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This note is motivated by the contribution of Alan Newell to this thematic issue of C. R. 
Mécanique honoring Pierre Coullet. The point of this comment is to show that some ideas in 
Newell and Venkataramani’s essay are already there in the present theory of the ultimate 
structure of our Universe, although formulated in a completely different way. In particular, 
the relationship between the structure of the Universe at small scale and the nagging 
question of the missing mass is present in both theories, whereas a precise link between 
the observations and either theory is yet to be found.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Cette note a été suscitée par la contribution d’Alan Newell à ce numéro thématique des C. R. 
Mécanique en l’honneur de Pierre Coullet. Nous voudrions présenter dans ce commentaire 
l’idée selon laquelle certaines des conceptions exposées par Newell et Venkataramani 
sont déjà présentes dans la théorie actuelle sur la structure ultime de l’Univers, quand 
bien même elles sont formulées de façon évidemment différente. La question centrale 
posée par Newell et Venkataramani est celle de l’existence d’une structure sous-jacente 
envahissant en quelque sorte l’espace géométrique à toutes les échelles. Cette structure 
est la conséquence des lois de la mécanique quantique, qui imposent l’existence de 
fluctuations de point zéro pour le rayonnement électromagnétique et celle de la mer de 
Dirac pour les fermions. Ce « remplissage » a des conséquences bien connues et vérifiées 
expérimentalement, dont la force de Casimir pour les fluctuations de point zéro et 
l’écrantage des interactions électrostatiques à courte distance par la polarisation du « vide »
constitué par la mer de Dirac, écrantage qui contribue au décalage de Lamb entre niveaux 
de l’atome d’hydrogène. Je montre que l’existence de la mer de Dirac conduit à un effet 
d’écran pour l’interaction gravitationnelle, qui se traduit par l’existence d’une échelle de 
longueur d’écran du même ordre de grandeur que la taille des galaxies si on prend la mer 
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de Dirac des neutrinos, ce qui pourrait peut-être expliquer ce que l’on appelle la masse 
manquante en astrophysique.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

In a bold attempt to understand how our Universe is made, Newell and Venkataramani suggest that what we see is 
a kind of large-scale “amplitude limit” of a small-scale pattern [1]. There are many examples of such changes of scale in 
science. Part of the nineteenth-century science was devoted to the understanding of macroscopic physics as a result of 
what happens at the scale of atoms and molecules. One early attempt in this direction was made by Cauchy when he 
derived the equations of elasticity by assuming an elastic material made of beads and springs and looked at the elastic 
properties of such a regular lattice on scales much bigger than the lattice spacing. This yields the correct equations for 
elastic materials with coefficients depending formally on microscopic parameters like molecular forces between the atoms 
or molecules at the sites of the lattice. Newell and Venkataramani propose a generalization of the same nature by assuming 
an Universe made like a regular pattern at small scale. What we observe at large scales would be described by the amplitude 
equation for this pattern, this being inspired by the amplitude equations designed to describe large-scale features of the 
roll structure generated by Rayleigh–Bénard thermal convection between two parallel horizontal plates [2]. As he notices, 
General Relativity equations could be seen as a kind of amplitude equation, because their right-hand side depends on the 
global properties of matter, through its contribution to the energy–momentum tensor.

One of the point of his essay is an explanation of dark matter. As I understand it, in the “pattern theory”, dark matter 
should be a manifestation of geometrical defects in the underlying pattern. Every singularity or defect would contribute 
like a point mass to the gravity potential. This explanation is interesting because it gives another meaning to what we call 
particles and their mass. As it is, this theory is not a theory in the usual meaning, because there does not seem to be a 
possibility to show it is wrong, unless we had access one way or another to the scale of the pattern making the Universe. 
Nevertheless, it makes the interesting suggestion that the “missing mass” in astrophysics is not the manifestation of yet 
unobserved particles, but a more fundamental effect linked to the fabric of the Universe, explainable without adding one 
more kind of particles in an already crowded set. However interesting it is, the idea of a “pattern Universe” meets difficulties 
when confronted with what we know of the small-scale structure of our Universe. There is little doubt that, at small scales, 
we have a fairly complete understanding of it: quantum electrodynamics yields an unbelievably accurate picture of the 
physics down to scales linked one way or another to atomic physics. For sure, when one goes down to scales of high-energy 
physics, the situation is different, even though almost everything is fairly well understood and there does not seem to 
be much room for a revolution in this field. At this step, it is important to notice that the world as seen by present-day 
fundamental physics is not that different of the pattern universe. In particular, it implies that there is “something” at small 
scales besides an empty 4D Minkowskian Universe. This “something” has a fundamentally quantum origin, and the physics 
behind it is not that recent. At the very beginning of quantum theory, Planck noticed that a harmonic oscillator in its 
lowest energy state is not at rest in the classical sense: its energy is half the quantum of energy h ν he had discovered, 
h being Planck’s constant and ν the classical frequency of the oscillator. If one applies this idea to the oscillation modes 
of the electromagnetic (EM) field in a box with conducting boundaries, one finds that the EM field has an infinite energy, 
even in the absence of any excitation of this field by sources, just because there are infinitely many oscillations modes of 
the EM field with a zero-point energy growing at increasing frequencies. This so-called zero-point energy has measurable 
consequences. It yields a pressure between two parallel conducting plates, as was discovered by Casimir and Polder, and has 
been measured since with an accuracy of about one percent. This zero-point energy of vacuum is of course different from 
what I understand of the pattern Universe, but it is a consequence of quantum theory (even long before this theory reached 
its present state) and is measurable.

Another consequence of quantum theory with the result of filling what we call vacuum is the existence, predicted by 
Dirac, of the Dirac sea. This is a consequence of the quantization of the relativistic dynamical equation of a particle of mass 
m (an electron in Dirac’s theory). The relativistic energy E of an electron of linear three-momentum p is such that

E2 = c2 p2 + m2c4

c being the speed of light and m the electron mass. By quantizing the equation of motion of this particle, one finds the same 
relation between energy and momentum, which yields a possible negative value of E . Such negative values are unbounded 
from below, which leads to the possibility of getting infinite energy from nothing! Something obviously contrary to everyday 
experience. This riddle was solved by Dirac, who noticed that, for fermions, if the negative energy states are all filled, then 
there is no possible transition from one negative energy state to a deeper energy state that is already occupied, and therefore 
no way of getting energy from the negative energy states. The existence of this Dirac sea of filled negative energy states was 
proved indirectly by the observation of holes in the negative energy states that make a new kind of particle, called now the 
positrons.

The existence of this microstructure of the Universe made by the quantum fluctuations has the straightforward conse-
quence to yield strongly divergent terms in Einstein’s equations of General Relativity [3]. Those equations read:
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Rμν − 1

2
gμν R + �gμν = 8π G

c2
Tμν (1)

The indices μ and ν can take four different values, three for the space components and one for the time component. This 
last one (the time index) will be called 0 below, as usually done. The left-hand side is made with the curvature tensor Rμν , 
R without indices being Ricci’s curvature. The curvatures Rμν and R are related by nonlinear equations to the metric tensor 
gμν . The right-hand side depends on the energy–momentum tensor Tμν , related to the properties of matter. An important 
quantity in this equation is the cosmological term �gμν on the left-hand side. It depends on the so-called cosmological 
constant �. Lastly, G is Newton’s constant.

The T00 component of Tμν is the energy density, which includes the rest mass of particles. Consider its contribution 
to T00 coming from either the zero-point fluctuations of QED vacuum or from Dirac sea, those contributions diverge just 
because they correspond to structures of wavelength of unbounded smallness. This yields either an infinite energy (in the 
case of the EM waves) or infinite mass and energy (in the case of Dirac sea). The pattern Universe would yield likely also 
a diverging contribution to T00. This divergence of the contributions of quantum fluctuations to T00 is linked to the need 
to have theories invariant under Lorentz transform. This is particularly clear with Dirac’s sea: this one is invariant under 
Lorentz transform, which brings infinitely small scales if the velocity in the Lorentz transform is close to the speed of 
light. The same has to be true for a small-scale pattern contributing to the fabric of space-time: otherwise it seems to be 
impossible to keep the Lorentz invariance of the fundamental equations of physics. Said in another way, a pattern that is 
steady in a certain frame of reference and not uniform (say with a given period in space and time like a finite-amplitude 
wave) would break a fundamental symmetry in a way that could be measurable by experiments. The consequence of the 
Lorentz invariance of the quantum vacuum are that this vacuum is made of the superposition of all states (a superposition in 
the quantum sense) derived from each other by all Lorentz transformations. This leads to an infinite energy of this quantum 
ground state and therefore to an infinite contribution to T00.

This divergence of T00 is “cured” traditionally by assuming that, on the left-hand side of Einstein’s equations, the cosmo-
logical constant � is infinite and balances exactly the divergent part of T00. Once this is done, this gives the impression that 
the contribution of the quantum fluctuations to gravity is set to zero once for all and should not be worried about anymore, 
but this is not correct: the exact cancellation of the quantum fluctuations is not universal, whereas we look for the effect of 
the quantum fluctuations on the law of attraction of masses at very large distance, namely in an Universe with curvature. 
This means that we have to look at the changes in the Dirac sea induced by a large-scale gravity field: this field makes 
non-flat the metric and so changes the dynamics of particles or photons with respect to the case of a flat metric. This adds 
(or subtracts) a mass to vacuum compared to the situation without gravitational field. Such a change of density takes place 
classically if particles with a mass are scattered by the gravitational field. This change can be estimated by assuming that 
particles impinge the gravitational field coming from infinity and are then scattered by the (relatively very weak) gravita-
tional field. Thanks to that, a change of density with respect to the density of the straight line motion follows. This change 
of density contributes to the gravitational field because, as just explained, it is not compensated by the cosmological term 
of Einstein’s equations. Because of its smallness, it can be computed at linear order with respect to the local gravitational 
field. Putting this term into Poisson’s equation for the gravity potential, one finds a contribution to the mass coming from 
this polarization of the quantum vacuum (see below for an explanation of what is meant by “polarization” here). Because of 
the linearity of the equation with respect to the local value of the gravitation potential, the equation so derived looks like 
Debye–Huckel [4] equation for the screening of a charge in a medium with electric charges. But contrary to the case stud-
ied by Debye and Huckel, the charges there are masses interacting gravitationally and there is no compensation between 
charges of different signs.

This introduces a novel feature compared to the pattern Universe of Newell: there the missing mass is linked to the 
defects of the underlying pattern Universe and those defects condense near Galaxies or clusters of Galaxies. What is missing 
in this argument are two things: first, the typical scale on which those defects behave and then what kind of defect 
is considered? On this last point one may wonder what are the typical defects of a pattern existing in a four-dimensional 
Minkowski space, reference being made mostly to defects in roll systems in 2D ordinary space. In amplitude equations, there 
are long-range forces because the pattern deformed by defects tends to restore its symmetry by eliminating the defects, 
usually by attraction of such defects of opposite signs ending up by merging and disappearance. A large-scale motion of the 
population of defects is possible, this being triggered by the gravitation field of large-scale objects like Galaxies. A weakness 
of this chain of arguments is that the contribution to the attraction due to the defects of the pattern has to be negligible at 
the scale of the Solar system and pertinent at the much bigger space scale of the Galaxy. This seems to be hard to explain, 
because the gradient of the gravitational potentials would be much bigger in our Solar system than in the Galaxy and so 
have much bigger effect locally (say at scales of a Cavendish balance) than on the big scale. This riddle can be solved only 
by introducing an intrinsic large scale where the gravitation changes over scales about the size of the Galaxy, as sketched 
below.

As this is a comment, no detailed derivation will be given, only the main features, the message being that a large 
length scale can be derived from the existence of the Dirac sea and from its effect on gravitation. As said before, the exact 
cancellation of the quantum fluctuations does not eliminate all possible effects of the Dirac sea and of QED vacuum on 
gravitation. We look for the effect of the quantum fluctuations on the law of attraction of masses at very large distance, 
namely in an Universe with small but non-zero curvature. This means that we have to look at changes in the Dirac sea 
induced by a large-scale gravity field: this field makes the metric non-flat and so changes the dynamics of particles or 
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photons with respect to the case of a flat metric. We look for a polarization effect of the vacuum quite similar to the one 
considered by Dirac [5] and Heisenberg [6] when they computed the change of the “bare” charge of an electron due to the 
polarization of the Dirac sea around it. Those famous pieces of theoretical physics introduced also the fundamental idea 
of renormalization, necessary to get at the end an effect that is finite and not given by diverging integrals. We shall use 
the word “polarization” in a slightly extended meaning. Usually this refers, as in the works of Dirac and of Heisenberg, 
to changes in the electric potential by the perturbation of the density of charges induced by the field itself. We shall use 
the same word “polarization” to denote changes in the distribution of masses and energies induced by a gravity potential. 
Indeed, there are some formal similarities between the two cases (gravitation and electrostatic attraction), both being long 
ranged. For instance, the Jeans instability of an uniform distribution of point masses is described by equations very similar to 
the ones of the Langmuir oscillations in plasmas, but for a crucial sign difference making one oscillating in time (Langmuir 
oscillations) and the other just plainly unstable. Moreover, there is also a fundamental difference because there are no 
difference of sign in the gravitational attraction: all masses attract each other (whence the Jeans instability).

The derivation sketched below makes appear a coefficient of the polarization term in Poisson’s equation with the physical 
dimension of an inverse square length. This length scale depends on the mass of the particles of the Dirac sea contributing 
to polarization. If one considers that those particles are electrons, the length scale is far too short compared to what happens 
in the solar system, for instance. Therefore, this polarization of the Dirac sea of electrons cannot be observable, supposing 
that its derivation is correct. This is because it is made by assuming that the electrons of the Dirac sea do not interact, 
which is obviously not true: electrons interact by the EM field, including when in negative energy states. This is taken into 
account in the renormalization effect of the electric charges by the vacuum fluctuations. Therefore, on large scales, one 
cannot assume that the particles are free particles. A simple guess is to assume that those charged particles interact in 
such a way that they make a kind of fluid with short-range correlations, which is far less sensitive to external forces like 
gravitation than free particles, although this is to be verified by calculations yet to be done.

Therefore, it is natural to turn to other fermions, interacting very weakly. Among the known particles neutrinos make 
a fair choice: they are fermions, with a very small mass and they interact very weakly with other particles. Therefore, we 
shall assume that the Dirac sea of neutrinos makes a possible contribution to the polarization by the gravity field. Because 
of their very small mass, the length scale introduced by the polarization is very large, in the same range as the size of 
Galaxies, which is precisely the length scales for which the missing mass is observed.

We shall derive now the Debye-like equation for the polarization of the Dirac sea. Let �(r) be the gravity potential 
generated by a point mass M located at r = 0, this mass being very large, the one of a star for instance. Because the 
gravitation potential is also partly due to particles in Dirac sea, this potential has to be the solution to a Debye-like equation 
including this polarization. With this mass M only, the gravity potential (a quantity with the physical dimension of a velocity 
square, or an energy per unit mass) is a solution to Poisson’s equation:

∇2� = 4π G M δ(r) (2)

In this equation, δ(r) is the three-dimensional Dirac singular function, boldface being for vectors in 3D. Now we shall add to 
the right-hand side of this equation a contribution coming from the changes of density of particles in the Dirac sea by their 
interaction with the gravity potential. This change of density is due to the displacement of particles scattered by the gravity 
potential � due either to the mass M at r = 0 or to the polarization induced by the field. Let us estimate first the number 
density of the Dirac sea. From obvious scaling laws, this number density is the cube of an inverse length. The only length 
scale there is the Compton wavelength h̄

m c , m being the mass of the particles in Dirac sea (even though we keep the same 
symbol m as for the electron mass, it does not imply that we are dealing with electrons), c the speed of light, and h̄ = 2 π
times Planck’s constant. Therefore the number density is estimated as the inverse cube of this wavelength. Of course, this 
should not be understood stricto sensu: the true number density of the Dirac sea is infinite because all negative energy 
states are filled. Nevertheless, when computing the quantity we would like to obtain, one should introduce such a number 
density as a coefficient of an integral over the momentum of particles in the Dirac sea. Because we are trying to estimate 
a quantity found by adding all contributions from particles in the Dirac sea, we have to worry concerning the convergence 

of this integral at large momenta. We shall come to this question in a future publication and take 
(

h̄
m c

)−3
as the number 

density of particles in the Dirac sea.
The order of magnitude of the change of number density induced by the scattering can be estimated in two different 

ways. One can assume first that it is proportional to the perturbation brought by the potential � and also to the “number 
density” in the Dirac sea times the mass of each particle there. This amounts to add to the right-hand side of equation 

(2) a term like m� 
(

h̄
m c

)−3
times Newton’s constant G . Another derivation amounts to estimate for an average trajectory 

the change of radial position induced by the scattering by the gravitational potential and to estimate next the total change 
by adding contributions from all particles in Dirac’s sea. Each state is perturbed by the gravity potential in such a way 
that the trajectory is shifted radially by an amount δr ∼ 1

c2

∫ ∞
r dr �(r). The sum of contributions of all particles, as far as 

orders of magnitude are concerned, is the same quantity derived with respect to r (which comes from the Jacobian from 

the state without gravity potential to the state with gravity potential) times the number density 
(

h̄
m c

)−3
. The result is that 

the change of density is of order �(r)
(

h̄
)−3

, as already estimated.
m c m c
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Therefore, the Poisson equation including the polarization of the Dirac sea reads:

∇2� = 4π G

(
ρ(r) + C m

�(r)

c2

(
m c

h̄

)3
)

(3)

an equation formally similar to the Debye–Huckel equation for the local polarization in electrolytes and plasmas, C being 
a dimensionless constant of order 1. Moreover, the quantity ρ(r) is the mass density inside the astrophysical object one 
considers, which may include stars, molecular clouds, etc. The derivation just made does not tell if C is positive or negative. 
This equation makes appear a length scale somewhat analogous, at least mathematically, to the Debye screening length in 

electrolytes and plasmas. This is the length λ =
(

h̄3

G m4 c

)1/2
. Interestingly, this length is within astronomical scales. Because 

of the way it depends on the mass m, it is the largest for the smallest mass. The derivation of this length assumes that 
particles in the Dirac sea interact only gravitationally, which is obviously not the case for many fermions, which could be 
candidate for contributing to the polarization by gravitation. To give an example of the order of magnitudes involved, one 
can take first the electrons, of mass approximately 10−30 kg. This yields a length scale λ of order 1010 m, smaller than 
the typical size of galaxies, about 1020 m for the Milky way. If one takes instead an estimate of the rest mass of neutrinos 
are in the range of 0.1 eV/c2 (this is actually an upper bound for this mass, which seems otherwise unknown), one finds 
a λ, of order 1022 m, much larger than for the electron, but larger than the size of Galaxies by a factor of one hundred. 
This factor of one hundred could perhaps be balanced by other factors in a theory incorporating the renormalization of the 
gravitational mass in a more detailed (and perhaps more convincing!) way.

I do not believe that it makes much sense to end this comment by a more or less formal set of conclusions. As Newell 
and Venkataramanil’s paper, it is an open-ended piece aiming mostly to trigger a debate on fundamental issues coming 
from the development of our understanding of the world as it is. Our main point is that the ultimate word in this field 
has yet to be said, and perhaps will never be. Lessons have still to be drawn from the development of quantum theory and 
gravitation to get a fully coherent understanding of how our Universe is made.
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