a central crack with a length 2a = 10 mm and an inclination angle 
θ is subjected to a cyclic stress (σ max = 1 MPa, σ min = 0 MPa) perpendicular to the boundaries, as shown in Fig. 11. The 
0 0
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Fig. 12. Crack propagation path of the plate with a central inclined crack.

Fig. 13. Stress intensity factor for a central inclined crack with different inclination angles in a plate.

maximum crack increment 	amax is set at 1 mm in this simulation. θ is set at 30◦ , 45◦ , 60◦ , and 75◦ . The crack growth 
paths and stress intensity factors at crack tip A are shown in Fig. 12 and Fig. 13, respectively.

The results obtained by the presented method agree very well with those of reference [25].

Example 5. A rectangular plate containing two non-collinear cracks.

For a comparison purpose with reference [25], considering a rectangular plate (2h = 180 mm, 2w = 90 mm) con-
taining two parallel non-collinear and non-angled cracks with a length 2a = 10 mm is subjected to a cyclic stress 
(σ max

0 = 160 MPa, σ min
0 = 0 MPa) perpendicular to the boundaries, as shown in Fig. 14. The horizontal and vertical dis-

tances between the tips of the two central cracks are d1 = 5 mm and d2 = 15 mm, respectively.
The maximum crack increment 	amax is set at 2 mm in this simulation. The crack growth paths of the two non-collinear 

cracks are shown in Fig. 15. The stress intensity factors of the crack tips A and B are shown in Fig. 16, respectively. Both the 
fatigue growth paths and the stress intensity factor are in very good agreement with reference [25].
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Fig. 14. A rectangle plate containing two non-collinear cracks.

Fig. 15. Fatigue growth paths for two non-collinear cracks in a plane: (a) as predicted by present method, (b) as predicted by reference [24].

Example 6. A rectangular plate containing two crossed cracks.

A rectangular plate (2h = 180 mm, 2w = 90 mm) containing two crossed cracks with a length 2a = 10 mm located 
at the center of the plate is subjected to a cyclic stress as shown in Fig. 17. The two cracks have inclination angles of θ
and π − θ , respectively. The crack growth paths of the two crossed cracks are shown in Fig. 18. As we can see here, the 
presented method is an effective way to simulate complicated crack problems.

Example 7. A rectangular plate containing six parallel cracks.

A rectangular plate (2h = 180 mm, 2w = 90 mm) containing six parallel cracks in two rows with a length 2a = 10 mm 
is subjected to a cyclic stress as shown in Fig. 19. The vertical distance between the two rows is d1 = 5 mm. The horizontal 
distance between the inner crack tips is d1 = 15 mm. The crack growth paths of these six cracks are shown in Fig. 20.

Though here only six cracks are included in this plate, this method can simulate the growth of any number of arbitrary 
fatigue cracks with an inclination angle. This will not be presented here.
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Fig. 16. Stress intensity factor for two non-collinear cracks in a finite plane.

Fig. 17. A rectangle plate containing two crossed cracks.

5. Conclusion

In this paper, an automated numerical study of multiple cracks propagation in a finite plane is presented. Firstly, a so-
lution for a two-dimensional finite elastic plane containing multiple straight and kinked cracks is presented. All the cracks 
and boundaries are modeled by the distributed dislocations in an infinite plane. The mixed-mode stress intensity factors 
of all the cracks can be obtained. Then the maximum circumferential stress criterion is used to calculate the crack turning 
angle of each crack tip. The well-known Paris law is adopted to calculate the growth length for each crack tip at each step. 
Several numerical examples illustrate that the presented method is very convenient to model multiple cracks in a 2D finite 
plane and is very effective in simulating the propagation of multiple cracks.
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Fig. 18. Fatigue crack growth paths for two crossed cracks in a finite plane.

Fig. 19. A rectangular plate containing six parallel cracks.

Fig. 20. Fatigue crack growth paths for six parallel cracks in a finite plane.
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