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I will shortly review the history of experimental and theoretical findings on period 
doubling until the discovery of the quantitative universal properties of the infinite period-
doubling cascade.
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r é s u m é

Cet article décrit brièvement l’histoire des expériences et des développements théoriques 
du doublage de période jusqu’à la découverte des propriétés quantitatives universelles de 
la cascade infinie.
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Version française abrégée

Avant d’être renormalisé à Nice et à Los Alamos et de devenir une route robuste (ouverte) vers le chaos, le phénomène 
de doublage de période a vécu une longue histoire. Cet article présente quelques étapes de ces développements aussi bien 
théoriques qu’expérimentaux. Les notions de familles à un paramètre et de bifurcation (bien que cette dernière fut introduite 
par Poincaré) ont mis un certain temps avant d’émerger comme les concepts naturels. La lecture des articles « anciens »
frappe par la capacité de calcul (manuelle) et l’inventivité des dispositifs expérimentaux. De nombreuses observations et 
développements théoriques ont suivi la découverte des propriétés d’universalité dans la suite d’accumulations de doublage 
de période, et ce flux de résultats n’est certainement pas près de s’arrêter.
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1. Introduction

More than one hundred years separate the first observations of the doubling period phenomenon and the discovery of 
the quantitative universal properties of accumulation of period doublings. As we will see, there were many experimental 
and theoretical works on the subject, from which the contemporary concepts emerged. It is interesting to try to understand 
in the light of our present knowledge what was observed or computed, and how some concepts emerged quite early (like 
perturbation techniques), while some remained without use for a long time (like the Poincaré map). Of course, we should 
keep in mind that Science is in constant evolution and we are somewhat biased by our actual knowledge. The major 
concepts and ideas of tomorrow may largely encompass those of today and shed a different light on the subject.

It is sometimes difficult to ascertain what was really observed in experiments (notwithstanding the fact that some ex-
perimental reports seem to be lost). Very clever experimental settings had to compensate for the lack of sophisticated 
equipments and measurements techniques. For example, in the famous frequency demultiplication experiment [1], the sys-
tem was observed through a telephone receiver and a human ear was used as a frequency analyzer. The amazing precision 
and details of observations had probably a lot to do with the fact that Balthazar Van der Pol had absolute pitch [2].

Quite probably, there were many more manifestations of period doubling, which were missed or discarded. It is of 
course much easier to search experimentally for a phenomenon that has been already predicted theoretically or previously 
observed in other situations. This probably explains why many experiments concentrated on the frequency demultiplication 
and in particular on period 3. Note also that frequency demultiplication found early applications [2] for example in building 
a television system [3]. Quite probably, higher period-doubling bifurcations were observed without being reported.

This paper is organized as follows, based more or less on successive epochs of more and more sophisticated theory and 
experiments. We will first discuss the history of the period-doubling phenomenon in itself and the development of the 
theoretical analysis until the occurrence of the notion of period-doubling bifurcation. We then describe some early obser-
vations of secondary period-doubling bifurcations and of the beginning of the cascade. This is followed by the qualitative 
observation of the infinite cascade and some mathematics-related results. Then came the quantitative results on the infinite 
cascade including universality and openness. The bibliography does not pretend to be exhaustive, but tries to mention the 
earliest articles about experimental and theoretical discoveries related to the phenomenon of period doubling.

In the sequel, we will say period n to mean period n T when the reference period T is obvious from the context.

2. Double period, subharmonics, undertone, frequency demultiplication, fractional harmonics

One of the first observations of a double period is due to Faraday [4] on surfaces of vibrating liquid layers. A few years 
later, Savart [5] observed a “son rauque” in cane vibrations, see also [6] and [7]. Von Melde observed a similar phenomenon 
in the vibration of strings, see Raman [8]. The related phenomenon of parametric resonance had been observed many times 
even much earlier (the swing was known in very ancient times, like, for example, in the Aiora festival of ancient Greece or 
in a statue of Minoean time). See also [9] for the history of electrical circuits.

In all the previously mentioned experiments, there is a periodic forcing at a frequency that is roughly twice the “natural” 
frequency of the system. Note that this is very different from the harmonic generation by nonlinearities. For a nice review 
about these early experiments and theory, see Von Kármán’s Gibbs lecture [10].

Surprisingly enough, some scientists have raised doubts on the existence of subharmonic solutions; we refer the reader 
to [11] section 2 for a discussion and historical references. The landmark paper of Van der Pol and Van der Mark [1] on 
frequency demultiplication also played a major role in the further developments. It is also one of the first papers analyzing 
the evolution of the dynamics along a one-parameter family.

The first theoretical approaches were made by Lord Rayleigh [12] and [13] (§65b) and Stephenson [14] using perturbation 
theory. A more mathematical approach was described by H. Poincaré [15], chapter XXVIII “Solutions du deuxième genre” 
using the time T map.

In order to briefly describe the findings at this stage of history, we will use the example of an electrical system discussed 
by Pedersen [11] (formula 3.31), namely (with slightly different notations and some rescalings),

d2x

dt2
+ γ

dx

dt
+

(
1

4
+ ξ + g x

)
x = sin(t) (1)

where γ ≥ 0 is a friction coefficient, ξ measures the detuning with respect to the period 4 π, and g measures the intensity 
of the nonlinearity. Considering the equation for the function −x(t + π), one can see that one can assume g ≥ 0, and it is 
enough to consider the parameter space P = {

(γ , ξ, g)
}

(with γ ≥ 0 and g ≥ 0).
Note that, if γ = ξ = g = 0, there is a unique periodic solution of period 2π given by

x(t) = −4

3
sin(t)

One can prove that if γ , ξ and g are small enough, equation (1) still has a unique solution of period 2π denoted by x0(t). 
It is natural to ask for the stability of this solution. One first transforms the equation by the translation x(t) = x0(t) + q(t), 
which leads to the equation
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d2q

dt2
+ γ

dq

dt
+

(
1

4
+ ξ + 2 g x0(t) + g q

)
q = 0 (2)

or in the more convenient system form

d

dt

(
q
v

)
=

(
v

−γ v − ( 1
4 + ξ + 2 g x0(t) + g q

)
q

)
(3)

and we are interested in the stability of the trivial solution q(t) = v(t) = 0. The Poincaré time 2π map denoted by P is 
particularly convenient for this purpose. The 2 × 2 matrix DP(0, 0) is obtained as the value at t = 2π of the solution to the 
matrix differential equation

d

dt
W (t) =

(
0 1

− ( 1
4 + ξ + 2 g x0(t)

) −γ

)
W (t)

with initial condition W (0) = Id. It follows from Theorem 7.3 chapter 1 in [16] that

det
(

DP(0,0)
) = e−2πγ

Therefore, if γ > 0, a change of stability in the matrix DP(0, 0) (as a function of (γ , ξ, g)) can only occur when an eigen-
value is equal to ±1 (the other eigenvalue being of modulus strictly smaller than one). In other words, a Neimark–Sacker 
bifurcation is impossible.

One can prove that, in a neighborhood of the origin in P , there is a surface (essentially a cone) defined as the zero set 
of a regular function H(γ , ξ, g) such that

H = 16 g2

9
− ξ2 − γ 2

4
+O

(|γ |3 + |ξ |3 + g3)
The equation H = 0 can also be solved in g and we get

g = F (γ , ξ) = 3

8

√
γ 2 + 4 ξ2 +O

(
γ 2 + ξ2) (4)

where F ≥ 0 is a regular function, except at the origin, such that, for 0 ≤ g < F (γ , ξ) (H < 0), Eq. (1) has a stable periodic 
solution of period 2π. For g larger but near F (γ , ξ) (H > 0), this solution is unstable and the instability develops a solution 
of period 4π. In other words, if one considers a one-parameter family (γ (s), ξ(s), g(s)) in P , an instability occurs when 
crossing upward the surface g = F (H = 0).

In [11], one has to combine equations 3.36 and the equation following 3.39 to get the above function F (H) to the 
leading order (with different notations).

Equation (2) is a particular case of the equation

d2q

dt2
+ γ

(
q,

dq

dt
, t

)
dq

dt
+

[
1

4
+ A

(
q,

dq

dt
, t

)]
q = 0 (5)

where the functions γ (u, v, t) and A(u, v, t) are regular and periodic of period 2π in t . This equation includes also many 
models of parametric resonance, and we are interested in the stability of the trivial solution q = dq/dt = 0 which can be 
analyzed using Floquet theory (see for example [17]). Let

γ (0,0, t) = γ0 + γ1 cos(t + ϕ) + γ̃ (t)

and

A(0,0, t) = A0 + A1 cos(t + ψ) + Ã(t)

where γ0, γ1, A0, A1, ϕ and ψ are constants and the Fourier spectrum of γ̃ and Ã do not contain 0 neither ±1. Then, if 
γ0 < 0, an instability occurs only at an eigenvalue ±1 of the differential of the Poincaré map at the origin (the determinant 
of this matrix is exp(−2π γ0)), and there is a real valued functional F (γ , A) such that

F (γ , A) = 16A2
0 + 4γ 2

0 − γ 2
1 − 4A2

1 + 4A1γ1 sin(ϕ − ψ) + h.o.t.

where the higher-order terms are at least cubic (also in γ̃ and Ã), and such that if F > 0 the periodic solution is stable, 
while if F < 0 and small enough, it is unstable and the instability develops a solution of period 4π.

In the previously mentioned theoretical papers (see also [11]), the function F was computed to the lowest nontrivial 
order in its Taylor expansion. As often stated, one expects that the nonlinearities will saturate the instability. This of course 
brings the question of computing the amplitude of the new solution (of double period) to the lowest nontrivial order in 
perturbation theory. This question was discussed first by Van der Pol [18], and then by Russian groups around Maldelstam, 
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Papalexi, Andronov, Chaikin and Vitt, see [19] and references therein, and Bogoljubov, Krylov, see [20] and references therein. 
See also [21] and references therein. We refer the reader to [22] for a nice and detailed description of these works, their 
relations, and more references. See also [23] for the history of the Andronov school at Gorky.

In the 1930’s and later, many experimental papers reported on the observation of double period, while several others 
discussed the theoretical aspects. It is impossible to list all these works, and I will just refer the reader to some of them. 
On the theoretical aspects, [24] is one of the few papers using the Poincaré map to analyze the problem of the existence of 
subharmonics. The stability of subharmonics is discussed in [25]. The paper [26] contains a figure of the domain of double 
period in a section of the parameter space from an earlier article of Andronov and Leontovich. See also [19] and references 
therein. The perturbation method of analysis of period doubling was exposed in several reference books like [27], [28], [29], 
[30] [31], [32].

Many experimental examples of subharmonics are described in the book [33]. The paper by Okumura [34] contains many 
early references about subharmonic oscillations in power circuits (mostly in Japanese). For other experimental observations, 
one can see, for example [35] for an iron-core system, [36] for a pendulum with vertically moving suspension, [37] for an 
experiment with cochlea, and [9] for the history of transducers.

Of course, one would like to go beyond perturbation theory and for example in the case of the system (1), one wants to 
prove the existence of the periodic orbit of period 4π, namely the occurrence of a period-doubling bifurcation of the cycle. 
Three (at least) general approaches were developed later on.

— Pursue the idea of perturbation theory and then control the equation for the remainder term (by contraction mapping 
principle or related techniques). This was done in Gambill Hale [38], see also [39].

— Use the time T map (time 2π map in our example (1)) following Poincaré, and prove that there is a period-doubling 
bifurcation. This is done by considering a center manifold (of dimension one). See [40], Theorem 3, page 576, [41], 
Theorem 3, page 781, and [42], page 575. The proof also follows by considering the time 2T map and applying the 
bifurcation theorem from simple eigenvalue [43], which was proved around the same time.

— One can also observe that in the case of the dynamical system (1) expressed as a system of two coupled one-
dimensional ODEs, for γ = ξ = g = 0, the time 2π map is equal to −Id. In other words, we have a double eigenvalue 
−1. One can unfold the three-parameter family of vector fields around this point and then study the bifurcations along 
a one-parameter family in the parameter space P . See [44], [17], and [45] for the unfolding. This method can also be 
used to understand frequency demultiplication.

For example, consider a one-parameter family of equations (1), namely a curve (γ (s), ξ(s), g(s)) ∈ P crossing the surface 
(4) at a parameter value s0. In order to conclude from the bifurcation theorem from simple eigenvalue applied to the 
Poincaré time 4π map, one should check first the hypothesis of Theorem 1.7 in [43]. They are all trivially satisfied in our 
case except hypotheses (d). With our notations, this hypothesis can be expressed as

d

ds
H(γ (s), ξ(s), g(s))∣∣s=s0

�= 0

This means that the one-parameter family crosses the surface (4) transversally and with non zero velocity in the parame-
ter s. From now on, we will assume that

d

ds
H(γ (s), ξ(s), g(s))∣∣s=s0

> 0

The final step is to check that a certain quantity Q (essentially a curvature term) is not zero (see [43] Theorem 1.18 with 
n = 2 for the details). This quantity relates the amplitude A of the bifurcated solution in the marginal (dominant) direction 
to the parameter s by

s − s0 = Q A2 + h.o.t.

In order to express this coefficient in a compact form, it is convenient to use polar coordinates for the parameters γ and ξ , 
namely

γ = 2 r sin(θ) , ξ = r cos(θ)

with r ≥ 0 and θ ∈]0, π[. In these coordinates, the function H is given by

H = 16 g2

9
− r2 + h.o.t.

After some computations, one gets

Q = −240 π2 r5 cos θ
(1 + sin θ)

d H(γ (s), ξ(s), g(s))∣∣
+ h.o.t.
ds s=s0
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We see that this coefficient can vanish only if θ = π/2, namely zero detuning. Moreover if θ ∈] −π/2, 0[, the period-doubling 
bifurcation is supercritical (Q > 0) and the doubled cycle is stable, while for θ ∈]0, π/2[ the period-doubling bifurcation is 
subcritical (Q < 0) and the doubled cycle is unstable.

3. The beginning of the cascade

To go beyond the first period doubling, there are several difficulties in observing subsequent ones. As we now know, 
one looses almost one digit of precision at each bifurcation requiring a high precision in the experimental setting or in 
numerical computations using analogical or digital computers.

Moreover, most experiments until the seventies were done with systems having periodic forcings (recall that the period 
doubling of a cycle is impossible in a plane system). These systems exhibit in general frequency demultiplication [1]. It is 
then easy to misinterpret a period 4T arising by a second period doubling and the period 4T of the frequency demulti-
plication, which has a very different origin. Many experimental efforts also concentrated on the period 3T . The sequence 
1, 2, 3, . . . being of course more intuitive than the sequence 1, 2, 4, . . . .

An experiment with loudspeakers was performed by Pedersen [11] and [46] in 1933. Besides containing a discussion 
on the occurrence of the double period (using perturbation techniques), he mentions the experimental observation of an 
oscillation with a period four times the forcing period (see Fig. 1 in [11]) inside the domain of existence of the double 
period. Although the figure is presented as a “sketch”, this may be the first example of an experiment where a quadruple 
cycle occurred.

We will mention few other “early” papers dealing with higher subharmonics. Figure V-11 on page 57 in [47], studying 
nonlinear control systems, seems to describe an overlapping domain of periods 2 and 4. Numerical simulations of voltage 
regulators in [48] seem to show transitions 2 to 4, tables 2-1, 5-1 and 5-3 with some period 8 harder to interpret. Numerical 
computations in [49] using the Poincaré map shows clearly up to period 4, see figure 6 on page 248. The book [50] shows 
period 4 page 167, 173 and describes experiments (page 176, figure 7.26, and page 177, figure 7.27). See also sections 7.6 
and 7.7 and references therein. For a review of subharmonic observations in acoustic systems, we refer the reader to [51].

The above list of references is certainly incomplete, since higher period doublings must have been observed in many 
experiments and perhaps also in numerical simulations. As mentioned at the beginning of this section, it is sometimes 
difficult to discriminate from the content of the publication if there is a secondary period doubling or a period four coming 
from frequency demultiplication.

4. The infinite qualitative cascade

We already mentioned that, in the early days, the experimental setup had to be cleverly designed to overcome the lack 
of precise measurement techniques. From a theoretical point of view, hand-made calculations of perturbation series were 
rather limited. The advent of computer simulation of dynamical systems [52] and later of computer algebra systems (CAS) 
opened the road to a much deeper understanding and allowed one to easily perform “computer experiments”.

In the 1960’s and 1970’s, the infinite cascade of period doubling was proved in theoretical works and also observed in 
numerical computations.

Myrberg, in the late 1950’s [53], proved the existence of infinitely many doubling bifurcations in the quadratic family by 
using an interspersed argument between bifurcations and superstable periods.

Around the same time, Sharkovsky proved his famous result on the ordering.

Theorem 4.1 (Sharkovsky). Define an order on the integers by

1 ≺ 2 ≺ 4 ≺ 8 ≺ . . .
...

...
...

...
...

. . . ≺ 4 ∗ 9 ≺ 4 ∗ 7 ≺ 4 ∗ 5 ≺ 2 ∗ 3

. . . ≺ 2 ∗ 9 ≺ 2 ∗ 7 ≺ 2 ∗ 5 ≺ 2 ∗ 3

. . . ≺ 9 ≺ 7 ≺ 5 ≺ 3

Then, if q ≺ p and a continuous map of the interval has a periodic orbit of period p, it has a periodic orbit of period q.

See [54], [55], and [56].
The infinite cascade and combinatorial structure of the orbits of dimensional maps was studied by Metropolis Stein and 

Stein in [57] and later in [58]. This developed later on in the kneading theory of Milnor and Thurston [59].
Hayashi, Ueda and Akamatsu [60] based on Levinson–Massera relations argued for the existence of 2n unstable periodic 

points for the Poincaré return map of a periodically forced nonlinear second-order ODE.
According to [61] and [62], Shapiro [63] observed the infinite period-doubling cascade in an ecological Ricker model. 

Around the same time, May [64] [65] and May and Oster [66] saw clearly in numerical experiments the infinite cascade and 
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discovered that it was present in many one-parameter families of maps of the interval modeling, in particular the evolution 
of ecological systems.

Mira and Gumowski developed a technique similar to renormalization to understand the successive bifurcations, see [67], 
[68] and references therein.

5. The quantitative universal cascade

The quantitative properties of the infinite cascade were first reported in the papers [69], [70] and [71], see also [72]. The 
universal properties, stability (openness) of the “road to chaos”, other universality classes, experimental observations have 
been studied in many publications, and I will not review them here.

One can refer more generally to papers on the history of dynamical systems like [73], [74], [75] [76], [77], [78], among 
many others. See also [79] for an occurrence in the field of literature.

An important property of the period doubling “road to chaos” is its openness. In the space of all (regular) one-parameter 
families of dynamical systems (of fixed dimension), there is an open set such that any one-parameter family inside this set 
will present the qualitative and quantitative universal properties of the accumulation of period doubling. In particular, any 
not too large perturbation of a one-parameter family in the set will still be in the set and will have the same universal 
properties. Of course, this set is far from including all the one-parameter families of dynamical systems. It is easy to 
construct (by regular surgery) one-parameter families having n period doublings and then a Hopf bifurcation (or other 
“roads to chaos”).
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