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We extend the lubrication approximation for a viscous flow in two-dimensional chan-
nels with arbitrary shape functions and moderate aspect ratio. The higher-order model 
is obtained following an asymptotic analysis. Velocity and pressure profiles for the approx-
imated model are given analytically and involve the derivatives of the shape functions of 
the walls up to the second order. Comparisons with full-scale simulations are given and 
show good agreement as well as improvements from the classical standard lubrication ap-
proximation.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The Classical Lubrication Approximation (CLA) accounts for the behavior of viscous flows in thin channels under the as-
sumption of small Reynolds numbers and for slowly varying walls. Under these hypotheses, the flow is characterized by 
(i) a constant pressure across the transverse, say vertical, section and with variations along the channel axis governed by 
the Reynolds equation [1], (ii) a horizontal velocity of the Poiseuille type and a vertical velocity negligible compared to the 
horizontal velocity.

The CLA, as it avoids us to resolve a full-scale fluid calculation, is used in many fields such as film lubricant [2], hydraulic 
fracture mechanics [3,4], dykes and sills in volcanism [5], or flows in biological systems such as blood cell transport in 
narrow capillaries [6]. However, its validity as that of the associated Reynolds equation have to be questioned when the 
curvature of the channel is not negligible anymore. A systematic way to do so is to use asymptotic techniques, which are 
well adapted due to the small thickness of the channel compared to the other dimensions. Starting in the 1980s, such an 
Extended Lubrication Approximation (ELA) has been applied to channels with a single wavy wall [7] and with two symmetric 
wavy walls [8]. In these references, power series of the stream function have been obtained for low Reynolds numbers 
and the results have been applied in hydraulic fracture mechanics, see, e.g., [9] and references herein. We also mention the 
works of [10] concerning roughnesses for which the asymptotic analysis is combined with homogenization to extract the 
macroscopic effective behavior. Recently, Tavakol and co-workers have revisited the problem of a single wavy wall using 
a slightly different approach in which the asymptotic analysis is applied to the Stokes equations [11]. Experimental and 
numerical results support their analytical result and exemplify the interest of the improved model to capture accurately the 
velocity profiles and the pressure drop. Our study follows from this work and extends the lubrication approximation to two 
non-symmetric wavy walls.
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Fig. 1. Schematic view of a channel of length L with arbitrary upper and lower shape profiles h+(x) and h−(x). The functions h(x) and ym(x) denote the 
half-distance between the walls and the average level, respectively.

The paper is organized as follows. The problem is introduced in Section 2 along with the main result of the paper. In 
Section 3, we will proceed to the derivation of ELA by means of asymptotic techniques. Finally, in Section 4, we compare 
the behavior of the second-order asymptotic approximation to direct numerical simulations and to the prediction from the 
standard lubrication theory.

2. Problem setting and main result

We consider an incompressible, steady, two-dimensional pressure-driven flow in a channel of length L. The geometry 
is defined through the introduction of the upper shape function y = h+(x) and the lower shape function y = h−(x) for 
x ∈ (0, L) with h+ > h− (see Fig. 1). These functions are assumed to be at least C2 continuous. We introduce the mean line 
level ym and the local half-thickness h of the channel defined by

ym = h+ + h−
2

, h = h+ − h−
2

(1)

both being function of x. We then rescale the vertical coordinate and center it around the average level according to

y = y − ym(x)

h(x)
(2)

The Reynolds number is assumed to be small, so that the flow is governed by the Stokes equations

∇ · u = 0, μ∇2u = ∇p (3)

where u = uex + vey and p are the velocity and the pressure fields, respectively, and μ is the viscosity of the fluid. 
Additionally to a no-slip condition on the walls, the boundary conditions are defined as prescribed as a Poiseuille inlet 
velocity profile and a vanishing outlet pressure

u(x,h+(x)) = u(x,h−(x)) = 0, u(0, y) = 3�

4h(0)

(
1 − y2

)
ex, p(L, y) = 0 (4)

with � the fluid flux. To conduct the asymptotic analysis, we define the small parameter

ε = h(0)

L
(5)

which accounts for the slenderness ratio of the channel. The main result of the paper is the following approximation of the 
exact solution to the problem up to the second order in the small parameter ε

u(x, y) = 3�

4h

(
1 − y2

)(
1 + 4h′ 2 − hh′′

10

(
1 − 5y2

)
+ 2hy′′

m − 12h′ y′
m

3
y

)
+uco(ε2) (6)

v(x, y) = 3�

4h

(
1 − y2

)(
h′y + y′

m

)+uco(ε2) (7)

p(x, y) = μ�

L∫
x

3

2h3

(
1 + 2

5

(
h′ 2 + hh′′ + 5y′ 2

m

))
dx′

+ 3μ�

4h2

(
h′(1 − 3y2) − 2y′

my
)

+ pco(ε2) (8)

where the characteristic velocity uc and pc are given by
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uc = �

2h(0)
, pc = μ�L

2(h(0))3
(9)

The classical lubrication approximation is obtained from Eqs. (6)–(8) by simply putting the derivative of ym and h to zero. 
Hence, in the standard case, the velocities and the pressure depend only on the (half) relative distance h between the walls. 
Note that the prescribed parabolic inlet velocity profile Eq. (4) is matched in average by the second-order approximation. It 
is matched exactly if we have simultaneously y′

m = h′ = 0 and y′′
m = h′′ = 0. If not, there is a discontinuity and the approxi-

mation is correct far enough from the inlet, while near the inlet, there exists a boundary layer that can be determined by a 
matched asymptotic expansion of the governing equations.

3. Asymptotic analysis

3.1. Dimensionless problem and rescaled equations

In order to non-dimensionalize the problem, the following variables are introduced

x = x

L
, u(x, y) = u

uc
, v(x, y) = v

uc
, p(x, y) = p

pc
(10)

The recentered and rescaled vertical coordinate, defined by Eq. (2), reads now

y = y − h(0)ym(x)

h(0)h(x)
(11)

where

ym(x) = ym(Lx)

h(0)
, h(x) = h(Lx)

h(0)
(12)

denote the rescaled shape functions that define the channel’s geometry.
Introducing the dimensionless differential operators

∂̂x = ∂x − h′y + y′
m

h
∂y, ∂̂y = 1

h
∂y, ∂̂yy = 1

h2
∂yy (13)

∂̂xx = ∂xx +
(
h′y + y′

m

)2

h2
∂yy − 2

h′y + y′
m

h
∂xy +

(
2h′ (h′y + y′

m

)
h2

− h′′y + y′′
m

h

)
∂y (14)

where ∂x and ∂y are the usual derivatives with respect to x and y respectively, the Stokes equations read, in non-dimensional 
form, as

∂̂xu + 1

ε
∂̂yv = 0 (15)

∂̂xxu + 1

ε2
∂̂yyu = 1

ε2
∂̂xp (16)

∂̂xxv + 1

ε2
∂̂yyv = 1

ε3
∂̂yp (17)

These equations are written in the rescaled region (0, 1) × (−1, 1), and are complemented by the boundary conditions

u(0, y) = 3

2

(
1 − y2

)
, v(0, y) = u(x,±1) = v(x,±1) = 0, p(1, y) = 0 (18)

Next, we follow an asymptotic approach, valid for small ε, in which we assume that the solution (u, v, p) can be expanded 
in powers of ε, namely

u(x, y) =
∞∑

i=0

εiui(x, y), v(x, y) =
∞∑

i=0

εivi(x, y), p(x, y) =
∞∑

i=0

εipi(x, y) (19)

The fields (ui, vi, pi) will be determined by inserting expressions (19) in Eqs. (15)–(18).
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3.2. Correction to CLA in the vertical velocity v1

To begin with, we shall see that the analysis of the problem at the leading orders provides the standard Reynolds 
equation within CLA, corrected by a non-vanishing vertical velocity. Introducing expressions (19) in Eqs. (15)–(18), we 
firstly examine the dominant order terms. The continuity equation (15) reads as ∂̂yv0 = 0, which leads to

v0 = 0 (20)

because of the no-slip conditions v0(x, ±1) = 0. The momentum balance along y (17) gives ∂̂yp0 = 0, so that p0 is inde-
pendent of y and we set p0 = p̄0(x). The momentum balance along x (16) then reads as ∂̂yyu0 = ∂xp̄0(x), which can be 
integrated with respect to y using the no-slip boundary conditions u0(x, ±1) = 0. This gives the classical parabolic shape for 
the longitudinal velocity at the dominant order

u0(x, y) = −h2

2
∂xp̄0(1 − y2) (21)

At the next order, the continuity equation (15) reads as

∂̂xu0 + ∂̂yv1 = 0 (22)

By integrating this equation with respect to y over (−1, 1), we obtain the standard Reynolds equation

∂x

(
−2

3
h3∂xp̄0

)
= 0 (23)

where we used the expression of u0 (21) and the no-slip boundary conditions v1(x, ±1) = 0. This shows us that the rescaled 
flux

φ0 = −2

3
h3∂xp̄0 (24)

is a quantity conserved along the channel. Comparing the boundary conditions u0(0, y) = 3
2

(
1 − y2

)
to Eq. (21) provides 

φ0 = 2. Finally, the longitudinal velocity at the dominant order reads as

u0(x, y) = 3

2h
(1 − y2) (25)

The pressure p̄0 in the channel can now be deduced by integration of Eq. (24). Given the boundary condition p0(1, y) = 0, 
we get

p0(x, y) = p̄0(x) =
1∫

x

3

h3
dx′ (26)

We are now able to derive the first non-trivial contribution to the vertical velocity. Since u0 is known from Eq. (25), 
the continuity equation (22) can be integrated with respect to y, which leads to the first correction to CLA in the vertical 
velocity

v1(x, y) = 3

2

(
1 − y2

) h′y + y′
m

h
(27)

3.3. Extended lubrication approximation and corrections in (u2, p2)

We shall now complement the correction in the vertical velocity obtained above by deriving the correction in the pres-
sure and the associated horizontal velocity. To achieve this, we examine the terms of higher orders in Eqs. (15)–(17). Because 
of v0 = 0, the terms p1, u1 and v2 satisfy the same relations as at lower order, namely

∂̂xu1 + ∂̂yv2 = 0, ∂̂yyu1 = ∂̂xp1, ∂̂yp1 = 0 (28)

This provides the same result, with p1(x, y) = p̄1(x), u1(x, y) = h2

2 ∂xp̄1(y2 − 1) and the flux φ1 = − 2
3 h3∂xp̄1 conserved along 

x. However, the boundary conditions (18), by means of the prescribed inlet velocity u1(x, 0) = 0 and pressure at the exit 
p1(1, y) = 0, imply φ1 = 0 and

u1(x, y) = 0, p1(x, y) = 0 (29)

Integrating the continuity equation at this order leads to
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v2(x, y) = 0 (30)

The pursuit of the analysis at the next order is necessary to reveal new contributions from Eqs. (15)–(17). Specifically, 
we now start with

∂̂xu2 + ∂̂yv3 = 0, ∂̂xxu0 + ∂̂yyu2 = ∂̂xp2, ∂̂yyv1 = ∂̂yp2 (31)

Given the non-trivial value (27) of v1, the pressure p2 is deduced, up to a constant of x, by integrating the third equation 
of (31). We obtain

p2(x, y) = p̄2(x) + 3

2h2

(
h′ (1 − 3y2

)
− 2y′

my
)

(32)

where p̄2(x) is the average of p2 over y ∈ (−1, 1). The longitudinal velocity u2 is then calculated thanks to the second 
equation of (31). Plugging the forms of u0 and p2 from Eqs. (25) and (32) into this equation leads to

∂yyu2 = −3

h

(
hh′′ (3y2 − 1

)
+ 2h′ 2

(
1 − 6y2

)
− 2y′

m
2 + 2

(
hy′′

m − 6h′y′
m

)
y
)

+ h2∂̂xp̄2 (33)

The integration of this expression, taken into account the no-slip conditions u2(x, ±1) = 0, provides u2 of the form

u2(x, y) = 3(1 − y2)

[
hh′′ − 4h′ 2

4h
y2 − hh′′ + y′

m
2

4h
+

(
y′′

m

3
− 2h′y′

m

h

)
y − h2

6
∂̂xp̄2

]
(34)

with ∂̂xp̄2 still unknown at this stage. In order to determine this term, the first equation of (31) is integrated over y ∈ (−1, 1), 
which leads to 

∫ 1
−1 ∂̂xu2 dy = 0 because of the no-slip conditions v3(x, ±1) = 0, and eventually

h3∂̂xp̄2 = −6

5

(
hh′′ + h′2 + 5y′

m
2
)

(35)

Finally, plugging the above expression into Eq. (34) leaves us with

u2(x, y) = 3

2h

(
1 − y2

)(
4h′2 − hh′′

10

(
1 − 5y2

)
+ 2hy′′

m − 12h′y′
m

3
y

)
(36)

The pressure p̄2 is obtained by integrating Eq. (35) with the boundary condition p̄2(1) = 0, which gives

p̄2(x) =
1∫

x

6

5h3

(
h′2 + hh′′ + 5y′

m
2
)

dx′ (37)

3.4. Reconstruction of the solution

By adding the contributions at each order (Eqs. (25), (29) and (36) for u; Eqs. (20), (27) and (30) for v; Eqs. (26), (29)
and (32) along with (37) for p), we reconstruct an approximation of the solution (u, v, p) up to the second order in ε. In 
dimensionless form, this gives us

u = 3

2h
(1 − y2)

[
1 + ε2

(
4h′2 − hh′′

10
(1 − 5y2) + 2hy′′

m − 12h′y′
m

3
y

)]
+ o(ε2) (38)

v = 3ε

2h

(
1 − y2

)(
h′y + y′

m

) + o(ε2) (39)

p =
1∫

x

3

h3

(
1 + 2ε2

5

(
h′2 + hh′′ + 5y′

m
2
))

dx′ + 3ε2

2h2

(
h′ (1 − 3y2

)
− 2y′

my
)

+ o(ε2) (40)

which, coming back to the dimensional parameters defined by Eq. (10), gives the form announced in Eqs. (6)–(8).
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Fig. 2. Profiles used for the comparisons with the full scale simulations: (left) channel’s profile (P1), (right) channel’s profile (P2).

Fig. 3. Results for the profile (P1). Fields of the velocity components (u, v) and of the pressure p in full-scale simulations, CLA and ELA.

Table 1
Typical values of the characteristics of the profiles chosen for the comparison.

Profile max(2h) h′ h′′ y′
m y′′

m

(P1) 0.2 ∼ 0.2 ∼ 1 ∼ 1 ∼ 5
(P2) 0.4 ∼ 0.5 ∼ 3 ∼ 0.5 ∼ 2

4. Validation of the ELA model

To inspect the accuracy of the ELA model specified by Eqs. (6)–(8), we consider two channel profiles (P1) and (P2), where 
both ym and h vary. The geometries of the channels, of length L = 1, are defined by the following equations:

(P1)

{
h+(x) = 0.2 cos(π(x − 1/2))2 + 0.2

h−(x) = 1
3 cos(π(x − 1/2))2 (41)

(P2)

{
h+(x) = 0.15 cos(π(x − 1/2))2 + 0.1 + 0.35 cos(π(x/2 − 1/2))2)

h−(x) = −0.2 cos(π(x − 1/2))2 + 0.05 + 0.35 cos(π(x/2 − 1/2))2 (42)

These profiles are represented in Fig. 2. For (P1) and (P2), we have h′
+(0) = h′

−(0) = 0 and h′
+(1) = h′

−(1) = 0. The prescribed 
inlet velocity (4) is chosen such that the flux is � = 1 and the fluid viscosity is set at μ = 1. We use COMSOL to solve the 
direct problem (3) along with the boundary conditions (4).

We report in Figs. 3, 4, and 5 the fields of the velocity components (u, v) and of the pressure p computed numerically 
and the corresponding fields predicted by the CLA and ELA; for the CLA, v(x, y) = 0 is not shown.

In the reported cases, the profiles have the characteristics given in Table 1. The two channels have a reasonable small 
slenderness ratio max(2h) as well as moderate slopes/curvatures, which do not exceed a few unities. Besides they produce 
flows with similar maximum horizontal velocities and similar pressure drops. However, the improvement of ELA compared 
to CLA is much more impressive for (P1) than for (P2) and we shall see that this is attributable to more significant slopes y′

m
of the centerline, a parameter that is not related to the slenderness ratio. Hence, even though (P1) has a smaller slenderness 
ratio, the deviation of the flow characteristics with respect to the CLA prediction is more significant, and interestingly, the 
asymptotic analysis appears to be more robust with respect to large centerline slopes than to large slenderness ratios.

To begin with, it is noticeable that CLA and ELA have the same good accuracy to capture the right variations of u(x, y)

and this is expected since the correction δu of ELA appears at the second order. From Eq. (6), this correction near the 
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Fig. 4. Results for the profile (P2). Same representation as in Fig. 3.

Fig. 5. Variations of the horizontal velocity u(x, ym) and vertical velocity v(x, ym) with respect to x, calculated at the centerline y = ym. The red line 
shows the velocity field computed numerically, the blue line shows the prediction in ELA from (8); the grey line shows the horizontal velocity in CLA (we 
do not represent the vertical velocity as it is neglected in CLA).

centerline varies as δu ∼ (4h′ 2 − hh′′)/10 ∼ 0.01 in the reported cases. Accordingly, we find an error averaged on the whole 
channel of about 2% for (P1) and 4% for (P2). The effect on the vertical velocity v(x, y) is much more significative and again 
this is expected since the correction appears at the first order. But in this case, from Eq. (7), v is crucially dependent on y′

m, 
since v/u ∼ y′

m near the centerline. It results that the large slope of the mean line in (P1) close to unity produces vertical 
velocities up to half the horizontal one.

We now move on to the fields of pressure, which are of particular interest since the pressure drop due to expansions/con-
strictions are important in many practical situations. As for the vertical velocity, the gain in the ELA is more impressive for 
(P1) than for (P2), although the slenderness ratio of the former is half that of the latter: for (P1), the error between the 
prediction and the direct numerics is of about 5% for ELA, while this error is of about 40% for CLA; for (P2) the error is 
of 1% for ELA versus 10% for CLA. To better understand the influence of the different parameters in the ELA, we define 
pCLA(x) = μ� 

∫ L
x 3/(2h3) dx′ as the pressure predicted by the CLA; from Eq. (8), the ELA involves two corrections compared 

to the CLA

p(x, y) = pCLA(x) + δ p̄(x) + δp(x, y) (43)

with
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Fig. 6. Variations of the pressure with respect to x. Plain lines show the pressure profiles p(x, h±) computed numerically (blue at y = h+ , red at y = h−), 
dotted lines show the prediction in ELA from (8); dashed grey lines show p(x, y) = pCLA(x) being independent of y in CLA.

δ p̄ = μ�

L∫
x

3

5h3

(
h′2 + hh′′ + 5y′

m
2
)

dx′, δp = 3μ�

4h2

(
h′(1 − 3y2) − 2y′

my
)

The term δp tells us that the isolines of pressure are not vertical and its relative weight δp/pCLA ∼ hh′/L is given by the 
slenderness ratio, hence here negligible. Conversely, the term δ p̄ is an integral along x (as pCLA) and as such it cumulates 
the effects of slopes and curvatures. Its weight contains a contribution in 

∫
y′

m
2
/h3, which becomes significant when large 

variations of the centerline coincide with small slenderness. This happens for (P1) but not for (P2) and the consequences 
are shown in Fig. 6, where we reported the pressure profiles p(x, h±) along the channel walls computed numerically, and 
the CLA and ELA predictions. For (P1), the actual pressure drop, p̄(0) ∼ 18·103, is correctly predicted by ELA while largely 
underestimated by CLA. In contrast, the gain for (P2) in ELA is moderate compared to CLA.

5. Conclusion

We have derived in this paper a second-order lubrication approximation for a viscous flow at low Reynolds number in 
thin channels with arbitrary walls shape. Velocity and pressure profiles in the channel have been given as fully explicit 
functions of the inlet flux and the walls geometry, up to the second derivative. The resulting ELA is in general better 
than the CLA and this has been exemplified by comparison with direct numerics. However, there are situations where the 
CLA fails in accurate predictions, although the criterion of small slenderness ratio is met. These situations correspond to 
channels containing constrictions coinciding with large variations of the centerline. This results in large vertical velocities 
and pressure drops largely underestimated by CLA and accurately reproduced by ELA.

Extension of the current work deals with the derivation of a similar higher-order lubrication approximation for (i) mod-
erate (yet non-negligible) Reynolds numbers, starting from the full Navier–Stokes equation, (ii) non-stationary case with 
time-varying walls.

References

[1] O. Reynolds, On the theory of lubrication and its application to mr. Beauchamp tower’s experiments, including an experimental determination of the 
viscosity of olive oil, Philos. Trans. R. Soc. Lond. 177 (1886) 157–234.

[2] B.J. Hamrock, S.R. Schmid, B.O. Jacobson, Fundamentals of Fluid Film Lubrication, CRC Press, Boca Raton, FL, USA, 2004.
[3] E. Detournay, Propagation regimes of fluid-driven fractures in impermeable rocks, Int. J. Geomech. 4 (2004) 35–45.
[4] B. Taisne, S. Tait, C. Jaupart, Conditions for the arrest of a vertical propagating dyke, Bull. Volcanol. 73 (2011) 191–204.
[5] J.R. Lister, Buoyancy-driven fluid fracture: similarity solutions for the horizontal and vertical propagation of fluid-filled cracks, J. Fluid Mech. 217 (1990) 

213–239.
[6] Y. Aboelkassem, A. Staples, A bioinspired pumping model for flow in a microtube with rhythmic wall contractions, J. Fluids Struct. 42 (2013) 187–204.
[7] E. Hasegawa, H. Izuchi, On steady flow through a channel consisting of an uneven wall and a plane wall: Part 1. Case of no relative motion in two 

walls, Bull. JSME 26 (1983) 514–520.
[8] M. Van Dyke, Slow Variations in Continuum Mechanics, Advances in Applied Mechanics, vol. 25, Elsevier, 1987, pp. 1–45.
[9] S. Sisavath, A. Al-Yaarubi, C.C. Pain, R.W. Zimmerman, A simple model for deviations from the cubic law for a fracture undergoing dilation or closure, 

in: Thermo-Hydro-Mechanical Coupling in Fractured Rock, Springer, 2003, pp. 1009–1022.
[10] J. Fabricius, Y. Koroleva, A. Tsandzana, P. Wall, Asymptotic behaviour of Stokes flow in a thin domain with a moving rough boundary, Proc. R. Soc. A 

470 (2014) 20130735.
[11] B. Tavakol, G. Froehlicher, D.P. Holmes, H.A. Stone, Extended lubrication theory: improved estimates of flow in channels with variable geometry, Proc. 

R. Soc. A 473 (2017) 20170234.

http://refhub.elsevier.com/S1631-0721(19)30058-0/bib5265793836s1
http://refhub.elsevier.com/S1631-0721(19)30058-0/bib5265793836s1
http://refhub.elsevier.com/S1631-0721(19)30058-0/bib48616D3034s1
http://refhub.elsevier.com/S1631-0721(19)30058-0/bib4465743034s1
http://refhub.elsevier.com/S1631-0721(19)30058-0/bib5461693131s1
http://refhub.elsevier.com/S1631-0721(19)30058-0/bib4C69733930s1
http://refhub.elsevier.com/S1631-0721(19)30058-0/bib4C69733930s1
http://refhub.elsevier.com/S1631-0721(19)30058-0/bib41626F3133s1
http://refhub.elsevier.com/S1631-0721(19)30058-0/bib486173497A753833s1
http://refhub.elsevier.com/S1631-0721(19)30058-0/bib486173497A753833s1
http://refhub.elsevier.com/S1631-0721(19)30058-0/bib56616E44796B653837s1
http://refhub.elsevier.com/S1631-0721(19)30058-0/bib5369735961613033s1
http://refhub.elsevier.com/S1631-0721(19)30058-0/bib5369735961613033s1
http://refhub.elsevier.com/S1631-0721(19)30058-0/bib4661623134s1
http://refhub.elsevier.com/S1631-0721(19)30058-0/bib4661623134s1
http://refhub.elsevier.com/S1631-0721(19)30058-0/bib54617646726F3137s1
http://refhub.elsevier.com/S1631-0721(19)30058-0/bib54617646726F3137s1

	Extension of the lubrication theory for arbitrary wall shape: An asymptotic analysis
	1 Introduction
	2 Problem setting and main result
	3 Asymptotic analysis
	3.1 Dimensionless problem and rescaled equations
	3.2 Correction to CLA in the vertical velocity  v1
	3.3 Extended lubrication approximation and corrections in (u2,p2)
	3.4 Reconstruction of the solution

	4 Validation of the ELA model
	5 Conclusion
	References


