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We study the mechanical response, and tearing features of crêpe paper, a two-dimensional, 
very anisotropic material, with one direction much less stiff than the other one. Depending 
on how the soft direction has been pre-stretched or not, the apparent Young modulus of 
the material can be varied over a broad range, while its fracture energy remains unaltered. 
The classical tearing concertina problem shows that a macroscopic measurement (the shape 
of the teared region) provides a direct access to the fracture properties of the material 
(effective Young’s modulus, and fracture energy). The overall discussion is conducted in 
the frame of Griffith’s theory of fracture.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

When strongly stressed, a sample of a solid material breaks into pieces by the formation and extension of cracks. As 
multiple cracks develop and extend, the stress field is modified, and, in return, the paths followed by the cracks are altered 
[1–3]. In other words, cracks mutually interact and this interaction is mediated by the stress field in the sample, which 
may also incorporate a component of noise, either thermal, or intrinsic (see [4] and references therein). The prediction of 
the motion of a single crack tip in a general stress field remains a challenging problem [5,6] and no simple law offering a 
“particle-like” description of the motion and interaction of crack tips is currently available. However, simplified approaches 
based on geometry have been used successfully to address crack paths in thin films [7,8]. These models are based on 
Griffith’s theory of fracture [9] i.e. total energy (elastic and fracture) minimisation. In the simplest limit of the “inextensible 
fabric model” [7,10], the pattern can usually be determined by a purely geometric approach in a variety of cases, including 
the peeling of a thin strip from an adhering substrate or the tearing through a thin film by a blunt object. Even complicated 
crack paths such as oscillating or spiralling cracks can be understood from this simple model. This approach, however, does 
not address the variation of the pattern with the elastic properties of the material. Such dependence can be captured by a 
strict application of total energy minimisation [8]. In this framework, an evaluation of the elastic energy stored in a sample, 
generally neglecting the detail of the stress field near the crack tip, is needed.

We will be discussing the physics of patterns, a topic familiar to Pierre Coullet, to whom we dedicate this paper, and 
more precisely the selection of a pattern by a pair of expanding cracks, highlighting the role of the material properties of 
the sample. The pattern of interest involves two cracks that are formed simultaneously when a blunt object tears a thin 
film of a material. This configuration is often called the concertina tearing, because the material that is left between the two 
cracks buckles and folds as does a concertina [11,12]. We rely on a simple experiment that can be conducted by hand and 
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Fig. 1. 3D structure of crepe paper revealing the structure made of ridges and troughs. (a) A view of the surface, (b–c) measurement of the height profile. 
Note that the z direction is not to scale. (d–e) A cut through an unstretched (d), and stretched (e) sheet of crêpe paper, along with the definitions of the 
variables entering our analysis.

use a commonly available material (crêpe paper). The material properties and in particular its stiffness can be tuned at will 
by initially straining the samples, while their fracture energy is constant, independent of the initial strain. We show that 
the pattern changes dramatically as the stiffness is varied over a broad range. We propose a geometrical model to estimate 
the total energy of the cracking material, which compares favourably with the observations.

2. Material properties

2.1. Material characterization

We conduct experiments on thin sheets of crêpe paper (Canson brand, typical density 32 g·m−2, thickness in the range 
from 60 to 100 μm). Crêpe paper is a material used for the creation of artwork. It consists of thin paper that is folded in 
one direction, thus creating troughs and bumps. The paper is coated with a glue-like substance that holds the pattern of 
folds. A visualisation of its 3D structure was performed with a 3D-Microscope (Fig. 1) revealing a corrugation of the plate 
with a typical peak-to-peak amplitude of 80 μm and a wavelength of 180 μm.

A mechanical tensile test has been performed on a testing machine on thin strips of crêpe paper (typical width 10 mm 
and length 100 mm). Due to the preferred direction of the folds, when pulled upon, the response of the sample presents 
a strong anisotropy. When stretched in the direction parallel to the direction of trough and ridges, the sample presents 
a classical linear elastic response with a stretching modulus Eh = 65 N/mm. When stretched in the direction normal to 
the folds, the sample is much softer and it presents a strong nonlinear response as shown in Fig. 2. The response is 
characterized by different features. First if one considers the stress–strain relation itself (i.e. the upper envelope of the curve 
in Fig. 2 omitting the presence of unloading cycles), we note that it is similar to the curve obtained in other materials 
formed by networks of elastic components such as rubber [13] or folded paper [14]. The loading curve presents a marked 
softening at intermediate strains, while at higher strains the material gets stiffer. An observation of the material after the 
pulling test (Fig. 1d,e) reveals that the morphology of the stretched sample changes: the amplitude of the corrugation has 
been reduced, indicating plasticity in the mechanical response of the sample. Then we also note that the unloading–loading 
cycles performed during the testing of the sample reveal an hysteretic behaviour characteristic of plasticity. Finally, it is 
worth noting that the maximal strain attained during testing (after which the sample breaks) is compatible with the profile 
measurement: the unfolded length is typically
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Fig. 2. Measured loading curve for a strip of crêpe paper (width 10 mm, length 100 mm) loaded in the direction perpendicular to its folds (force applied 
along the x direction). Unloading performed at regular interval during loading reveals a plastic behaviour, even at moderate strain. The gray curves corre-
spond to unloading phases. The steep dashed line shows the elastic behaviour when stretching in the direction parallel to the folds (obtained in a distinct 
test). The inset shows the local slopes of the loading curve (disks) and of the unloading curves (diamonds) obtained at different strains. The apparent 
moduli are normalised by the stretching modulus Eh = 65 N/mm.

lun =
lap∫

0

√
1 + w ′(x)2 dx (1)

where lap is the apparent length (in the x direction) of the profile w(x). With, for instance, w(x) = a sin(2 π x/λ), the 
maximal strain lun/lap − 1 is approximately (π a/λ)2, yielding approximately 0.5 with a = 80 μm and λ = 180 μm (Fig. 2).

The response of the material in the direction perpendicular to the folds is thus characterised by an apparent stretching 
modulus that depends on the strain. Two different moduli can be distinguished: a modulus E l obtained by measuring the 
slope during the loading phase and an unloading modulus Eun obtained by measuring the slope during the unloading one. 
These two quantities are plotted in the inset of Fig. 2.

2.2. Discrete model

The behaviour observed in Fig. 2 can be qualitatively reproduced using a simple model of an elastoplastic ridge (a 
discrete version of the creased sheet model [15]). We build a model upon an element consisting of two rigid plates of 
length � merging at a ridge; it will be further convenient to assimilate the ridge to a hinge characterized by a spring 
constant k and a yield moment my above which the rest state of the hinge is modified.

When extended to an angle θ , the moment of the ridge linearized around θ0 is m = k(θ −θ0) (where k is typically related 
to the sheet bending stiffness through k ≈ Eh3/12�) in the elastic domain (i.e. m < my). In the plastic domain, the ridge 
moment is m = my and, if the angle is extended above my/k, the rest angle θ0 increases up to θ0 = θ − my/k. The force is

f = m

� cos θ
(2)

and thus as the angle θ increases, the stiffness increases by a purely geometrical effect. In a typical pulling test, starting 
from the rest state x = x0, for which f = 0, as x = x0(1 + ε) is increased, the moment increases, first reaching the yield 
moment. At this point, the strain–load curve presents a slope change. As the strain ε further increases, the moment is 
constant, m = my , but the rest angle of the spring increases. The pulling force during the plastic phase of the test is then 
f = (my/�) [1 − (x/�)2]−1/2 and the associated stiffness ∂ f /∂ε in the loading phase when the stress has reached ε1 is

kp = my

�2

( x0

�

)2 1 + ε1

[1 − (x0/�)2(1 + ε1)2]3/2
(3)

The stiffness increases with ε1 (that is, increasing θ ) and this stress hardening is purely geometrical, as seen from Eq. (2). 
The stiffness in this phase does not depend on the elastic constant k. When the strain has reached ε1 , the rest angle of the 
hinge is θ1 = arcsin[(x0/�)(1 + ε1)] − my/k.

If starting from ε1 the structure is unloaded (i.e. x is lowered), the structure reacts elastically because the moment at the 
hinge decreases below my . The force is now f = (k/�){arcsin[(x0/�)(1 + ε)] − θ1}[1 − (x/�)2]−1/2 and thus the stiffness is

ku = k (my/k)(x0/�)
2(1 + ε1) + (x0/�)[1 − (x0/�)

2(1 + ε1)
2]1/2

2 2 3/2
(4)
� [1 − (x0/�) (1 + ε1) ]
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Fig. 3. (a) Mechanical response of a single elastoplastic hinge with x0/� = 0.67 and my = 0.1. The response exhibits the softening characteristic of the 
plasticity and the geometrical stiffening at high strains, when the hinge flattens. (b) When pulled upon, an assembly of hinges displays a behaviour
qualitatively similar to that of crepe paper. The curve is obtained for a sequence of 20 elements formed of 30 hinges whose lengths are normally distributed 
(with a mean 1 and a standard deviation 0.25).

Fig. 4. A tool is used to tear a sheet of crepe paper, starting from a small notch. As the tool is pulled, two crack opens, and the pattern can be parameterised 
by its half-width �(x). The sheet of crepe paper can be initially stretched in the direction normal to x (the fold of the paper are in the x direction) by 
adjusting L. The initial stretching is ε0 = (L − L0)/L0.

Thus this single elastoplastic ridge partly reproduces some the behaviour of crepe paper; geometry induces a stiffening of 
the structure; and unloading during the pulling test implies an elastic response that results in unloading cycles with an 
apparent stiffness that increases with the strain. (See Fig. 3.)

However, this simple model does not reproduce the hysteretic behaviour observed during the unloading loop. When the 
wedge is unloaded and then loaded again, the force–displacement curve follows the same path.

The model can be further extended by considering an assembly of hinges in parallel and in sequence, with distributed 
segment length �. Though the model presents a more constrained geometrical organisation than an actual creased sheet, it 
shares some of its features: the geometry of a single hinge mimics the geometric nonlinearity of the elastic response of a 
fold, and the plasticity introduced at the hinge is similar to the plasticity observed on the crêpe paper sheet. Even though a 
quantitative comparison is out of the scope of the present paper, it is worth noting that pulling an assembly of hinges with 
distributed lengths (all other parameters being uniform) leads to a behaviour qualitatively similar to that of crêpe paper. In 
particular, it exhibits the stress softening associated with plasticity, the stress hardening at high strains associated with the 
flattening of the hinges. It also exhibits the stiffening of the unloading curves as the strain increases, which is associated 
with the hinges deforming plastically into flatter configurations.

3. Tearing behaviour

3.1. The concertina tearing

We are now interested in the signature of the stress–strain behaviour presented above on crack patterns. Of particular 
interest is the role of the change of the local stretching modulus on the pattern. The experiment is conducted on sheets 
of crêpe paper (170 mm × 170 mm) attached to a rigid substrate by a rigid tape (Fig. 4). An initial cut of about 2 mm is 
performed with a sharp blade on the sheet. A tool of small size (a few millimetre wide at the contact with the paper) is 
then introduced in the notch and is pulled towards x > 0. The setup allows for an adjustment of the initial tension in the 
x direction. The initial stretching ε0 = (L − L0)/L0 can be adjusted between 0 up to 0.4. The width of a sample is 150 mm 
before application of the stretching.

As the tool is pulled, it tears the sheet of crepe paper. Two cracks extend, leaving a diverging pattern of cracks (Fig. 1). In 
the domain around the crack tips and the tool, the thin paper is strongly folded (thus the name Concertina tearing [11,12]). 
As seen in Fig. 5, the half-width of the crack pattern can be approximated by the shape

�(x) ∼ a x3/4 (5)
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Fig. 5. The crack pattern when a tool is pulled through a sheet of crêpe paper. The four pictures correspond to four different initial stretching levels, from 
left to right: ε0 = 0.053, 0.21, 0.26, 0.40. The red dashed line indicates a shape �(x) ∼ x3/4. The other experimental conditions are kept identical.

Fig. 6. (a) Sketch of crack extension. The tool is localised in A. The geometry is used to compute the change in strain energy as the crack tip is moved from 
C to C’. (b) Sketch of crack extension as the tool advances. As the tool advances from A to A’, the crack tip moves from C to C’.

This shape is suggested by the theoretical arguments developed in the next section, which also provide the missing dimen-
sional length a4 in Eq. (5). Remarkably, there is a strong influence of the initial stretching: pre-stretching the material leads 
to narrower patterns.

4. Geometry of the crack pattern

Modelling is based on Griffith’s linear elastic fracture mechanics and follows the analysis of refs. [7,8]. Such an approach 
requires the calculation of the variation of elastic energy stored in the material during loading and we will assume that 
this energy is stored in stretching only (i.e. the bending energy associated with the folding is neglected). Moreover, in 
Griffith’s approach, the change of elastic energy that occurs during the extension of a crack is associated with unloading. 
For this reason, we consider that the relevant elastic energy writes Us ∼ ∫

Eun h ε2dS where Eunh characterises the sample 
unloading at a given pre-stretch and ε is the strain.

The first task is the computation of the strain associated with a given geometry. Consider the crack geometry of Fig. 6a. 
The tearing force is applied to point A towards x > 0 at the apex of the pattern. The segment AC of initial length � is 
stretched to a length �/ cosα and thus the strain is ε = 1/ cosα − 1. The analysis proceeds in two stages: first we consider 
that the angle θ is known and we compute the position of the crack tip (parameterised by the angle α) that ensures that 
the total energy is minimal. Then an optimisation among all the crack path (i.e. the different values of θ ) is used to find the 
actual shape of the pattern.

As the crack tips advances from C to C’, the elastic energy is reduced, whereas the crack advance results in an increase 
of fracture energy. Parameterising the crack advance by the (small) angle β = α − α′ , we can compute the lengths �′ and u
using the following relations:

� tanα − �′ tan(α − β) = �′ − �

tan θ
, and u = �′ − �

sin θ
(6)

yielding (for β small)

�′ = � [1 + β tanα + β tan(θ − α)] and u = �β

cosα cos(θ − α)
(7)

The variation of total energy (sum of elastic and fracture energy) is δU ∼ Eunh ε′ 2l′ 2 − Eunh ε2l2 +
 h u with the geometrical 
parameter β can be computed using Eq. (7). Imposing δU = 0 at first order as β changes yields an equation for α

cosα − 8
�

cos
(α − θ

)
sin3 α = 0 (8)
c 2 2
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where

�

c
= Eunh �


h
(9)

is a non-dimensional parameter typically found in crack pattern problems: it is the ratio between the characteristic length 
of the problem � and the material length c = 
/Eun that was put forward in ref. [8].

When � � c, α is small and is approximated by

α3 = c

� cos θ
(10)

Equation (8) or its simplified form (10) sets the position of the crack tip whenever the angle θ is known.
We now consider the energy involved as the tool drives the crack. As the tool advances by a distance d (see Fig. 6b), the 

geometry of the pattern is given by

u cos θ + �′ tanα′ = d + � tanα and u = �′ − �

sin θ
(11)

Combining the two equations, and writing �′ = �(1 + λ), for α small, one obtains

λ ≈ d

�
tan θ

[
1 + 2

3

( c

� cos θ

)1/3
tan θ

]−1

(12)

and

u = λ�

sin θ
= d

cos θ

[
1 + 2

3

( c

� cos θ

)1/3
tan θ

]−1

(13)

The total energy variation writes δU ∼ Eunhl′ 2ε′ 2 − Eunhl2ε2 + 
hu with

ε′ = 1

cosα′ − 1 ≈ α′ 2

2
≈ 1

2

( c

�′ cos θ

)2/3
(14)

With the different geometric quantities, the variation of energy writes

δU

Eunh
≈ �′ 2/3

4

( c

cos θ

)4/3 − �2/3

4

( c

cos θ

)4/3 + λ� c

sin θ

≈ �2/3 1

6

( c

cos θ

)4/3
λ + �c

sin θ
λ

To compute the optimal configuration, we consider the value of θ that ensures that ∂(δU )/∂d is minimal when δ → 0. The 
coefficient that should be minimized is

Cd =
[

1

6

( c

� cos θ

)4/3 + c

� sin θ

]
tan θ

[
1 − 2

3

( c

� cos θ

)1/3
tan θ

]
(15)

≈ c

�
− 1

2
θ

( c

�

)4/3 + θ2
[

c

2�
− 1

9

( c

�

)5/3
]

(16)

Minimizing Cd with respect to θ yields at leading order

θ = 1

2

( c

�

)1/3
(17)

This equation can then be used to compute the shape of the crack as it extends: with d�/dx = tan θ ≈ θ ≈ 1/2(c/�)1/3, we 
obtain for the shape [8]

�(x) ≈ c1/4x3/4 (18)

where c = 
 h/Eunh = 
/Eun is an intrinsic feature of the material.
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Fig. 7. (a) The variation of the prefactor a of the law � = a x3/4 for different initial strains ε0 deduced from photographs of the pattern (Fig. 5). (b) The 
model predicts a4 ∼ c = 
/Eun, and indeed the plot of a4 as a function of the unloading modulus is consistent with the model (straight line).

5. Discussion

The shape � = a x3/4 is consistent with our measurements of the crack pattern observed in experiments (Fig. 5). Moreover, 
the variation of a with the initial stretching indicates that the variation of the pattern with the initial stretching ε0 is 
qualitatively consistent with the model: when the sample is stretched, it becomes stiffer and thus the material length c
becomes shorter. Therefore, according to Eq. (18), higher values of ε0 should lead to a narrower pattern, as observed in the 
experiment.

To provide a more quantitative comparison between the model and the experiment, noticing that the fracture energy 

 is not modified by the initial stretching, we use the unloading modulus deduced from the stretching curve (Fig. 2). 
The variation of the pattern with the initial strain is shown in Fig. 7a. Using the curve for Eun to estimate the unloading 
modulus for each initial strain, it is possible to plot the pre-factor a as a function of the modulus. The results are compared 
with the expected trend a4 ∼ c = 
/Eun in Fig. 7b, and show a fair agreement. The length c, here of the order of 60 mm for 
Eun/E = 0.1, corresponds to a fracture energy 
 ≈ 103 J/m2, a standard order of magnitude for paper. We note however that, 
even though our simple model captures the trend of variation of the pattern with the initial stretching, some ingredients 
were not included. The exact stress field in the stretched area around the crack tip was not fully computed and, moreover, 
the unloading modulus only provides a characteristic value for the actual modulus. Such approximations may be responsible 
for a discrepancy in the evaluation of the elastic energy and thus for the observed discrepancy in Fig. 7b.

To summarize, we have shown that crêpe paper is a particularly interesting material in the sense that it is not only as 
brittle as paper is, but that its elastic modulus can be tuned over decades thanks to a suitable initial pre-stretch. We have 
also shown that the concertina tearing test is an easy protocol to access the fracture energy 
 of a material, because its 
macroscopic pattern is sensitive to a readily measurable length c = 
/Eun, a length that can, in the case of crêpe paper, be 
varied over a very broad range.
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