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As shown by Crow in 1970, the evolution of two almost parallel vortex filaments with 
opposite circulation exhibits a long-wave instability. Ultimately, the symmetric mode 
increases its amplitude reconnecting both filaments and ending into the formation of 
an almost periodic structure of vortex rings. This is a universal process, which appears 
in a wide range of scales: from the vortex trails behind an airplane to a microscopic 
scale of superfluids and Bose–Einstein condensates. In this paper, I will focus on the 
vortex reconnection for the latter case by employing Gross–Pitaevskii theory. Essentially, 
I focus on the well-known laws of interaction and motion of vortex filaments. By means 
of numerical simulations, as well as theoretically, I show that a self-similar finite-time 
dynamics manifests near the reconnection time. A self-similar profile is selected showing 
excellent agreement with numerical simulations.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Comme le montre Crow en 1970, l’évolution de deux filaments de vortex presque 
parallèles à circulation opposée présente une instabilité à grand longueur d’onde. Le mode 
symétrique augmente d’amplitude en reconnectant les deux filaments et se termine par la 
formation d’une structure presque périodique d’anneaux de vortex. Il s’agit d’un processus 
universel qui apparaît à différentes échelles : des allées de vortex derrière un avion à 
l’échelle microscopique des superfluides et des condensats de Bose–Einstein. Dans cet 
article, je me concentre sur la reconnection de vortex pour le dernier cas en utilisant la 
théorie de Gross–Pitaevskii. Je me concentre essentiellement sur les lois bien connues de 
l’interaction et du mouvement des filaments de vortex. À l’aide de simulations numériques 
ainsi que théoriquement, je montre qu’une dynamique en temps fini auto-similaire se 
manifeste près du temps de reconnection. Un profil auto-similaire est sélectionné, montrant 
un excellent accord avec les simulations numériques.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

In 1992, Lim and Nickels, from Melbourne, performed an extraordinary experiment on the instability and reconnection 
of opposite circulation vortex rings aligned in a perfect head-on scattering [1–3]. The experiment, done in water, consisted 
of the head-on collision of two equal circular vortices. According to the self-induction law, the vortex rings move ahead, 
however, as the vortex rings approach, because of mutual interaction, the ring radius increases, resulting in a simultaneous 
expansion of both vortex rings.1 Further, as the radius increases, an instability develops, being amplified with an almost 
periodic modulation. Eventually, the amplitudes of deformation are large enough, leading to vortex reconnection and to 
radial momentum transfer by the emission of small vortex rings. Interestingly, the inverse configuration, namely a number 
of small vortex rings converging to a point resulting into the emergence of two vortex rings moving in opposite directions, 
was recently observed in experiments on air [4,5].

As already recognized by Lim and Nickels, when the vortex radius becomes sufficiently large, the dominant interaction 
comes from the opposite vortex ring, hence the situation may be regarded as that of two almost parallel vortex filaments 
with opposite circulation, a problem studied by Crow, from the Boeing company, in 1970 [6]. Crow’s instability concerns 
the development of a long-wave instability for the separation distance of almost antiparallel drifting vortex filaments in an 
inviscid fluid. Crow shows that ultimately the symmetric mode increases its amplitude, reconnecting both filaments and 
ending into the formation of an almost periodic structure of vortex rings.

In a different context, vortex reconnections have regained interest in the last ten years in the context of helium-2 super-
fluid, since the experiment of Bewley, Lathrop and collaborators [7,8]. Because superfluid helium is essentially inviscid below 
1 K and vortex circulation is quantized, helium-2 appears to be an excellent candidate to test Lim and Nickels and Crow 
instabilities. However, being extremely complicated in comparison with ordinary fluids, the two fluid behavior of helium-2 
does not help from a theoretical point of view. Nevertheless, the T = 0 K behavior of a Bose–Einstein condensate (BEC) 
shares perfectly the desired phenomenology of vortex dynamics, hence instability and vortex reconnection. Bose–Einstein 
condensates are perfectly understood in terms of the Gross–Pitaevskii equation for the macroscopic wave function ψ , which 
is, finally, related to the one-particle density matrix of the system [9,10]. The Gross–Pitaevskii equation is a nonlinear 
Schrödinger equation (NLS), which is also a time-dependent nonlinear partial differential equation but simpler than Euler or 
Navier–Stokes equations for fluids (rephrasing AC Newell: “BEC, at T = 0, are easier to understand than they are to drink”).

The nonlinear Schrödinger equation reads [11]:

i
∂

∂t
ψ = −1

2
�ψ + g|ψ |2ψ (1)

here � = ∇2 is the usual Laplacian in 3D, we used dimensionless variables and all parameters are set to one, being g = ±1
a sign variable that distinguishes the defocusing case (g = 1) from the focusing case (g = −1). From now on, we focus our 
attention to the former case. NLS shares many desired features in an infinite domain:

(i) it possesses a number of invariances: phase invariance, translational and rotational invariance, a dilatation invariance, 
Galilean invariance, and it is time reversible;

(ii) it preserves the number of particles, the energy and both linear and angular momentum;
(iii) from a mathematical point of view, it is a Hamiltonian dynamics;
(iv) weak and long-wave perturbations correspond to non-dispersive acoustic modes;
(v) equation (1) admits topological defects as exact solutions that represent quantized vortices. These are non-singular

solutions for ψ . Moreover, the vortex core parameter naturally appears to be the balance among the non-linear and 
linear terms [12]. This distance, called the healing length (ξ0), is of the order of one in the dimensionless units used 
in (1). The existence of this intrinsic length makes a crucial difference regarding the motion of vortex filaments in 
ordinary fluids, in which case a core dynamics is expected [13–15]. A proof of the above is the recently observed 
vorticity dynamics on head-on collisions of vortex rings [3].

Because of the simplicity of NLS, and due to these mathematical properties, it appears to be an attractive model for 
Bose–Einstein condensates and it has been extensively studied during the last 50 years. In particular, the Crow instability 
was studied by Berloff and Roberts [16], and it was recognized that the number of small vortex rings created depends on 
the initial separation distance of the two traveling vortices, however no link was identified with the problem of vortex re-
connection. In superfluids, vortex reconnection has been studied long ago in the frame of the Biot–Savart filament dynamics 
[17,18] and as well as for the nonlinear Schrödinger equation [19].

The self-similar character of vortex reconnections was recognized by Pumir and Siggia [13,14] since the mid 1980s in 
connection with ordinary fluids and, in the context of superfluids, it was recently highlighted [8,20–22] (see Ref. [21] and 
references therein for more details).

In what it follows, Section 2 shows numerical simulations of the Crow instability in the frame of NLS for the cases of 
two anti-parallel vortex filaments and two head-on vortex rings collision. Next, Section 3 introduces the vortex interaction 

1 Something easily observed as a smoke vortex ring collides into a wall (the wall creates an image vortex in the opposite direction).
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Fig. 1. Snapshots of the anatomy of vortex reconnection by the Crow instability mechanism. The initial separation distance was 3 units of length. (a) 
A modulational instability starts to develop; in (b) is shown the fore-vortex-reconnection instant; (c) shows the after-vortex-reconnection instant, and (d) 
shows the further evolution of 8 drifting vortex rings. The time sequence is (a) t = 30, (b) t = 38, (c) t = 40, and (d) t = 50. The second row plots a zoom of 
the same time sequence. The three dimensional surface plot shows the iso-surface |ψ |2 = 0.4 and the simulations evolved into a cubic lattice of N = 2563

with a mesh size dx = 0.5 (length units) and time step dt = 0.01.

Fig. 2. (a) Number of vortex rings as a function of the inverse of the initial distance z0. As a visual guide the line represents: n =
√

2L
2π

1
|z0 | (see Section 2

for the theoretical justification). The initial separation distances are such that |z0| ∈ [2, 10]. The upper bound, 10, being the largest separation distance that 
can be allowed by the modulational instability because one gets just a single loop at the end. (b) Number of vortex rings after the collision of two circular 
vortex rings colliding head-on. The line represents n = πR

2 . All simulations were done into a cubic lattice of N = 2563 with a mesh size dx = 0.5 and a time 
step dt = 0.01.

of two parallel filaments in the frame of an incompressible and inviscid fluid. Section 4 provides evidence of self-similar 
vortex reconnection. Section 5 discuss the non-local effects of vortex interactions and its consequences. Finally, Section 6
concludes the current work.

2. Crow instability in the frame of the nonlinear Schrödinger equation

2.1. Antiparallel vortex instability

The time-dependent Gross–Pitaevskii equation (1) is solved with an initial condition ψ0(x, y, z), which vanishes at two 
parallel lines aligned within the z-axis and a separation distance |z0| (for the notations, see Section 3.2 below), which is a 
parameter that can be varied as desired. The resulting, initial condition corresponds to two topological defects. Figs. 1a–a’ 
show two parallel vortex filaments with a slight sinusoidal displacement (similar results are obtained with a noisy per-
turbation of the position of the vortex filaments). As time passes, the vortex pair drifts as expected; moreover, the vortex 
distance perturbation is amplified, reconnecting the two vortex lines (Figs. 1b–b’ & c–c’), ending with an array of traveling 
vortex rings (Figs. 1d–d’).

By varying the separation distance, |z0|, of the initial vortex pair, one notices that the number of vortices nucleated after 
the reconnection process scales as n ∼ 1/|z0|, see Fig. 2a.

2.2. Circular vortex ring instability

Next, we start with an initial condition consisting of two circular vortex rings with the same radii aligned along the 
z-axis, and placed head-on to ensure a frontal collision. Because of self-induction, the vortex rings drift one against the 
other colliding at the mid-point. As they come together, the self-induction becomes weaker than the interaction between 
the two rings, so they drift into the orthogonal plane increasing its radius and becoming unstable by a mechanism similar 
to that of the Crow’s instability. Ultimately, a number of small vortex rings are ejected (Fig. 3).



368 S. Rica / C. R. Mecanique 347 (2019) 365–375
Fig. 3. Snapshots for the instability of two colliding vortex rings. The initial condition consists of two vortex rings of the same radii: R = 12.4 ±0.5 units. (a) 
The two vortex rings drifting head-on, (b) vortex rings approaching with the subsequent stretching of the circular filament, (c) the modulational instability 
and (d) vortex reconnection into 16 smaller vortex rings drifting into the orthogonal plane. The time sequence is (a) t = 160, (b) t = 220, (c) t = 250 and 
(d) t = 270. The three dimensional surface plot shows the iso-surface of |ψ |2 = 0.5. The simulations evolved into a cubic lattice of N = 2563 with a mesh 
size dx = 0.5 and a time step dt = 0.01.

3. Dynamics of two parallel vortex filaments

3.1. The effective vortex interactions

Because of the existence of an intrinsic length, the non-linear Schrödinger model makes it possible to reach a well-
defined asymptotic limit in which the vortex filaments are faraway separated. Under this assumption, the full wave function 
is described by its phase and by the motion of vortex tubes of fixed size ξ0. Briefly, ψ ≈ ei� with ∇2� = 0, plus boundary 
conditions imposed by the vortex filaments. The resulting dynamics is driven by the Biot–Savart law of vortex interactions 
[12].

Consider first the dynamics of two rectilinear parallel vortex filaments, the first with circulation �1 and located at 
r1(t) = (x1(t), y1(t), s), and a second vortex with �2 and located at r2(t) = (x2(t), y2(t), s). The length parametrization s
describes the fact that the vortices are rectilinear and parallel. The dynamics for the location of the vortices are the well 
known Hemholtz equations2 [23]

d

dt
z1(t) = i�2

(z1(t) − z2(t))

|z1(t) − z2(t)|2 and
d

dt
z2(t) = −i�1

(z1(t) − z2(t))

|z1(t) − z2(t)|2 (2)

which are written, using complex notations, as: z1(t) = x1(t) + iy1(t) and z2(t) = x2(t) + iy2(t).
For the case of almost parallel vortex filaments, the position becomes a curve r1(s, t) = (x1(s, t), y1(s, t), s), and similarly 

for r2(s, t). The net interaction over the filament 1 has two contributions: the Biot–Savart flow created by the second 
vortex filament, which leads to an interaction like (2), and the self-interaction of filament 1 [12,17]. If the vortex filament 
curvature is small (that is, if the terms below (3) satisfy |∂ss z1(s, t)| & |∂ssz2(s, t)| � 1/ξ0) the Biot–Savart self-interaction 
may be approximated by the local induction approximation (LIA). The two contributions then read

∂

∂t
z1(s, t) = i�1

∂2

∂s2
z1(s, t) + i�2

(z1(s, t) − z2(s, t))

|z1(s, t) − z2(s, t)|2
∂

∂t
z2(s, t) = i�2

∂2

∂s2
z2(s, t) − i�1

(z1(s, t) − z2(s, t))

|z1(s, t) − z2(s, t)|2 (3)

We emphasize that the second terms in (3) are valid if both filaments are asymptotically straight lines parallel to the ẑ axis. 
We postpone to Section 5 of the paper some considerations on the effects of non-locality of vortex interactions.

Defining Z(s, t) = z1(s, t) + z2(s, t), z(s, t) = z1(s, t) − z2(s, t) and setting �2 = −�1 = −�, for the case of two counter 
rotating almost parallel filaments, one gets the coupled nonlinear partial differential equations:

∂

∂t
Z(s, t) = i�

∂2z

∂s2
− 2i�

z

|z|2 (4)

∂

∂t
z(s, t) = i�

∂2 Z

∂s2
(5)

due to Klein, Majda, and Damodaran [24]. Similarly to Eqs. (2) and (3), equations (4) and (5) are derived from an action 
principle given by the Lagrangian density

L = i
(
z(s, t)∂t Z∗(s, t) − z∗(s, t)∂t Z(s, t)

) + �
(
|∂sz(s, t)|2 + |∂s Z(s, t)|2

)
+ 2� log |z(s, t)|2 (6)

Symmetry arguments provide the following conserved quantities through Noether’s theorem [24]:

2 Through the paper we use a different notation for the circulation, namely ¸ v · d� = 2π� instead of �.
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(i) the Hamiltonian H = � ́
(|∂sz(s, t)|2 + |∂s Z(s, t)|2 + 2 log |z(s, t)|2)ds,

(ii) the mean of vorticity: � = � ́ z(s, t)ds,
(iii) the angular momentum: L = ´

(Z(s, t)z∗(s, t) + Z∗(s, t)z(s, t)) ds,
(iv) and, W = i

2

´
(Z(s, t)∂sz∗(s, t) − Z∗(s, t)∂sz(s, t) + z(s, t)∂s Z∗(s, t) − z∗(s, t)∂s Z(s, t))ds.

Equations (4) and (5) for the vortex dynamics are the basic object that we study in the current paper.

3.2. Linear stability analysis

Consider the stability of uniform parallel counter propagating vortices. For the uniform case, no dependence on s is 
allowed, so that the uniform solution reads z = z0, which represents the separation distance between both vortex filaments. 
Conversely, Z0(t) = −2i� z0

|z0|2 t represents the uniform motion of the vortex pair. Perturbing this uniform solution as

Z(s, t) = −2i�
z0

|z0|2 t + δZ(s, t), and z(s, t) = z0 + δz(s, t) (7)

and linearizing the vortex dynamics (4)–(5), we get

∂

∂t
δZ(s, t) = i�

∂2δz

∂s2
+ 2i�

δ z̄

z2
0

, and
∂

∂t
δz(s, t) = i�

∂2δZ

∂s2

Seeking perturbations of the form δZ(s, t) ∼ ei(ks−ωt) , δz(s, t) ∼ ei(ks−ωt) and δ z̄(s, t) ∼ ei(ks−ωt) , the linear problem provides 
a linear dispersion relation:

ω2
k = �2k2

|z0|2
(
|z0|2k2 ± 2

)
(8)

Among the four branches, two of them (the plus sign) correspond to Kelvin waves, while the other (the minus sign) may 
become unstable for k|z0| <

√
2; this long-wave instability creates an exponential growth of the long-wave modes. The 

nonlinear regime of this instability ends with the formation of vortex rings of size of the order of the mean separation 
distance, |z0|. More precisely, in a periodic system of size L, the wave numbers are quantized as kn = 2π

L n, therefore the 
unstable wave numbers are 2π

L n|z0| <
√

2, thus the selected number of unstable modes becomes n
L <

√
2

2π
1

|z0| . This relation 
is plotted, together with the numerical data, in Fig. 2a.

4. Self-similar vortex reconnection

4.1. Direct numerical simulations of (4) and (5)

Numerical simulations of the set of coupled partial differential Eqs. (4) and (5) show that the separation distance z(s, t)
vanishes in finite time. These equations are solved into a periodic domain s ∈ [−L, L] with L = 10. For the numerical 
simulations, we consider a weakly initially modulated perturbation:

Z(s,0) = 0, z(s,0) = z0

(
1 + ε sin

(π
L

s
))

(9)

This special class of initial condition preserves the initial values of Im z = 0 and Re Z = 0 [25]. However, other general initial 
conditions show similar self-similar behavior. For the sake of brevity, we focus the current paper on an initial condition 
of type (9). From the numerics, one observes that the vortex lines drift perpendicularly to the inter-vortex action line, as 
expected. However, because of the modulational instability, the small initial perturbations are amplified, creating a large 
deformation of the vortex lines and making the inter-vortex separation distance smaller; as a consequence, this portion 
drifts faster.

More quantitatively, supported by the simulations described in Fig. 4, we notice the following features:

(i) the appearing of a finite time singularity characterized by z(s, t) → 0 as t → tc and Z(s, t) → Z0, finite, as t → tc;
(ii) the minimum of z(s, t) vanishes as z(0, t) ∼ (tc − t)1/2; on the other hand, Z(s, t) reaches a finite value: we can readily 

fit Z(s, t) − Z0 ∼ (tc − t)1/2;
(iii) a special kind of self-similar behavior is observed. Both z and Z scales as (tc − t)1/2, moreover, these functions must be 

re-scaled spatially with a self-similar coordinate s(tc − t)−1/2 (see Fig. 5).
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Fig. 4. Time evolution of the vortex filament variables z(s, t) and Z(s, t). (a) Plot of z(s, t) for different time steps. (b) Plot of Z(s, t) for same time steps as 
in (a). The simulations were done for L = 10, an initial perturbation of the form (9) with z0 = 4 and ε = 0.1 getting a finite time singularity at a time with 
tc ≈ 44.756. With initial condition (9), one has tc ≈ 44.756 and Z0 ≈ −27.223i. The time steps are tn = tc − 21−n .

Fig. 5. Self-similar evolution of the re-scaled functions (10)–(11) as a function of the self-similar variable ω = s/
√

�(tc − t). (a) Plots z/
√

�(tc − t)) vs. ω
and (b) −i(Z − Z0)/

√
�(tc − t)) vs. ω. The segmented black line represents the solution to (13) and (14) with boundary conditions (15) and matching 

condition (22).

4.2. Self-similar solution for vortex reconnection

Accordingly with previous observations, we seek solutions of the form:

Z(s, t) = i

[
Z0 + (�(tc − t))1/2 �

(
s√

�(tc − t)
,− log(tc − t)

)]
(10)

z(s, t) = (�(tc − t))1/2 ζ

(
s√

�(tc − t)
,− log(tc − t)

)
(11)

where �(ω, τ ) and ζ(ω, τ ) are two real functions of the re-scaled variables ω = s/
√

�(tc − t) and τ = − log(tc − t).
The scaling (tc − t)1/2 has a long history. It was first recognized by Jean Leray in 1934 [26] (but with the fluid viscosity 

as a pre-factor), next, by Pumir and Siggia [13,14] in the frame of the Biot–Savart approximation for vortex filament motion 
in inviscid fluids. The current scaling, 

√
�(tc − t), was explicitly found by Pomeau [27]. The same scaling arises in the case 

of superfluid helium [8], and finally measured accurately in direct numerical simulations of the NLS model [21].
Introducing the self-similar Ansatz, Eqs. (10) and (11), into the dynamical equations, one recovers the following set of 

partial differential equations for the self-similar variables:(
∂

∂τ
− 1

2
(1 − ω∂ω)

)
�(ω,τ ) =

(
∂ωωζ(ω,τ ) − 2

ζ(ω,τ )

)
(

∂

∂τ
− 1

2
(1 − ω∂ω)

)
ζ(ω,τ ) = −∂ωω�(ω,τ ) (12)

As usual in this kind of problems, the desired solutions correspond to the stable fixed points of the nonlinear system 
[28]. That is, it is expected that time derivatives vanish in (12). These fixed points are solutions to the following set of 
ordinary differential equations:

−1 (
�(ω) − ω�′(ω)

) =
(

ζ ′′(ω) − 2
)

(13)

2 ζ(ω)
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1

2

(
ζ(ω) − ωζ ′(ω)

) = �′′(ω) (14)

Equations (13) and (14) were first derived by Zakharov in 1988 [25]. Four boundary conditions are required to determine 
the solution. These may be derived from the conditions of regularity of the original variables (10)–(11). Following [28], one 
needs to impose:

ζ ′(0) = �′(0) = 0 (15)

ζ(ω) → ζ±∞ω & �(ω) → �±∞ω, ω → ±∞ (16)

The constants ζ±∞ and �±∞ differ in the limits ω → ±∞. However, because of the even symmetry of the equations, and 
because of evidence coming from numerical simulations, one concludes that both slopes have the same absolute value: 
|ζ±∞| = ζ∞ and |�±∞| = �∞ .

4.3. Inner asymptotic

The inner behavior of the solutions to (13) and (14) may be obtained from a regular asymptotic expansion of the form:

ζ(ω) =
∑
n≥0

anω
n, and �(ω) =

∑
n≥0

bnω
n (17)

Because of boundary conditions (15), a1 = b1 = 0. Introducing the above asymptotic expansion into the nonlinear ODE 
system (13) and (14), one readily gets:

a2 = 1

a0
− b0

4
, a3 = 0, a4 = (a4

0 + 4a0b0 − 16)

96a3
0

, . . .

b2 = a0

4
, b3 = 0, b4 = a0b0 − 4

96a0
, . . .b2n+2 = − (2n − 1)

4(n + 1)(2n + 1)
a2n (18)

Notice that because a1 = b1 = 0, all odd coefficients vanish. This asymptotic expansion could be pursued up to all orders, 
and all coefficients depend only on a0 and b0.

4.4. Outer asymptotic

For the outer asymptotic, one needs to fit boundary conditions (16); therefore, we try the following asymptotic expansion 
for the solutions to (13) and (14)

ζ(ω) = ω
∑
n≥0

cnω
−n, and �(ω) = ω

∑
n≥0

dnω
−n (19)

Here we identify c0 ≡ ζ∞ and d0 ≡ �∞ . Introducing these asymptotic expansions into equations (13) and (14), one obtains:

c1 = c2 = c3 = 0, c4 = 2

c0
, c5 = c6 = c7 = 0, c8 = −10(1 + 6c2

0)

c3
0

, c9 = c10 = c11 = 0, . . .

d1 = 0, d2 = 2

c0
, d3 = d4 = d5 = 0, d6 = −4(1 + 6c2

0)

3c3
0

, d7 = d8 = d9 = 0, . . .

The outer asymptotic shows that, for a given couple of parameters (c0, d0), the solution exhibits the correct behavior. Notice 
that none of the coefficients do depend explicitly on d0 since �(ω) = Kω is always a solution, hence one cannot fix K .

4.5. Selection mechanism

Numerical solutions to the set (13)–(14) with the boundary conditions (15) show that in practice a given pair (a0, b0)

selects a unique solution with the good asymptotic behavior (16); hence it provides a unique pair (c0, d0). However, there is 
a subtle point: although all solutions have the right behavior as ω → ∞, the original four-dimensional system has a natural 
tendency to display an oscillatory behavior. Looking for a general far-field (ω → ∞) solution, one notices that the original 
system becomes a purely linear equation (since ζ(ω) → ∞). Taking A(ω) = ζ(ω) + i�(ω), one gets that the linear problem 
may be reduced to a complex Hermite equation:

A′′(ω) + i

2
ωA′ − i

2
A = 0 (20)

which has two independent solutions:
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Fig. 6. �′–ζ ′ projection of the trajectories; five different trajectories are shown for parameters (a0, b0) taking the following values: (i) (1.071, 2.125); (ii) 
(1.044, 2.088); (iii) (1.106, 2.088); (iv) (1.044, 2.213); (v) (1.106, 2.213).

A1(ω) = 1 + i
ω2

2 · 2! + ω4

22 · 4! − i3
ω6

23 · 6! − · · · = e−i ω2
4 + ei π

4 ω f

(
ei π

4

2
ω

)
, & A2(ω) = ω (21)

where f (z) = ´ z
0 e−t2

dt is proportional to an error function. The total asymptotic solution is A(ω) = αA1(ω) + β A2(ω), 
where α and β are complex numbers corresponding to four integration constants. Starting with (a0, b0), then the far-field 
behavior sets α = α(a0, b0) and β = β(a0, b0). Because the oscillatory behavior comes from A1(ω), one concludes that by 
imposing the condition for the complex parameter α(a∗

0, b∗
0) = 0, one gets two conditions for a∗

0 and b∗
0. Moreover, the 

second complex parameter, β(a∗
0, b

∗
0) = c0 + id0 provides the far-field asymptotic boundary conditions. In the numerics, one 

can see that this selection mechanism works for the values3:

a∗
0 ≈ 1.071 & b∗

0 ≈ 2.125 ⇒ c∗
0 ≈ 1.0605 & d∗

0 ≈ 1.0841 (22)

Fig. 5 compares the self-similar functions with the self-similar envelope determined by direct numerical simulations of 
the original model, Eqs. (4) and (5). Fig. 6 shows the phase portrait in the ζ ′, �′ projection plane of the suppression of the 
oscillatory mode for the parameter conditions (22).

Finally, the universal behavior of the closest relative distance between filaments is given by z(s = 0, t) = (�(tc −
t))1/2 ζ (0) ≡ a∗

0(�(tc − t))1/2. By comparing with the results of Ref. [21], before reconnection, namely their δ−(t), one 
concludes that their A− must be A− = a∗

0√
2π

≈ 0.427, in agreement with the numerical results of Ref. [21]. Moreover, the 
parameters c0 and d0 provide information for the reconnection angles. More precisely, the tangents of filament 1 behave, 
asymptotically, as t̂±

1 as s → ±∞, and the same occurs for filament 2. The respective opening angles between the filaments 
read:

(i) the opening angle of a single filament: cos θ = −t̂
−
1 · t̂

+
1 = − 4−c2

0−d2
0

4+c2
0+d2

0
, which is about θ ≈ 105.66◦ for the values found 

in (22);

(ii) the opening angle between different filaments: cos ϕ = t̂
+
1 · t̂

+
2 = 4−c2

0+d2
0

4+c2
0+d2

0
; in this case, one gets ϕ ≈ 50◦ .

The former opening angle is close to the numerical values found in Ref. [18], while the second angle appears to be twice 
the value given in the same reference.

5. Nonlocal effects on vortex dynamics

The self-similar scenario predicts a singular behavior of the filament curvature, yet the derivation of Eqs. (3) is valid for 
a vortex filament distance larger than the healing length, |z(s, t)| � ξ0, for an almost straight pair of vortex filaments and 
for small filament curvature. When t → tc, then |z(s, t)| → 0 and the self-similar curvature

3 Essentially it is a two-parameter shooting method (treated in detail in Ref. [28]). A good visual method consists in plotting ζ ′(ω) vs. �′(ω), because 
both functions start at the origin and they both reach a fixed point, (c0, d0), the oscillations been clearly observed in most of cases, excepting the selected 
ones.
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κ(s, t) ∼ 1√
�(tc − t)

K

(
s√

�(tc − t)

)
(23)

blows up. In that situation, the vortex dynamics provided by Eqs. (3) must be revisited.
The filament dynamics comes from the Biot–Savart expression for the contributions of the velocity induced by the 

filament itself and the contributions of all the other filaments. For an almost straight filament considered in Eqs. (3), one 
gets the general filament dynamics:

∂z1(s)

∂t
= −i

�1

2

∞̂

−∞

z1(s′) − z1(s) − (s′ − s)z′
1(s′)[

(s − s′)2 + |z1(s) − z1(s′)|2]3/2
ds′ + i

�2

2

∞̂

−∞

z1(s) − z2(s′) + (s′ − s)z′
2(s′)[

(s − s′)2 + |z1(s) − z2(s′)|2]3/2
ds′ (24)

and a similar equation for the second filament by exchanging 1 with 2. In what it follows, we analyze each term separately.

5.1. The self-interaction contribution

As it is well known, the first integral in (24) diverges logarithmically at s = s′ . Introducing an arc-length cut-off, �, one 
splits the self-interaction vortex dynamics into a couple of terms as:

∞̂

−∞

z1(s′) − z1(s) − (s′ − s)z′
1(s′)[

(s − s′)2 + |z1(s) − z1(s′)|2]3/2
ds′ = log(�/ξ0)

∂2

∂s2
z1(s, t) + −

∞̂

−∞

z1(s′) − z1(s) − (s′ − s)z′
1(s′)[

(s − s′)2 + |z1(s) − z1(s′)|2]3/2
ds′

Where we have defined a regularized integration

−
∞̂

−∞
f (s′)ds′ ≡

s−�ˆ

−∞
f (s′)ds′ +

∞̂

s+�

f (s′)ds′

which removes the singular part of the Biot–Savart integral [17]. If the non-local integral term is discarded, one recovers the 
local induction term in (3) up to the logarithmic pre-factor 1

2 log(�/ξ0), which can be absorbed with an adequate definition 
of the scale length s.

For the self-similar solutions of the form of the Ansatz (10) and (11), one recovers the same scaling equations (13) and 
(14) as before, but the nonlocal contribution modifies them. In particular, the ζ ′′ term in Eq. (13) changes as:

ζ ′′(ω) → ζ ′′(ω) +
ω−�/

√
�(tc−t)ˆ

−∞

ζ(ω′) − ζ(ω) − (ω′ − ω)ζ ′(ω′)[
(ω − ω′)2 + 1

4 |ζ(ω) − ζ(ω′)|2 + 1
4 |�(ω) − �(ω′)|2]3/2

dω′ +

+
∞̂

ω+�/
√

�(tc−t)

ζ(ω′) − ζ(ω) − (ω′ − ω)ζ ′(ω′)[
(ω − ω′)2 + 1

4 |ζ(ω) − ζ(ω′)|2 + 1
4 |�(ω) − �(ω′)|2]3/2

dω′

and similarly for �′′ in (14).
Because the integration limits in both integrals behave as ω′ → ω ± �/

√
�(tc − t) → ±∞, when tc → t , one requires just 

the asymptotic behaviors of ζ(ω′) = c0|ω′| and �(ω′) = d0|ω′| in the integration. In that case, all integrals may be computed 
exactly for a fixed ω, leading to the expression:

8�(tc − t)

�2
(
c2

0 + d2
0 + 4

)3/2
× (ζ(ω) − c0ω)

Therefore, the nonlocal contribution comes up to an order O(�(tc − t)), thus the nonlocal interaction may be discarded, 
when t → tc, in the self similar equations.

5.2. The filament interaction contribution

If the separation distance is almost constant in (24) in its asymptotic limit, one may safely replace:

i
�2

2

∞̂
z1(s) − z2(s′) + (s′ − s)z′

2(s′)[
(s − s′)2 + |z1(s) − z2(s′)|2]3/2

ds′ → i�2
(z1(s, t) − z2(s, t))

|z1(s, t) − z2(s, t)|2 (25)
−∞



374 S. Rica / C. R. Mecanique 347 (2019) 365–375
However, the far-field behavior (16) of self-similar functions appears to contradict this condition. Therefore, Eqs. (13) and 
(14) are modified as

−1

2

(
�(ω) − ω�′(ω)

) = ζ ′′(ω) − 1

2

∞̂

−∞

ζ(ω′) + ζ(ω) − (ω′ − ω)ζ ′(ω′)[
(ω − ω′)2 + 1

4 (ζ(ω) + ζ(ω′))2 + 1
4 (�(ω) − �(ω′))2

]3/2
dω′

1

2

(
ζ(ω) − ωζ ′(ω)

) = �′′(ω) + 1

2

∞̂

−∞

�(ω′) − �(ω) − (ω′ − ω)�′(ω′)[
(ω − ω′)2 + 1

4 (ζ(ω) + ζ(ω′))2 + 1
4 (�(ω) − �(ω′))2

]3/2
dω′ (26)

Hormoz and Brenner [15] have approximated the non-local effects of the second filament in the case of fluid dynamics, 
obtaining a non-universal vortex collision scenario. Although the problem is not precisely the same, because in ordinary 
fluids a core structure possesses a coupled dynamic, the selection mechanism for Eqs. (26) seems to be similar as discussed 
in Section 4.5. Naturally, the specific values of the parameters a∗

0 and b∗
0 (as well as c∗

0 and d∗
0) must change. Indeed, in the 

far field, ω → ±∞, that is ζ(ω) → ∞, both integrals also vanish. Therefore, the final far-field linear problem is ruled by 
the Hermite equation (20). As in Section 4.5, a condition for removing the oscillatory behavior must be imposed, leading 
probably to a universal solution. This program will be discussed in a future publication.

6. Discussion

It has been shown that the vortex dynamics of two almost anti-parallel vortex filaments display a finite-time singularity. 
By means of numerical simulations, as well as theoretically, we show that a self-similar finite-time dynamics manifests 
near the reconnection time. The filament distance vanishes in finite time and the vortex drift propagates up to a maximum 
value, producing a cusp. This self-similar profile satisfies an autonomous equation and a selection mechanism is introduced, 
showing excellent agreement with numerical simulations. However, some questions remain open.

(i) The uniqueness of the matching condition (22) and the stability of the self-similar profile. Usually these kinds of
problems introduce a variety of solutions that satisfy the boundary conditions; however, not all of them are stable, 
therefore a stability analysis must complement the current analysis. Perhaps the existence of a variational principle for 
Eqs. (12), which reads4:

S =
ˆ

e− 3
2 τ

[
4 log ζ + (∂ωζ )2 + (∂ω�)2 + ζ (2∂τ� + ω∂ω� − �)

]
dω dτ

could shed light on the road to a plausible answer to this question.
(ii) An arbitrary initial condition (an arbitrary complex field for z(s, t = 0) and Z(s, t = 0) or for a non-symmetric ini-

tial perturbation with respect to the origin) requires a more careful study. Although a0 ≈ 1 for all cases, it has been 
observed a slight discrepancy on the value of b0, getting values greater than 3.

(iii) In the case of very close propagating vortices, it has been observed the nucleation of Jones-Roberts structures [29]
instead of small vortex rings. The transverse fluctuations manifest themselves via a Kandomshev–Petshiavili instability 
that ultimately becomes a solitary wave [29].

(iv) Direct numerical simulations of the nonlinear Schrödinger equation, shown in Ref. [21], do not display a self-similar 
behavior for the filament curvature as in (23); however, in that case, the vortex reconnection dynamics is tracked 
near the collision point, namely the vortex separation distance is |z(0, t)| ≈ ξ0. Therefore, naturally, the approximations 
employed in the derivation of (4) and (5) are not valid near reconnection. In the same line, the post-reconnection 
scenario is not accessible in the frame of Eqs. (4) and (5); to do that, one should understand well the matching among 
the far-field dynamics [12]. Something that is still open in the author’s opinion.

(v) Note added in Proof. Banica, Faou, and Miot [30] have shown, in the frame of Eqs. (3), the existence of a finite-time 
collision of counter-rotative vortex filaments described by non-differentiable self-similar solutions.
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