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General mechanical considerations provide an upper bound for the take-off velocity of any 
jumper, animate or inanimate, rigid or soft body, animal or vegetal. The take-off velocity is 
driven by the ratio of released energy to body mass. Further, the mean reaction force on 
a rigid platform during push-off is inversely proportional to the characteristic size of the 
jumper. These general considerations are illustrated in the context of Alexander’s jumper 
model, which can be solved exactly and which shows an excellent agreement with the 
mechanical results.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Des considérations mécaniques générales fournissent une limite supérieure pour la vitesse 
de décollage de tout sauteur, qu’il soit animé ou inanimé, qu’il soit de corps rigide ou mou, 
animal ou végétal. La vitesse de décollage est déterminée par le rapport entre l’énergie 
libérée et la masse corporelle. De plus, la force de réaction moyenne sur un support rigide 
lors du push-off est inversement proportionnelle à la taille caractéristique du sauteur. Ces 
considérations générales sont illustrées à l’aide du modèle de saut d’Alexander, qui peut 
être résolu exactement et qui offre un excellent accord avec les résultats mécaniques.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Jumping in animals such as insects and vertebrates is restricted by a take-off speed limit of about 6 m/s for a broad range 
of species of various body shapes and masses. This observation goes back to the 17th century and it is known as Borelli’s 
law: “the take-off velocity is almost independent of the body mass” [1]. Moreover, the existence of such limiting speed 
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Fig. 1. (a) Take-off velocities for vertebrates, invertebrates, plants, and fungi of various masses. The black triangles plot the observations of Ref. [5] on 
different body-size mantises. (b) Body-length vs body-mass plot, showing an approximative relation, MT ≈ � �3

T with � ≈ 14.2 [kg/m3], represented by the 
black line.

does not depend on the vertebrate or invertebrate character of the animal. This observation can be extended to the world 
of plants and fungi, which have developed jumping mechanisms for seed and spore release [2,3], as well as to mechanical 
engines [4].

Fig. 1a compiles the take-off velocity for a large number of species, including vertebrates, invertebrates, plants, and fungi. 
As can be seen, none of the jumpers exceeds a take-off velocity of 6 m/s, despite the jumpers’ masses varying over a range 
of 15 orders of magnitude, i.e. from 10−12 kg up to 103 kg. Moreover, at this scale, it is difficult to infer any specific law 
relating body mass and take-off velocity, because there exist large variations of the take-off velocity for a particular body 
mass. Therefore we focus our attention on the existence of a limiting speed which appears to be independent of body mass 
or the size of the extremity. Additionally to the take-off velocity body-mass relation, Fig. 1b shows the characteristic length 
of the jumper as a function of the body mass. This shows a clear relation of the type MT ∼ �3

T (hereafter, we denote MT

and �T the total mass and length of the body). The existence of a mass–length relation MT ≈ � �3
T over a large number of 

decades reveals that most living organisms have approximately the same density (close to the density of water). However, 
notice that the similarity law observed in Fig. 1b displays a large band of dispersion (about two decades in the transverse 
direction) because of shape variations.

Jumping in vertebrates has been studied by modeling a body trunk together with articulated leg segments. These leg 
segments are coupled with simple constitutive equations for muscular activity [6–8]. A simple model consisting of a trunk, 
two legs, and a Hill-type musculature was introduced by Alexander [9]. This model was applied to humans, bushbabies, 
and locusts; and it considered three types of jumping techniques: catapult, squat jump, and countermovement. Alexander 
confirmed the advantage of each one of these distinct jumping strategies such as catapult for insects and countermovement 
for humans. Although Alexander’s model lacks anatomical specificity, its simplicity is an advantage, because it can be solved 
analytically.

A more detailed human model taking into account the optimal muscular distribution in the legs was introduced by 
Wong et al. [8]. This model highlights the muscle cross-sectional areas as an essential parameter for improving jumping 
performance and it allows quantitative predictions for the contribution of specific muscle groups in the leg. However, we 
focus on the simplicity of Alexander’s model, not only because it is analytically trackable, but also because the model 
predicts performance levels that are in good agreement with empirical data [10].

In contrast recent publications have modeled jumping using robots [11] with a mechanism composed of an actuated 
mass-spring system showing the importance of the resonance for the spring system. In this situation the actuator provides 
energy via an additive sinusoidal forcing, therefore it should be considered as a dissipative system. In this situation, an 
energy-dissipation balance governs the jump. This kind of jump will not be studied in this paper.

Other jumping studies consider the factors that may limit the jumping performance, and they are focused on energy 
available and power requirement per unit mass [5,12,13] fundamentally, aspects that we will discuss later. But the question 
about the limit is not facing directly.

In this paper, we derive, in Section 2, a general take-off condition regarding the energy of the center of mass valid under 
some assumptions discussed below, for both conservative or dissipative jumps. This condition tells us that, at take-off, the 
center of mass energy reaches a maximum. Similarly, the take-off velocity of the center of mass is bounded, for both conser-
vative and dissipative systems, from above by (see Eq. (4) below) the muscular energy per unit mass, hereafter U∗

m . As in the 
case of the mass–length relation, the muscular energy per unit mass, U ∗

m , is roughly a constant number because it concerns 
the intrinsic properties of the bio-materials composing muscles, tendons, etc. Therefore, the apparently non-dependence of 
the take-off velocity on the body mass appears to be a consequence of the hypothesis that the stored muscular energy �Um
(defined below) provided for jumping is proportional to the body mass. This is essentially the hypothesis behind Borelli’s 
law [14]. In the same line, we derive a relation for the mean ground reaction force with a dependency inversely proportional 
to the body length size (see Fig. 2). In Section 3, we illustrate these relations for Alexander’s model for a jumper, whereas 
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the calculations can be performed exactly. Then, in section 3.2, we evaluate the take-off velocity, as well as the push-off 
normal reaction force, both as a function of different parameters of the model.

2. Mechanical considerations

2.1. Dynamics of the center of mass

Jumping of an animate or inanimate, rigid or soft body, can be considered a classical mechanical problem involving a 
large number of interconnected parts subjected to internal and external forces that may be conservative or not. Although 
the application of Newtonian mechanics can be quite complex, because of the third law, the motion of the center of mass 
does not involve any internal forces (neither conservative nor dissipative). Newton’s law for the center of mass dictates 
(below ẑ is the vertical unitary vector pointing upward):

MT
dvG

dt
= −MT g ẑ + F ext (1)

where MT is the total mass of the body, vG(t) is the velocity vector of the center of mass, −MT g ẑ is the total weight, and 
F ext represents all external forces acting on the body other than weight. In what follows, we assume that all external forces 
are purely of contact type, i.e. we discard the effect of air resistance and other external forces. In a jump, these contact 
forces vanish at the point of take-off. Thereafter, regardless of internal motions, the center of mass follows a pure ballistic 
trajectory. Then, in this context Eq. (1) plays a central role in the push-off jump phase as we will see next.

2.2. The center of mass energy

In the process of jumping, the various external and internal forces transform the involved energies into mechanical 
energy of the center of mass, which is the relevant energy for the jump, as we show in what it follows. The maximum 
height reached by a jumper depends only on the center of mass energy at take-off (assuming a purely vertical jump).

The mechanical energy, E = K + U , includes a kinetic energy term, K , and the potential energy U that comes from the 
conservative forces involved in the problem.

We denote by KG the kinetic energy of the center of mass of the system and by Kr the relative kinetic energy with 
respect to the center of mass. Therefore, by König’s theorem, the total kinetic energy splits into K = KG + Kr (both positive). 
Contrarily, the potential energy U contains two contributions: the gravitational energy of the center of mass (the weight), 
UG, and all internal energies of muscular origin, Um, hence U = UG + Um. Finally, the total mechanical energy reads E =
EG + Er with EG = KG + UG and Er = Kr + Um. Nevertheless, for jumping, the mechanical energy of the center of mass reads 
simply

EG = 1

2
MT|vG|2 + MT gzG (2)

where zG is the height of the center of mass. Even in the case of pure conservative forces, this energy is not conserved, 
since:

d

dt
EG = MT vG · dvG

dt
+ MT g vG · ẑ = vG · F ext (3)

In (3), we have used explicitly Eq. (1).
Therefore, one concludes that, at take-off (F ext = 0), the mechanical energy of the center of mass reaches its maximum 

at t = tc, that is dEG/dt|t=tc
= 0.1

2.3. General bound for the take-off velocity

2.3.1. Conservative jump
In the case of a conservative jump, the total energy is conserved during the push-off phase,

E = 1

2
MT|vG|2 + MT gzG + Kr + Um = MT gzG(0) + Um(0)

and the above energy is equal to its initial value at rest (vG(0) = 0 and Kr = 0), and zG(0) being the initial position of the 
center of mass and Um(0) the initial muscular stored energy.

1 This statement is a generalization of the Tait–Thomsom theorems [W. Thomson and P. Tait, Treatise on Natural Philosophy, Oxford University Press, 
1888], §311: “Given any material system at rest, and subjected to an impulse of any magnitude and in any specific direction, it will move off so as to take the greatest 
amount of kinetic energy which the specified impulse can give it.” and §312: “Given any material system at rest. Let any parts of it be set in motions suddenly with given 
velocities, the other parts being influenced only by their connections with those which are set in motion, the whole system will move so as to have less kinetic energy than 
belongs to any other motion fulfilling the given velocity conditions.”
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At take-off, t = tc, the take-off velocity becomes V G = |vG(tc)|, and:

1

2
MT V 2

G = �Um − MT g (zG(tc) − zG(0)) − Kr

where �Um = Um(0) − Um(tc) ≥ 0. This quantity is necessarily positive in the case of a jump. Moreover, we shall assume 
that a jump also satisfies the inequality zG(tc) ≥ zG(0), that is, there is a body expansion increasing the center of mass height 
during the push-off phase. Therefore, because the relative kinetic energy is always positive (Kr ≥ 0), one then concludes that 
the center of mass take-off velocity is upper bounded by

V G ≤
√

2�Um

MT
= √

2U∗
m (4)

where U∗
m = �Um

MT
is the muscular energy per unit mass.

2.3.2. Dissipative jump
The same inequality (4) holds for a dissipative jump, indeed the energy variation is related to the work done by all the 

dissipative forces, denoted by R ≥ 0, thus

�E = 1

2
MT V 2

G + MT gzG(tc) + Kr + Um(tc) − (MT gzG(0) + Um(0)) = −R ≤ 0

Therefore, under the same conditions as in the conservative case and in addition to the dissipative character of muscular 
forces (heat for instance, fatigue, irreversibility, etc., R < 0), one gets the same upper bound (4).

2.4. Mean reaction force

We turn now to the variation of the normal reaction during the push-off phase. The explicit temporal variation of the 
reaction force is readily obtained by knowing the acceleration of the center of mass and using Eq. (1). However, in general 
it is not possible to obtain this acceleration without knowing the motion of all parts, therefore we shall consider just the 
mean value. The integration in time of the vertical component of Eq. (1) during the push-off phase reads:

MT

tc∫
0

dvG

dt
dt = MT V G = −MT gtc +

tc∫
0

FN(t)udt

therefore

〈FN〉 = 1

tc

tc∫
0

FN(t)dt = MT g + MT V G

tc

In consequence, the mean reaction force per weight becomes

〈FN〉
MT g

− 1 = V G

gtc
(5)

The reaction time, tc, remains unknown and in general it depends on the motion of all parts. However, it may be estimated, 
assuming that the accelerated motion of the center of mass experiences a displacement in an amount of the order of an 
extremity size, s (which is of the order of �T), hence s ≈ 1

2 at2
c ≈ 1

2 V Gtc, and consequently the mean normal force must 
follows a scaling relation of the type:

〈FN〉
MT g

− 1 ≈ V 2
G

2gs
(6)

Because the take-off velocity is bounded, it is expected that the normal force may satisfy:

〈FN〉
MT g

− 1 ∼ �Um

MT g�T
(7)

In conclusion, for smaller body sizes, the quotient reaction-force weight is greater. Indeed, for instance, for humans the 
reaction force is three times the body weight, the galago’s reaction force is 12 times its weight, 58 times for locusts, and 
135 in the case of fleas. This tendency is compared with the available data used in Fig. 1 (and spanned over five decades) 
in the next Fig. 2. A similar plot was published by Vogel [14], including both jumper and biological projectiles showing the 
inverse proportionality to the body-size observed scaling. Vogel [14] explains that this scaling is related to the fact that 
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Fig. 2. Mean reaction force 〈FN〉/(MT g) − 1 during take-off as a function of �T for the case of vertebrates, invertebrates, plants, and fungi of various 
organisms used in Fig. 7. The line corresponds to the scaling 1/�T. For the purpose of comparison, we added explicitly the case of biological projectiles 
provided by Vogel [14].

the push-off force is proportional to the area of the muscular cross section, thus the force–weight ratio becomes inversely 
proportional to a length.

Despite the excellent agreement displayed in Fig. 2, we must remark the fact that equations (6) and (7) are, yet, not 
rigorous results as it is inequality (4).

2.5. Discussion

The general character of the previous results implies the validity of them for any configuration, let it concern vertebrates 
or invertebrates or a robot jumping on a rigid planform. The situation becomes different in the case of plants in which a 
seed (that is a projectile) is launched from a mobile planform that recoils at take-off. Nevertheless, in the later case, the 
energy lost by the recoiled planform ensures the validity of the general bound (4).2

Undoubtedly, living organism are far from being a conservative system; however, the take-off condition (3) as well as the 
upper bound for the take-off velocity (4) does not depend on the conservative nor the dissipative character of the muscular 
forces.

Contrarily, a purely conservative system has the advantage of being analytically tractable for most of the relevant calcu-
lations. On the other hand, because dissipative effects imply loss of energy, it appears naturally that the conservative case 
provides a correct upper bound for performance, that is, a value for the maximum take-off velocity. Therefore, the conser-
vative case does not appear to be only a mathematical solvable case, but also a good upper bound for the limiting speed. 
More importantly, there are some examples in nature where the initial stored energy and the jump performance are best 
interpreted as a conservative process (e.g., insects employing catapult mechanisms [15]). Indeed, an energy conservation 
assumption is justified by experimental observations of existing records regarding the jumping performance in frogs [16,17]
as well as in galagos [18].

For the above reasons, in the following sections, we restrict our analysis to a purely conservative scenario.

3. Application to Alexander’s model [9]

3.1. The model

The original model proposed by Alexander [9] consists in a symmetrical jumper composed of a trunk and two legs. 
The legs are formed by two segments of length s, which scales as �T. The trunk mass is m1, being m2 and m3 the leg’s 
masses (see Fig. 3). Each leg segment forms an angle (2θ ) at the knee. We emphasize that the angles of the thigh (proximal 
segment labeled by 2) and the lower limb (distal segment labeled by 3) with respect to the horizontal plane are the same 
because of a non-slide geometrical constraint at the contact points with the ground. Assuming that these segments have 
different lengths, then a “no-sliding” condition implies a geometrical constraint on the knee angles, which complicates 
the mathematical analysis, but actually without any relevant consequences. Finally, the torque T exerted by each knee 
provides the energy for the jump, starting from a position of rest (2θ0). As noted by Alexander, we can remark that an 
explicit dependence of the knee torque on the flexion angle is not crucial. Therefore, we consider roughly a constant torque 
T = − ∂Um

∂θ
≈ constant. Although this model is oversimplified, the jumper has the advantage of being described by a single 

variable, θ(t), and can therefore be solved analytically.

2 We remark an exception, namely the case where the take-off position of the center of mass is lower than the original one, zG(tc) < zG(0). That case 
should be investigated separately.
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Fig. 3. Scheme for the two-segment model. The total leg length is 2s and the total body mass is MT = m1 + m2 + m3, T is the torque exerted at each knee, 
and F N is the ground reaction force, e.g., the normal force.

This model is solved using the usual tools of classical mechanics. The mechanical energy reads (see Appendix 5.1):

E = 1

2
I2(θ)θ̇2 + 1

2
gδ2 sin θ − 4T

(
θ − π

2

)
(8)

where, we define, as a short-hand notation,

I2(θ) = s2
[

1

3
(m2 + m3) + 2(2m1 + m2) cos2 θ

]
(9)

δ2 = s(4m1 + 3m2 + m3) (10)

Notice that, because of the previous convention, we define the zero muscular energy by the energy at the non-elongated 
configuration (θ = π/2). Alexander’s model describes the situation of a conservative motion, hence the energy (8) is constant, 
and it may be computed in terms of the initial conditions, θ(t = 0) = θ0 and θ̇ (t = 0) = 0. Therefore, the mechanical energy 
(8) provides us with a first integral of motion, which allows us to compute θ(t). The final result is obtained after integrating 
the following first-order differential equation:

θ̇2 = 1

I2(θ)
[8T (θ − θ0) − gδ2(sin θ − sin θ0)] (11)

Here we make the identification �Um(θ) = 4T (θ − θ0). Equation (11) provides an explicit solution for the angle θ as a 
function of time. Although it cannot be written in terms of elementary functions, it can be formally integrated.

Additionally, the take-off condition requires the knowledge of the vertical velocity of the center of mass, which is given 
by the relation:

vG = 1

2

δ2

MT
cos θ θ̇ (12)

where the total mass is MT = m1 + m2 + m3. Hence, Eq. (1) allows us to write:

MT
dvG

dt
= δ2

2
(cos θ θ̈ − sin θ θ̇2) = −MT g + FN

Therefore, the contact force in terms of the dynamical variables becomes:

FN = MT g + δ2

2
(cos θ θ̈ − sin θ θ̇2) (13)

which may be written explicitly in terms of the angular variable, θ , after using (11) and its derivative. (See Eq. (31) in 
Appendix 5.2.)

Further, the take-off condition imposes FN = 0 and provides an equation for the critical take-off angle θc. (See Eq. (32) in 
Appendix 5.2.) Because these conditions involve a mixture of polynomial and trigonometric functions, i.e. a transcendental 
equation, it can be solved only numerically by assigning different parameter values to it. After computing, the take-off angle 
θc, the take-off angular velocity θ̇c, the velocity of the center of mass, and the normal force can all be calculated in a fairly 
straightforward way as functions of the model parameters (m1, m2, m3, s, g , and T ). The jump take-off velocity of the center 
of mass (12) becomes:

V G = vG(tc) = 1

2

δ2

MT
cos θcθ̇c (14)

In the same way, we can compute the maximum value of the normal force (13).
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Fig. 4. Dimensionless partial energies and reaction force as a function of the flexion angle θ for the two-segment model. The plot includes the total energy 
Ê = E/T (all energies are normalized by T ), which is constant for all angles (gray line). We also plot the energy of the center of mass labeled by ÊG (red 
curve) and the internal energy Êr (blue line). Lastly, we plot the normalized force F̂N = FNs/T (black curve). Notice that, as explained in the main text, 
the take-off condition, θc , arises at the maximum of ÊG (and consequently, because of energy conservation, as the minimum of Êr ), and it coincides with 
the condition F̂N = 0. We also mark the location of the maximum reaction force just before take-off, θmax. In the plot, we consider the parameter values: 
m1/MT = 0.7, m2/MT = 0.2, and m3/MT = 0.1, θ0 = 0 and T /(MT gs) = 2.

3.2. Take-off velocity and reaction force for the two-segment model

3.2.1. Dimensional analysis
Alexander’s model depends upon the following parameters:

MT, m2, m3, s, T , and g

corresponding to the total body mass, the tight and lower limb masses and lengths, the knee torque and gravity, respectively. 
From this set of six parameters, we can define three dimensionless quantities:

μ2 = m2

MT
, μ3 = m3

MT
, and τ = T

MT gs
(15)

In the following, the jump velocity V G, the normal force FN, and the energies will be re-scaled by the dimensionless 
quantities:

V̂ G = V G√
T /MT

, F̂N = FNs

T
, and Ê = E

T

which are the relevant dimensionless observables fully characterizing the current jumping model.3

3.2.2. General integration of the equation of motion
Based on the exact solution given by Eq. (11), we can compute the different energy contributions involved in Eq. (8), as 

well as the normal reaction (13) (or Eq. (31) in Appendix 5.2) in terms of the angular variable θ without any knowledge of 
the take-of timef. Fig. 4 plots the evolution of the dimensionless energy of the center of mass, ÊG, the internal dimensionless 
energy, Êr , and the dimensionless reaction force, F̂N, as a function of the flexion angle θ , for the two-segment model. As 
it can be seen, initially all the energy is stored in the internal degrees of freedom (muscular potential energy), however as 
time goes, the flexion angle θ increases, thus the mechanical energy of the center of mass grows and the internal energy 
decreases. As the energy of the center of mass reaches its maximum, the reaction force vanishes and the body takes off. 
The subsequent dynamics of the jumper is governed by the center-of-mass energy fraction, that is, greater is it relative to 
the internal energy, more efficient will be the jump. Any improvement of EG (that is, on the take-off velocity) requires to 
decrease the energy of internal motions. In the following Section 3.2.3, we study the variations of these ratios accordingly 
with the different possible mass distributions. Notice that the take-off condition (1), that is dEG

dt = 0, provides θc, hence the 
take-off values for all energies.

Similarly, in Fig. 5, we plot F̂N = FNs
T vs θ for various initial flexion angles and knee torques. The computed reaction 

shows a generic behavior. Initially, the force of reaction increases up to a maximum value F max
N at some angle θmax, further 

it decreases up to its vanishing at take-off at the angle θc (FN(θc) = 0). Notice that if the initial angle is close to π/2, the 
maximal reaction force, F max

N , is larger. This is a consequence of the smallness of the take-off time, indeed, for θ � π/2 the 
take-off time, tc, is smaller, therefore the acceleration, ∼ V G/tc is larger, hence for the normal force (FN). However, in this 

3 Notice that other re-scaled quantities may be considered, but the current choice appears to be the most adequate.
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Fig. 5. Dimensionless reaction force as a function of the flexion angle θ for the two-segment model. (a) Plot of the reaction force F̂N = FN s
T vs θ for various 

initial flexion angles: θ0 = {0, π/6, π/3, 5π/12}, and for a dimensionless torque τ = T
MT gs = 10. (b) Plot of the reaction force F̂N = FN s

T vs θ for various 
dimensionless torques τ = {1/2, 1, 10, 100}, for an initial flexion angle θ0 = 0. In the plot, we consider the two-segment model and the parameter values: 
m1/MT = 0.7, m2/MT = 0.2, and m3/MT = 0.1.

Fig. 6. Dimensionless take-off velocity V G/
√

T /MT as a function of the mass distribution of the body and the extremities, for distinct conditions. (a) 
Jumping velocity for different initial flexion angle, namely for θ0 ∈ {0, π/6, π/3, 5π/12} and for a torque given by T /(MT gs) = 64. The maximum take-off 
speed arises for θ0 = 0 and for m2/MT → 0 and m3/MT → 0. (b) Jumping velocity for θ0 = 0 and for a distinct knee torque T /(MT gs) = {1/2, 1, 10, 100}. 
We notice that, as T /(MT gs) → ∞, the take-off velocity reaches a well-defined limit, studied below.

case (e.g., Fig. 5(a), for θ0 = 5π/12), the force just decreases from the initial value FN(θ0) up to when it vanishes at take-off. 
Fig. 5b shows the reaction force for θ0 = 0 and for various torques. As expected, initially the force of reaction increases up 
to a maximum, then it decreases, vanishing at take-off. The used scaling F̂N = FNs

T has the advantage that characterizes well 
the limit τ = T /(MT gs) → ∞, a proof of that it emerges due to the almost successful overlap for the cases τ = 10 and 
τ = 100.

3.2.3. Determination of take-off velocity
Equation (11) together with FN = 0 provide the take-off conditions (see Eq. (32) in 5.2). As mentioned, these conditions 

are solved numerically for the unknown variables θc . Once solving for θc, one replaces it into θ̇c together with the rest of 
the required parameters.

This can be done by employing the set of parameters (15) together with θ0. The range of values is {m2/MT, m3/MT} ∈
[0, 1] with the constraint m2/MT + m3/MT ≤ 1. The initial flexion angle varies into the range θ0 ∈ [0, π/2] and τ =
T /(MT gs) ∈ [0, ...∞). The numerical computation of the take-off velocity for different values of the mass distribution is 
shown in Fig. 6. As it can be seen, the dimensionless velocity reaches its maximum at the corner where both m2/MT and 
m3/MT → 0, and m1 → MT.

This observation is verified by some insects, e.g., the locusts and grasshoppers. For a Schistocerca, the legs are 17% of the 
body mass, while in some vertebrates, e.g., humans or galagos, the legs are 30% (see Ref. [9]). We think that this leg design 
might be explained through an optimization process (for species in which jumping is the main locomotion mechanism). In 
other words, in this optimization process, the internal energy, which is useless after take-off, is decreased, localizing all the 
body mass near the center of mass.
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Fig. 7. Mean dimensionless reaction force 〈FN〉 s/T as function of the mass distribution of the body and the extremities, for distinct conditions: dimension-
less reaction force for θ0 = 0 and distinct knee torque T /(MT gs) = {1/2, 1, 10, 100}. We notice that, as T /(MT gs) > 10, the dimensionless reaction forces 
reach a well-defined limit studied below.

We notice that, in all cases, the dimensionless take-off velocity varies by a factor of 2 or 3. Therefore, a substantial 
change of configuration does not imply necessarily a significant increase in take-off velocity. More importantly, we conclude 
that V̂ G � 3.5, thus V G � 3.5

√
T /MT, in agreement with the general bound condition (4). (Notice that �Um = 2πT , thus (4)

coincides with V G ≤ 2
√

πT /MT ≈ 3.5
√

T /MT.)

3.2.4. Determination of the reaction force
Similarly, we can compute the reaction force FN(θ) for any flexion angle. The average reaction force reads:

〈FN〉 = 1

tc

tc∫
θ0

FN(t′)dt′ =
∫ θc
θ0

FN(θ) dθ

θ̇∫ θc
θ0

dθ

θ̇

and it can be computed numerically for different parameter values of the model.
The numerical computations of the reaction force as a function of different values of mass distribution is shown in Fig. 7.

Because 
〈
F̂N

〉
has a well-defined limit as τ → ∞ (see next Sect. 3.3), and because of the assumption T ∼ Ue MT, one 

gets 
〈
F̂N

〉
= 〈FN〉s

Ue MT
≡ 〈FN〉

MT g
gs
Ue

, which scales as a constant, thus 〈FN〉/(MT g) ∼ Ue
gs , in agreement with the general results of 

Sects. 2.4 and Fig. 2.

3.3. Analytical results in the zero-g limit

The zero-g limit is a special case, because it limits the jumping performance. It is expected that gravity is always against 
jump because some energy must be used to move the center of mass. In this limit, muscular energy is used only in 
kinetic motions: the translation of the center of mass and the relative motion, which are useless for jumping performance. 
Therefore, the zero-g limit requires some attention.

In the special limit of zero gravity (g → 0), that is, τ = T
MT gs → ∞, one derives the normal force (13) as:

FN = 2δ2
(a + b cos2 θ) cos θ − 2a(θ − θ0) sin θ

(a + b cos2 θ)2
(16)

Here we have used the short-hand notation used in Appendix 5.2, namely a = 1
3 (m2 + m3)s2 and b = 2(2m1 + m2)s2.

Take-off implies a condition for the angle that does not depend explicitly on T :

2a(θc − θ0)

a + b cos2 θc
= cot θc (17)

In the same limit, after (11), the take-off angular speed θ̇c reads:

θ̇2
c = 8T (θc − θ0)

a + b cos2 θc
(18)

Therefore, the dimensionless take-off speed can be written as
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V̂ G = V G√
T /MT

= δ2

√
cos3 θc

aMT sin θc
(19)

Though Eq. (17) is still a non-algebraic equation, it may be simplified for some special limits, which we discuss in what it 
follows. The cases of interest are those special limits in which the mass is concentrated on a particular part of the body. In 
the following we consider in detail three special limits.

3.3.1. The limit m1 → MT

In the limit m1 → MT (all other masses vanish), after (9) and (10), we can write:

a = 0, b = 4MTs2, & δ2 = 4MTs

Because this is a singular limit, we consider the asymptotic behavior as a = 1
3 (MT − m1)s2 → 0. In this limit, Eq. (17) reads:

a

2MTs2
(θc − θ0) = cos3 θc

sin θc
(20)

Therefore, if a → 0, one concludes that cos θc → 0, hence θc → π
2 . It is easy to see that the asymptotic behavior as a → 0 is:

θc = π
2

−
(

a(π − 2θ0)

4s2MT

)1/3

+O(a2/3)

Moreover, evaluating the take-off velocity (19):

V̂ G = V G√
T /MT

= 2
√

π − 2θ0 +O(a4/3) (21)

However this speed is bounded from above for the particular value θ0 = 0, hence

V̂ G ≤ 2
√

π ≈ 3.545 . . .

as the general bound (4). Performing a similar analysis for the normal force, it reads

FN ≈ 2T

s cos θ

The maximum reaction push-off force F max
N = FN(θmax) with θmax defined through F ′

N(θmax) = 0 (see Fig. 4), reads, after 
some work 4

F̂ max
N = F max

N s

T
≈ 34/3

2

1

((π − 2θ0)(1 − m1/MT))
1/3

(22)

Although the push-off force peak diverges as m1 → MT, the mean force,

〈
F̂N

〉
= 〈FN〉 s

T
≈

∫ θc
θ0

2√
θ−θ0

dθ∫ θc
θ0

cos θ√
θ−θ0

dθ

is finite. The integration may be written in terms of Fresnel functions; nevertheless, in the case of an initial flexion angle 
θ0 = 0, one has

〈
F̂N

〉
= 〈FN〉 s

T

∣∣∣∣
θ0=0

= 2.564

4 In the limit a → 0, the maximum force is located near π/2, looking for the same scaling one gets θmax ≈ π
2 − (π − 2θ0)1/3

(
4a
b

)1/3
, therefore the final 

force takes the form (22).
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3.3.2. The limit m2 → MT

The limit m2 → MT (all other masses vanish) is regular, therefore, one has

a = 1

3
MTs2, b = 2MTs2, & δ2 = 3MTs

Condition (17) is reduced to

2(θc − θ0)

1 + 6 cos2 θc
= cot θc (23)

leading to θc = 0.97590 (θc = 55.9◦) for θ0 = 0. In this limit, the take-off speed, the maximum normal force and its average 
read

V̂ G = V G√
T /MT

= 1.69, F̂ max
N = F max

N s

T

∣∣∣∣
θ0=0

= 2.58 &
〈
F̂N

〉
= 〈FN〉 s

T

∣∣∣∣
θ0=0

= 2.43

3.3.3. The limit m3 → MT

In the limit m3 → MT (all other masses vanish), one has

a = 1

3
MTs2, b = 0 & δ2 = MTs

In this case, the take-off condition (17) reads:

2(θc − θ0) = cot θ∞
leading to θc = 0.65327 (θc = 37.4◦) for θ0 = 0. In this case, one gets similar results as above

V̂ G = V G√
T /MT

= 1.69, F̂ max
N = F max

N s

T

∣∣∣∣
θ0=0

= 6 , &
〈
F̂N

〉
= 〈FN〉 s

T

∣∣∣∣
θ0=0

= 4.76

3.4. Discussion

In this subsection, we have presented the special limit of the zero-gravity jump. This limit is interesting because it allows 
us to compare the general case with the situation in which the muscular forces are more important than the gravity forces 
(the weight). That is, whenever T /(MT gs) � 1. Qualitatively, we observe similar results than in both cases, indicating the 
minor role of gravity in the process of a self-propelled jump. As a sub-product, from an analytical point of view it has been 
computed exactly, in sections 3.3.1, 3.3.2 and 3.3.3, the main observables V̂ G and 

〈
F̂N

〉
for some special configurations. The 

optimal take-off velocity is for m1 → MT and leads to V̂ G ≤ 2
√

π.

4. Concluding remarks and general discussion

Based on general mechanical conditions, we show that the jumping take-off occurs at the maximum value of the me-
chanical energy of the center of mass. Briefly, a jumper may increase its center of mass mechanical energy only if it is 
supported by some external force. As a consequence, to increase the kinetic energy before take-off, the body needs to in-
crease the contact forces on the ground. Further, following an energy argument, the take-off velocity of the center of mass 
is bounded by the stored elastic energy per unit mass. The jumping velocity bound (4) eventually does not depend on the 
body mass, represented by the horizontal line in Fig. 1, because the elastic energy per unit mass should be an intrinsic 
feature characterizing bio-materials, accordingly with Borelli’s law.

Moreover, our analysis could be useful for other self-propelled organisms like fungi [2] and plants [19,20] which display 
mechanisms for seed or spore dispersal, consistent with the current jump definition. In the same way, these results could 
be helpful to design artificial jumpers, focused on maximizing the amount of stored energy with a minimization of mass 
(density of energy) [21]. We emphasize that the limit velocity for living organisms is not the same as that of artificial 
jumpers, like for example, robots. Indeed, artificial jumpers are expected to have different amounts of stored energy per 
unit mass for jump, like chemical energy provided by batteries, therefore it is expected that these situations will manifest a 
different take-off velocity bound, e.g. Some studies [4] reports take-off velocities of some engines as large as 9 m/s.

At this stage, we cannot evaluate the nature of large variations on take-off velocity among species, readily seen in Fig. 1, 
for the same body mass. Probably, these variations are a consequence of the specific design. In a future publication [22], we 
will consider a more realistic assumption, whereas the muscular energy comes only from the extremities (because most of 
the muscular energy comes from the muscular mass of the thigh and the limb and not from the full body mass).

On the other hand, under these assumptions, it is found that the mean reaction force before take-off scales as (7) for a 
large number of different organisms as shown in Fig. 2.
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Finally, we illustrate the general results in the frame of Alexander’s model, which can be exactly solved in some special 
limits.

We end this paper commenting on a recent research performed with mantises [5]. In this study, it was observed (see 
Fig. 1) a possible scaling regarding the dependence of take-off velocity and size of mantis. Roughly, the scaling is consistent 
with a constant power per unit mass. More precisely, if P is the muscular power released per unit mass, then the take-off 
velocity is consistent, by dimensional analysis, with:

V G ∼ (Ps)1/3

Because the body size scales as s ∼ M1/3
T , based on his results, Sutton et al. conjecture the scaling

V G ∼ M1/9
T

This law can be extrapolated from the respective data (black triangles) plotted in Fig. 1. Though a constant energy per mass 
and a constant power per mass processes appear to be both qualitatively and quantitatively different, it must be pointed 
out that the mantises’ take-off velocity is still consistent with a limiting speed derived in this current work. Note that both 
behaviors coincide for a mass of the order of 103 kg, validating the idea of a constant energy per unit mass limiting speed, 
for all those species such that MT < 103 kg.

5. Appendices

5.1. Lagrangian formulation of the two-segment model

The kinetic energy of the model (see Fig. 3) reads

K = m1 v2
1

2
+ m2 v2

2

2
+ m3 v2

3

2
+ I2θ̇

2

2
+ I3θ̇

2

2
(24)

where v2
1, v2

2, and v2
3 are the squared speeds of the center of mass of the trunk and of the second and third leg segments. 

Moreover, I2 = m2s2

24 and I3 = m3s2

24 are the moments of inertia of each thigh and each limb, respectively, and θ̇ is the angular 
velocity of the leg parts. Ultimately, all speeds are proportional to θ̇ . Therefore, the total kinetic energy reads

K [θ, θ̇ ] = 1

2
I2(θ)θ̇2 (25)

where we define I2(θ) by Eq. (9). The potential energy includes the gravitational energy:

UG = δ2

2
g sin θ (26)

where δ2 is defined by Eq. (10), and the stored energy by the muscle knees:

Um = 4T
(π

2
− θ

)
≥ 0 (27)

Notice that we define the zero muscular energy by the energy at a non-elongated configuration. Therefore, the total potential 
energy reads

U (θ) = δ2

2
g sin θ − 4T

(π
2

− θ
)

(28)

5.2. Lagrangian formalism

In this appendix, we review the general Lagrangian formalism as applied to this model. The equation of motion of the 
jumper can be obtained directly from a Lagrangian function. The Lagrangian of the jumper reads:

L = 1

2

(
a + b cos2 θ

)
θ̇2 − δ

2
g sin θ + 4T

(
θ − π

2

)
(29)

where a and b are parameters for a two-segment model

a = 1

3
(m2 + m3)s2, & b = 2(2m1 + m2)s2

The Euler–Lagrange equations for the Lagrangian (29) gives the ordinary differential equation (ODE),

θ̈ =
[

b sin θ cos θ θ̇2 − δ2
2 g cos θ + 4T

]
(
a + b cos2 θ

) (30)
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which was solved numerically by Alexander [9]. In principle, this ODE solves the problem; however, the variational approach 
provides us with a conserved quantity, which appears to be the energy (8) and which is settled a priori by the initial 
configuration of the jump:

E = 1

2
I(θ)θ̇2 + gδ sin θ − 8θ = gδ sin θ0 − 8θ0

hence, one recovers the general expression for θ̇2 as in Eq. (11).
The normal force defined by Eq. (13) can be expressed using (8) and (30) by a function that depends only on the angular 

variable θ :

FN = MT g + δ2

2
(cos θ θ̈ − sin θ θ̇2),

= 1

4(a + b cos2 θ)

[
4aMT g + 8T δ cos θ + (4MTb − δ2)g cos2 θ − 16aT δ(θ − θ0) sin θ

(a + b cos2 θ)

]
(31)

The take-off condition appears, after imposing FN = 0:

4aMT g + 8T δ cos θ + (4MTb − δ2)g cos2 θ = 16aT δ(θ − θ0) sin θ

(a + b cos2 θ)
(32)

This non-algebraic equation provides the take-off angle θc, and the take-off angular speed θ̇c (equation (11)). The reader 
may directly notice that this condition arises also from PG = dEG

dt ≡ 0.
Finally, replacing these values into the take-off expression for the center of mass velocity (12), one obtains (14).
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