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We present a short review of the experimental observations and mechanisms related to 
the generation of quasipatterns and superlattices by the Faraday instability with two-
frequency forcing. We show how two-frequency forcing makes possible triad interactions 
that generate hexagonal patterns, twelvefold quasipatterns or superlattices that consist of 
two hexagonal patterns rotated by an angle α relative to each other. We then consider 
which patterns could be observed when α does not belong to the set of prescribed 
values that give rise to periodic superlattices. Using the Swift–Hohenberg equation as 
a model, we find that quasipattern solutions exist for nearly all values of α. However, 
these quasipatterns have not been observed in experiments with the Faraday instability for 
α �= π/6. We discuss possible reasons and mention a simpler framework that could give 
some hint about this problem.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

Nous présentons une courte revue des observations expérimentales et des mécanismes qui 
ont permis d’engendrer des structures quasi cristallines à l’aide de l’instabilité de Faraday 
sous l’effet d’une excitation périodique comportant deux fréquences. Nous montrons 
comment l’excitation à deux fréquences permet d’obtenir des triades de vecteurs d’onde 
résonantes qui induisent la formation de structures hexagonales, de structures quasi 
cristallines dodécagonales ou de super-réseaux résultant de la superposition de deux 
réseaux d’hexagones tournés l’un par rapport à l’autre d’un angle α. Nous considérons 
ensuite quelles sont les structures obtenues lorsque α ne prend pas la série de valeurs 
discrètes conduisant à un super-réseau périodique. Nous montrons sur l’équation de Swift–
Hohenberg qu’il existe dans ce cas des solutions à symétrie quasi cristalline pour presque 
toutes les valeurs de α. Nous discutons les raisons possibles pour lesquelles ces solutions 
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n’ont pas été observées expérimentalement pour α �= π/6 et nous mentionnons un cadre 
plus simple qui permettrait d’éclaircir cette question.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Pattern-forming instabilities have been studied in fluid mechanics since the 19th century. In 1831, Faraday observed that 
standing surface waves can be generated by vertically vibrating a fluid layer above a critical amplitude [1]. Linear stability 
analysis has been first used to understand the Kelvin–Helmholtz instability [2], i.e. waves amplified by a shear flow at the 
interface between two fluids of different densities. The first quantitative experimental studies on pattern-forming instabili-
ties were carried out by Bénard in 1900 on thermal convection [3]. In contrast to the two first examples, patterns generated 
by the Bénard–Rayleigh instability are not standing or propagating waves, but stationary spatially periodic structures. In all 
these examples, pattern-forming instabilities are related to a transition from a spatially homogeneous (often motionless) 
state, to one varying periodically in space or time. Linear stability analysis of the homogeneous state provides the critical 
wave number kc of the first unstable mode and the critical value of a control parameter for the instability threshold. It gives 
no information about the geometry of the pattern. Any superposition of linear modes with wave vectors kp (p = 1, ..., N) in-
deed provides a growing pattern above the instability threshold, provided |kp | = kc. The geometry of the pattern is selected 
by the nonlinear interactions between the growing linear modes.

In the case of a fluid layer of infinite horizontal extent, the spatial dependence of linear modes is of the form exp(±i kp ·
r) where r = (x, y). These modes can be superposed with arbitrary phases and amplitudes to give rise to an infinite number 
of growing patterns. Starting from Faraday [1], only a subclass of periodic patterns, periodic tilings of the plane, have been 
considered for more than one and a half century. As written by Chandrasekhar [4], “it may be reasonable to argue that since 
there are no points or directions in the horizontal plane which are preferred, the entire layer in the marginal state must 
be tessellated into regular polygons with the cell walls being surfaces of symmetry. Such complete symmetry will require 
that the polygons be either equilateral triangles, squares, or regular hexagons”. Of course, one should also consider stripes 
or rolls, i.e. patterns that depend only on one space coordinate (N = 2) and one could take into account parallelograms 
instead of squares. Considering patterns that consist of a unit cell that repeats itself regularly was certainly the same kind 
of simplification that prevailed in crystallography until the discovery of quasicrystals [5]. Shortly after this discovery, it has 
been observed that hydrodynamic instabilities can also generate more complex patterns than periodic tilings of the plane 
with regular polygons. A large variety of these patterns have been first observed using the Faraday instability, including not 
just periodic patterns of stripes, squares or hexagons, but many more complex patterns such as superlattices, quasipatterns, 
localized structures (oscillons).

1.1. Patterns generated by the Faraday instability

The Faraday instability is observed on the free surface of a vertically vibrated fluid layer. When the vibration is sinusoidal 
at angular frequency ω, a standing wave pattern with wavenumber kc is generated above a critical vibration amplitude. kc
is related to ω. When viscous dissipation is not too large, it is given with a good approximation by the dispersion relation 
ω = 2 �(k) of gravity-capillary waves [6]. We have assumed that, as usual for parametric amplification, the standing waves 
that are amplified above the instability threshold are subharmonic, i.e. have a fundamental frequency ω/2. However, in thin 
fluid layers for which bottom friction can be large, the harmonic response can have a lower threshold than the subharmonic 
one [7].

Early experiments performed in a container with a horizontal extension much larger than the instability wavelength dis-
played square patterns above the instability onset [8–10], in agreement with the observations of Faraday. These experiments 
were all performed in the capillary range with moderate viscous dissipation. When dissipation is increased, one-dimensional 
stripe patterns are observed [11,12]. Another important parameter is the relative contribution of gravity to surface tension 
in the dispersion relation. When it is tuned appropriately by changing ω, hexagons can be observed [13].

A qualitative explanation of the pattern selection process has been provided in [12]. It relies on a characteristic feature 
of the Faraday instability. Consider two standing wave patterns with wave vectors k1 and k2 and complex amplitudes A1

and A2. If |k1| = |k2| = kc, both are neutral at the instability threshold. Quadratic nonlinear interactions of these modes give 
a standing wave of frequency ω and a wave vector k1 + k2 (see Fig. 1a). In the absence of dissipation, this mode is neutral 
if �(|k1 + k2|) = 2 �(kc). This relation cannot be fulfilled if �(k) is concave, i.e. for pure gravity waves (kc → 0). For pure 
capillary waves (kc → ∞), it requires that the angle θr between k1 and k2 is such that cos(θr/2) = 2−1/3 i.e. θr ≈ 75 deg. 
When ω is decreased, kc decreases and θr decreases to zero when kc lc → 1/

√
2, where lc is the capillary length. If viscous 

dissipation is small, this harmonic mode is weakly damped. To leading order, its amplitude B is governed by the equations

Ȧ1 = μA1 − A2 B + · · · (1)

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 1. (a) Two neutral modes with wave vectors k1 and k2 and amplitudes A1 and A2 oscillating at ω/2, nonlinearly interact to give a wave with wave 
vector k1 + k2 and amplitude B oscillating at ω. In the absence of dissipation, this wave is neutral if �(|k1 + k2|) = 2�(kc) = ω. (b) N neutral modes with 
wave vectors kp at equal angles 2π/N on the circle |kp | = kc .

Ȧ2 = μA2 − A1 B + · · · (2)

Ḃ = −νB + 2A1 A2 + · (3)

where an overbar stands for the complex conjugate, μ is the distance to threshold, and ν > 0 is related to damping. The 
relative signs and the coefficients of the quadratic nonlinearities are chosen to conserve energy in the absence of dissipation. 
In the presence of dissipation, ν �= 0, and B can be adiabatically eliminated, B ≈ 2A1 A2/ν , giving a contribution to the cubic 
nonlinearities in the amplitude equations for Ak with a coefficient −2/ν . When dissipation is small, neutral modes with 
wave vectors making an angle θr are therefore strongly inhibited due to the energy transferred to harmonic modes by 
triad interaction. Quantitative calculations have shown that this mechanism indeed selects the preferred pattern in the low 
dissipation case [14,15]. It has been found that the rotational order of the pattern increases when θr decreases to zero, with 
the selection of 8-fold, 10-fold, ... quasicrystalline patterns in good agreement with the experimental observations [16].

Another type of patterns observed with the Faraday instability in the case of a sinusoidal forcing consists of patterns 
displaying two length scales, a first one related to kc together with a long wavelength modulation with wavenumber K < kc
with K and kc commensurate such that the pattern is periodic in space [17]. These patterns were later called superlattices 
(see below) and have been recently observed in direct numerical simulations [18].

1.2. The observation of quasipatterns with two-frequency forcing of the Faraday instability: triad interactions

We now present an efficient method that has been used to generate quasipatterns and superlattices using the Faraday 
instability. The idea of the method is to modify the forcing in order to allow triad interactions between neutral modes. 
These interactions are usually forbidden with sinusoidal forcing. Indeed, in the case of a fluid layer of infinite horizontal 
extent, the perturbation of the free surface is, according to Floquet’s theory,

ξ(r, t) =
N∑

p=1

[
Ap exp(i kp · r) + c.c.

]
[χ(t)exp(iσ t) + c.c.] + · · · (4)

where χ(t) is periodic with the period of the forcing 2 π/ω and i σ is the Floquet exponent (see Fig. 1b). The dots stand 
for higher-order terms generated by the nonlinearities of the problem above the instability threshold. If the response is 
subharmonic, σ = ω/2. Therefore, the unstable solution (4) spontaneously breaks the invariance t → t +2 π/ω of the forcing. 
Consequently, if ξ(r, t) is a bifurcated solution, ξ(r, t + 2 π/ω) = −ξ(r, t) is another solution. This implies that the amplitude 
equation for Ap should be invariant under the transformation Ap → −Ap , thus forbidding quadratic nonlinearities of the 
form

∂ Ap

∂t
= μAp + λAq Ar + · · · (5)

This can also be understood from resonance arguments. Spatial resonance is fulfilled provided that kp + kq + kr = 0. Ap is 
related to an oscillation at angular frequency ω/2, whereas Aq Ar corresponds to −ω, therefore temporal resonance is not 
satisfied and λ should vanish.

The first motivation to use a two-frequency periodic forcing was to allow quadratic nonlinearities and therefore triad 
interactions by changing the temporal symmetries of the problem [19]. A two-frequency periodic forcing can be written

f (t) = a [cos θ cosm ω t + sin θ cos(n ω t + φ)] (6)

where a cos θ (respectively a sin θ ) is the amplitude of the component at angular frequency m ω (respectively n ω). m
and n are co-prime integers, therefore f (t) is periodic with period 2 π/ω. The phase difference can be taken such that 
0 ≤ φ ≤ 2 π/m using Bezout’s theorem. If m and n have different parities, the most unstable resonance tongue can be har-
monic (σ = ω), therefore quadratic nonlinearities are allowed in (5). This can be easily understood if the component with 
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m = 2 is slightly perturbed by the component with n = 3. The response of the surface is at angular frequency m ω/2 = ω
(subharmonic response to the dominant forcing component), but the angular frequency of the forcing is also ω. The reso-
nance argument can be also used: Ap (respectively Aq Ar ) in (5) are related to an angular frequency m ω/2 = ω (respectively 
−2 ω). The angular frequency n ω = 3 ω now involved in λ fulfills temporal resonance. Triad interactions that result from 
quadratic nonlinearities generate an hexagonal pattern [19], except for a particular value of φ for which λ vanishes [12]. 
More generally, quadratic nonlinearities are allowed when a component of the forcing with m even is perturbed by another 
component with n odd.

The second motivation to use a two-frequency periodic forcing was to generate unstable modes with two different 
wavenumbers |k(m)| = kc and |k(n)| = kd respectively related to the forcing frequencies m ω and n ω through the dispersion 
relation of the Faraday instability. If modes with wave vectors kc bifurcate first, and modes with wave vectors kd are weakly 
damped, we expect resonant interactions between neutral and damped modes to select particular angles between neutral 
modes with a mechanism similar to the one described above in the case of sinusoidal forcing. A similar mechanism was 
used to model quasicrystals using a mean-field approach in the spirit of Landau [20]. In order to get neutral modes k(m)

and weakly damped modes k(n) , we need to work in the vicinity of the codimension-two bifurcation for which both sets of 
modes become simultaneously unstable. This selects the values of a and θ in (6) and therefore strongly reduces the number 
of free parameters of the forcing.

The method therefore consists in choosing an even–odd (m, n) couple in order to allow triad interactions between neutral 
modes. When the modes kn bifurcate first, the response is subharmonic and triad interactions are forbidden. When the fluid 
viscosity is large, we get a pattern of stripes (N = 2). When the modes k(m) bifurcate first with k(m) = kc, the response is 
harmonic and triad interactions generate a hexagonal pattern. We then move close to the codimension-two point. Changing 
the value of the remaining free parameter φ in Eq. (6) allows the observation of twelvefold quasipatterns. Therefore, to 
the leading order, these patterns can be understood as the superposition of two hexagonal patterns rotated one respect to 
the other by an angle α = π/6. They have been observed in a small interval of φ but on a large range of frequency ω for 
(m, n) = (4, 5), (4, 7), (6, 7), (8, 9) but not for (m, n) = (2, 3). They can bifurcate from the flat surface, from an hexagonal 
pattern or from the pattern of stripes generated by the n ω component. In the hysteresis region between quasipatterns and 
the flat surface, one or several localized axisymmetric waves, sometimes called oscillons, have been also observed [12].

1.3. Theoretical models

Early theoretical models of the Faraday instability were performed in the limit of an inviscid fluid, dissipation being 
added in a phenomenological way [21]. This approach predicts a square pattern in the capillary regime [22] but does not 
capture the other patterns observed in different parameter ranges. A better controlled low-viscosity quasipotential approx-
imation [14] is in better agreement with experiments in the small dissipation range. A weakly nonlinear analysis close to 
the instability threshold using the Navier–Stokes equation with finite viscosity displays a very good agreement with ex-
periments [15]. Both the quasipotential approximation and the finite viscosity analysis have confirmed the observation of 
quasipatterns using sinusoidal forcing [16] and the quasipotential approximation has been used to model some experimen-
tal results with two-frequency forcing. Another approximation of the full Navier–Stokes equation that can be performed for 
finite viscosity in the case of a thin fluid layer is the inertial lubrication approximation [23]. It is the appropriate limit to get 
a possible competition between harmonic and subharmonic responses of the waves [7]. In the vicinity of the codimension-
two bifurcation, for which both the harmonic response and the subharmonic one become simultaneously unstable, two 
subharmonic neutral modes with wave vectors making an appropriate angle are resonant with an harmonic mode. This can 
lead to the generation of a quasipattern [24].

A different theoretical approach used model equations of the Swift–Hohenberg type, i.e. nonlinear partial differential 
equations for scalar fields u(x, y, t) that display a stationary pattern-forming instability at finite wavenumber. This approach 
obviously cannot provide a quantitative description of the Faraday problem, but it emphasizes the qualitative mechanisms 
for the generation of quasipatterns for any stationary pattern-forming instability. Il has been first shown that modifying 
the form of the cubic nonlinearity of the Swift–Hohenberg equation by considering terms involving more and more spa-
tial derivatives allows one to generate patterns with an increasing rotational order [25]. This looks like a rather artificial 
model, but shows that two length scales are not generally required to generate quasipatterns, as is the case of the Faraday 
instability.

Models involving two length-scales, i.e. two wavenumbers kc and kd that become unstable for similar values of the 
forcing parameter, were studied in detail. This can be done either by taking two coupled Swift–Hohenberg-type equations, 
respectively for u1(x, y, t) and u2(x, y, t), displaying an instability at wavenumber kc, respectively kd [25], or one Swift–
Hohenberg type equation for u(x, y, t) with a linear part involving higher spatial derivatives, such that two wavenumbers 
kc and kd becomes simultaneously unstable [26]. In both cases, kc and kd can be related to the wavenumbers resulting from 
the forcing at angular frequency m ω (respectively n ω). As explained above, one needs (m, n) even–odd to get quadratic 
nonlinearities in the amplitude equation, i.e. three-wave resonances. This can be achieved easily in both models if quadratic 
nonlinearities are taken into account in the Swift–Hohenberg-type equations. Then, if two wave vectors of modulus kc sep-
arated by an angle θr become first unstable, they can be coupled through resonant three-wave interactions with a weakly 
damped wave vector of modulus kd. The ratio kd/kc selects the value of θr through the relation kd/kc = 2 sin(θr/2) and 
therefore affects the rotational order of the pattern with wave vectors of modulus kc. Depending on the nature of three-



298 S. Fauve, G. Iooss / C. R. Mecanique 347 (2019) 294–304
wave interactions, this can be done either by inhibiting the pattern with two wave vectors separated by an angle θ or 
enhancing this configuration. This mechanism has been studied in detail for the two-frequency Faraday forcing with differ-
ent values of m, n and many experimental observations have been found in agreement with theoretical predictions [27–29]. 
Coupled Swift–Hohenberg type equations have been also used to predict random patterns at the instability onset [30].

Although weakly nonlinear theory used to find the amplitude equations for N wave vectors distributed equally around 
a circle fairly well describes the experimental observations of quasipatterns (N ≥ 8) and provides the correct mechanisms 
to explain their stability, it has been observed that the series is divergent because of the small divisor problem [31], [32]. 
Some modes generated by the nonlinear interactions between the neutral ones can have a wave vector arbitrary close to the 
neutral circle and therefore be close to resonance. This leads to large coefficients in the amplitude equation when they are 
adiabatically eliminated. This problem primarily concerns the existence of quasipatterns described as power series of the 
bifurcation parameter whatever the stability of these quasipatterns with respect to other planforms. It has been studied on 
the Swift–Hohenberg equation, although quasipatterns are not stable in that equation. It has been found that the divergent 
series can be used to build a quasiperiodic solution, which is an approximation of a solution to the Swift–Hohenberg 
equation [32,33], and this also holds for quasipatterns in the Bénard–Rayleigh steady convection [34].

1.4. Superlattices

As mentioned above, the Faraday instability can also generate patterns displaying two length scales, a first one related 
to the forcing frequency together with a long wavelength modulation. These length scales being commensurate, the pattern 
is periodic in space [17]. A variety of such patterns have been observed with two-frequency forcing [35–37] and have 
been called superlattices. Different types of superlattices have been reported: some of them bifurcate rather far from the 
codimension-two point for which quasipatterns are observed and involve a subharmonic frequency m ω/4 together with 
a slow spatial modulation. Others bifurcate close to the codimension-two point and, therefore, could be in competition 
with quasipatterns. As said above, these quasipatterns can be understood as the superposition of two hexagonal patterns 
with wavenumber kc, rotated by an angle α = π/6 relative to each other. Among the superlattices found close to the 
codimension-two point, some of them result from two hexagonal patterns with 0 < α < π/6. It has been shown that, for 
some particular values of α, the resulting pattern is periodic and spanned by two wave vectors K1 and K2 with modulus 
K and making an angle 2 π/3 [38]. The hexagonal patterns are given by {k1, k2}, respectively {k′

1, k
′
2}. We have k1 =

p K1 + q K2 , k′
1 = p K1 + (p − q) K2 , where p and q are co-prime integers such that p > q > p/2 > 0 and p + q is not a 

multiple of 3. The angles α for superlattices are given by

cosα = p2 + 2 p q − 2 q2

2(p2 − p q + q2)
, sinα =

√
3p(p − 2q)

2(p2 − pq + q2)
(7)

and K = kc/
√

p2 − pq + q2. These superlattices are periodic structures, but involve two scales 2 π/kc and 2 π/K . The 
wavenumber kd of the damped modes being a linear combination of K1 and K2 , one can expect that it plays an important 
role in the stability of superlattices. Superlattices with different values of α or of (p, q) have been observed in the vicinity 
of the codimension-two point [37]. Their relative stability can be changed under the action of a third forcing frequency.

Although both these superlattices and quasipatterns can bifurcate from an hexagonal pattern close to the codimension-
two point, the possible competition between superlattices and quasipatterns has not been investigated so far. A first 
question, simpler than the relative stability of these patterns, is related to the nature of the patterns that exist for nearly all 
values of α that do not correspond to superlattices. The next section is devoted to this problem.

2. Quasipattern solutions to the Swift–Hohenberg equation for arbitrary values of α

We look for quasipatterns, solutions to the steady Swift–Hohenberg PDE model equation

(1 + )2u − μu + u3 = 0 (8)

where u(x, y) is a real function of (x, y) ∈ R2,  is the Laplace operator, μ a real bifurcation parameter. In the Fourier 
plane, we have two pairs of six basic wave vectors {k j : j = 1, 2, ..6} and {k′

j; j = 1, 2, ..., 6} both equally spaced on the unit 
circle (angle π/3 between k j and k j+1 and between k′

j and k′
j+1) and such that k1 is parallel to the x axis, while k′

1 makes 
an angle α ≤ π/6 with the x axis (see Fig. 2). The quasilattice � is then defined by

� = {k ∈ R2;k =
∑

j=1,...6

m jk j + m′
jk

′
j, m j,m′

j ∈ N

Notice that k j+3 = −k j , k′
j+3 = −k′

j for j = 1, 2, 3, and notice that we also have

k1 − k2 + k3 = 0, k′
1 − k′ + k′ = 0
2 3
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Fig. 2. Definition of the lattice �.

There are values of α for which � is periodic, as this is noticed in [38]. In particular, we obtain a hexagonal lattice in the 
case when � is a sublattice of a periodic lattice, built from two basic wave vectors K1 and K2 as mentioned above (see 
Eq. (7)).

This leads to the following definition.

Définition 2.1. The set Ep of special angles is defined as

Ep := {α ∈R/2 πZ; cosα ∈ Q, cos(α + π/3) ∈Q}

It is then clear that Ep contains the angles α that satisfy (7). Moreover, we have the following lemma.

Lemma 2.1. The set Ep has a zero measure in R/2 π Z.
(i) If the wave vectors k1, k2 , k′

1 , k′
2 are not independent on Q, then α ∈ Ep .

(ii) If α ∈ Ep then the lattice � is periodic with an hexagonal symmetry, and wave vectors k1, k2 , k′
1 , k′

2 are combinations of only 
two smaller vectors, of equal length making an angle 2 π/3.

This lemma is proved in [39].
Let us assume that α ∈ Eqp = (Ep)c (complement of Ep ). The function u(x, y) is a real function that we put under the 

form of a Fourier expansion

u =
∑
k∈�

u(k)ei k·x, u(k) = u(−k) ∈C (9)

We observe that any k ∈ � may be written as

k = z1k1 + z2k2 + z3k′
1 + z4k′

2, z = (z1, z2, z3, z4) ∈Z4

so that � spans a 4-dimensional vector space on Q since α /∈ Ep . The norm Nk is defined by

Nk =
∑

j=1,...,4

|z j| = |z|

To give a meaning to the above Fourier expansion, we need to introduce Hilbert spaces Hs , s ≥ 0:

Hs =
{

u =
∑
k∈�

u(k)eik·x; u(k) = u(−k) ∈C,
∑
k∈�

|u(k)|2(1 + N2
k)s < ∞

}
Hs is an algebra for s > 2, and possesses the usual properties of Sobolev spaces Hs in dimension 4. The following useful 
results are proved in [39].

Lemma 2.2. If α ∈ Eqp , a function defined by a convergent Fourier series as (9) represents a quasipattern, i.e. is quasiperiodic in all 
directions.

Lemma 2.3. For nearly all α ∈ (0, π/6), in particular for α ∈ EQ = Q π ∩]0, π/6], the only solutions to |k(z)| = 1 are ±k j , ±k′
j

j = 1, 2 and k = ±k3 , or ±k′
3 , i.e. corresponding to z = (±1, ∓1, 0, 0) or (0, 0, ±1, ∓1).

Let us denote by E0 the set of α’s such that Lemma 2.3 applies.
Now, the following Lemma, proved also in [39], shows that inverting the operator (1 + )2 gives rise to a small divisor 

problem. This is the source of the main difficulties of the problem, which needs the use of the strong implicit function 
theorem to be solved (see [39]).
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Lemma 2.4. For nearly all α ∈ Eqp ∩ (0, π/6), and for ε > 0, there exists c > 0 such that, for all z �= 0, such that |k(z)| �= 1, we have

(|k(z)|2 − 1)2 ≥ c

|z|12+ε
(10)

Remark 1. In the case when α ∈ Ep , then by Lemma 2.1 the lattice is periodic and we have a much better estimate for a 
certain c > 0:

(|k(z)|2 − 1)2 ≥ c, for any k ∈ � with |k(z)| �= 1

Below, we compute a formal expansion in powers of an amplitude ε. Such an expansion will diverge in general (Gevrey 
series). Once truncated, this expansion plays the role of a first approximation, and is a starting point of the Newton iteration 
process, ruling the Nash–Moser method used in [39].

2.1. Symmetries

Our problem possesses important symmetries. First, the symmetry S defined by Su = −u, which commutes with (8)
because of the imparity of the equation. Let us define L0 = (1 + )2), then we have S L0 = L0S, S u3 = (S u)3.

The system is invariant under rotations of the plane. Denoting by Rθ the rotation of angle θ , centered at the origin, we 
define classically (Rθ u)(x) = u(R−θ x), so that Rθ L0 = L0Rθ , Rθ u3 = (Rθ u)3.

The third symmetry τ represents the symmetry with respect to the bisectrix of wave vectors k1 and k′
1. This changes 

(k1, k2, k3, −k1, −k2, −k3) into (k′
1, −k′

3, −k′
2, −k′

1, k
′
3, k

′
2). We also have the commutation properties

τ L0 = L0τ , τu3 = (τu)3 (11)

2.2. Formal series

We are looking for solutions, invariant under rotations of angle π/3, under the form of formal power series in an amplitude 
ε:

u =
∑
n≥1

εnun, μ =
∑
n≥1

εnμn

where ε is defined by the choice of u1, and un has the form of a Fourier series (9) that is finite. At order ε, we obtain 
classically L0u1 = 0, which means that u1 lies in the kernel of L0. In the class of functions invariant under the rotation of 
angle π/3, and provided that α ∈ E0, the kernel is two dimensional, spanned by

v =
∑

j=1,2,..,6

eik j ·x, w =
∑

j=1,2,..,6

eik′
j ·x

We observe that

τ v = w, τ w = v (12)

We then set

u1 = w + β1 v (13)

where the coefficient in front of w fixes the choice of the scale ε, provided that we choose to impose

〈un, w〉 = 0, n = 2,3, ... where 〈u, u′〉 =
∑
k∈�

u(k)u′(k)

since the linear operator L0 is selfadjoint in H0. The coefficient β1 is chosen later. Then we can prove the following theorem.

Theorem 2.5. Let us consider the Swift–Hohenberg model PDE (8). The superposition of two hexagonal patterns, differing by a small 
rotation of angle α leads to formal expansions in powers of an amplitude ε, of new bifurcating patterns invariant under rotations of 
angle π/3. For α ∈ E0 , we only have the bifurcating (classical) periodic hexagonal patterns and two branches of new patterns (see 
Fig. 5), with formal expansions of the form

u = ε(w + β1 v) + ε3ũ3 + ...ε2n+1ũ2n+1 + .., β1 = ±1 (14)

〈ũ2n+1, v〉 = 〈ũ2n+1, w〉 = 0, τ ũ2n+1 = β1ũ2n+1, τu = β1u

μ = ε2μ2 + ε4μ4 + ... + ε2nμ2n + .., μ2 > 0
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Fig. 3. Superposition of two hexagonal patterns for α = 4◦,7◦,π/18,π/6. Order ε and β1 = 1 in Theorem 2.5 is represented.

v =
∑

j=1,2,..,6

ei k j ·x, w =
∑

j=1,2,..,6

ei k′
j ·x

For ε ∈ Ep ∩ E0 , the expansions (14) converge, giving periodic patterns with hexagonal symmetry (superhexagons indicated in [38]
and [37]).

Remark 2. We show in Figs. 3 and 4 the order ε of the bifurcating branches with β1 = 1 and β1 = −1 respectively, for 
different values of α.

Proof. At order ε2, we obtain L0u2 = μ1u1, and the compatibility condition gives that there exists β2 ∈R such that

μ1 = 0, u2 = β2 v (15)

Order ε3 then leads to L0u3 = μ2u1 − u3
1, with the compatibility conditions

a μ2 − c − 3 b β2
1 = 0

a β1μ2 − 3 b β1 − c β3
1 = 0

where

a = 〈v, v〉 = 〈w, w〉 = 6

b = 〈v2 w, w〉 = 〈w2 v, v〉 = 36

c = 〈w3, w〉 = 〈v3, v〉 = 90

〈v2 w, v〉 = 〈w2 v, w〉 = 〈v3, w〉 = 〈w3, v〉 = 0

For example, the term 〈w3, v〉 is 0 because there does not exist m′
1, m′

2 ∈Z such that m′
1k′

1 +m′
2k′

2 = k j , due to Lemma 2.3, 
for α ∈ E0. This gives

(c − 3 b)(β3
1 − β1) = 0 (16)

and there exists β3 ∈R such that



302 S. Fauve, G. Iooss / C. R. Mecanique 347 (2019) 294–304
Fig. 4. Superposition of two hexagonal patterns for α = 4◦,7◦,π/18,π/6. Order ε and β1 = −1 in Theorem 2.5 is represented.

μ2 = c

a
+ 3

b

a
β2

1 , u3 = β3 v + ũ3, 〈ũ3, v〉 = 〈ũ3, w〉 = 0

The term ũ3 only contains Fourier modes ei k·x with k = m′
1k′

1 + m′
2k′

2.
Then, we can show easily
(i) u2n = 0, μ2n+1 = 0, for n = 1, 2, ....
(ii) for β1 = 0, we recover the classical periodic hexagonal pattern

u = ε w +O(ε3), μ = ε2μ2 +O(ε4), μ2 = 15

and using the symmetry τ , the other classical hexagonal pattern

τu = ε v +O(ε3), μ = ε2μ2 +O(ε4), μ2 = 15

(iii) For β1 = ±1, μ2 = 33 and the series for u and τu = β1u are uniquely determined. Then, the uniqueness of the series 
implies β3 = 0. More generally, at every order, we find un orthogonal to the eigenvector v so that finally τ u(ε) = β1u(ε). �
Remark 3. Su = −u is the solution that corresponds to change ε into −ε, which does not change μ. So, we only have two 
branches of bifurcating solutions (14) (see Fig. 5).

Remark 4. For α ∈ Eqp ∩ E0, the proof of existence of a quasipattern with asymptotic expansion (14) is made in [39].

Remark 5. For α ∈ Ep ∩ E0, the proof of convergence of the series (14) is standard in the frame of analytical functions of ε
(Lyapunov–Schmidt method).

Remark 6. When α is close to 0, it can be shown that the coefficient u3 is of order (α)−4. This is due to 2 kj − k′
j and 

2 k′
j − kj occurring as wave vectors, and which have a norm 4(1 − cosα) appearing with a square at the denominator. This 

factor (α)−4 also appears at higher orders in the expansion.
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Fig. 5. Bifurcating branches of quasipatterns. Actions of symmetries are indicated with arrows.

3. Concluding remarks

The existence of formal quasipattern solutions to the Swift–Hohenberg equation resulting from two hexagonal patterns 
has been shown for nearly all values of the angle α. If this result is also true for the Faraday problem, we should ask why no 
quasipatterns with α �= π/6 have been observed in Faraday experiments whereas superlattices have been widely reported. 
It is possible that it could be difficult to discriminate superlattices and quasipatterns when α is small because of the finite 
spatial extension of the experiment, but the confusion is not possible as soon as α becomes large enough. An explanation 
could be that, as in the case of frequency-locked states of two oscillators, nonlinear interactions are able to maintain the 
locked regime (here the superlattice) on a fairly large window of parameter range. However, borders of superlattice states 
have been clearly reported in the experiments [35–37]. The neighbor states are hexagons or disordered regimes that involve 
defects or even spatiotemporal chaos. It is possible that these patterns are more stable than homogeneous quasipatterns. 
Patterns with defects could be the signature of the transition from superlattices to quasipatterns as shown by Pierre Coullet 
for one-dimensional spatial patterns [40,41]. A simpler way to handle this problem for superposed hexagonal patterns could 
be to study the bifurcation to an hexagonal pattern in the presence of a spatial forcing with hexagonal symmetry. This 
type of problem has been recently reconsidered in crystallography, where the commensurate–incommensurate transition for 
graphene on a substrate with hexagonal symmetry has been studied [42]. It has been shown that graphene can stretch to 
adapt to the slightly different periodicity of the substrate and that this depends on the angle between the two hexagonal 
structures. The transition to an incommensurate state involves defects and domain walls. This problem could be studied 
using the equation for the slowly varying amplitude of an hexagonal pattern in the presence of a forcing with hexagonal 
symmetry. This would help understanding how superlattices bifurcate when the mismatch of the pattern with respect to 
the forcing is increased.
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