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In this paper, we propose a new analytical formula to define the next branch in the 
Asymptotic Numerical Method (ANM) using the Padé approximants. The proposed formula 
is based on the computation of the relative error of two consecutive Padé approximants. 
This formula is obtained by developing the relative error with respect to the path 
parameter. An appropriate matrix formulation is adopted for the computation of this 
relative error. A comparison between the analytical formula proposed in this paper and 
the classical continuation Padé approximants using the step length computed numerically 
using dichotomy method is presented for examples of buckling structures.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The analysis of physical phenomena has always required the resolution of systems of nonlinear equations. The most 
powerful numerical algorithm enabling us to solve these systems of equations is the Newton–Raphson one [1–3]. This 
method is based on two stages; a prediction and a correction. The principle of these strategies is to follow the branch in 
a stepwise manner via a succession of linearizations and some iterations to achieve the equilibrium. The complete solution 
is sought by a continuation type point by point. This method has been applied in many nonlinear problems of structures 
[2,4–8].

An alternative to this method is the Asymptotic Numeric Method (ANM), which is a continuation procedure that allows 
one to obtain the solution to nonlinear problems in a succession of analytical branches [9,10]. This method has been suc-
cessfully applied in several works [11–18]. Each branch is determined by a representation in vectorial series over a validity 
range [0, as

max] [10–12]. In these works, the step length as
max is computed by an explicit formula [10]. In order to increase 

this validity range, these vectorial series are often replaced by an appropriate vectorial Padé approximant [19–21].
The continuation Padé approximants is used for the first time by Elhage-Hussein et al. in [13]. In this work, the step 

length ap
max is computed numerically by the dichotomy method. This computation of the step length ap

max is based on the 
relative error E M(a) of two consecutive Padé approximants of order M − 1, and M , respectively.

In this work, we propose for the first time to compute analytically the step length ap
max of these Padé approximants by 

using a development with respect to the path parameter a of the relative error E M(a). This development is done by using 
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an appropriate matrix formulation of the relative error. The smallest positive root of this polynomial corresponds to a good 
approximation of the step length ap

max. In addition, we have made a comparison between the continuation Padé approx-
imants used in the article [13] and the continuation Padé approximants proposed in this paper. The difference between 
these two continuations lies in the computation of the validity range ap

max. In the continuation Padé approximants of paper 
[13], the validity range ap

max is numerically computed by the dichotomy method and, in the proposed continuation Padé 
approximants, it is given directly by the new explicit analytical formula. A comparison between this analytical formula and 
that used in [13] is made on examples of buckling structures.

This paper is organized as follows. In Section 2, the Asymptotic Numerical Method (ANM) and vectorial Padé approxi-
mants are presented. The proposition of an analytical formula of the step length ap

max is detailed in Section 3. In Section 4, 
two benchmarks are discussed in order to compare the continuation Padé approximants using the new analytical formula of 
the step length ap

max with the classical Padé approximant and series continuations. The first concerns the nonlinear bending 
of a plate and the second concerns the buckling of a cylindrical shell loaded in the center.

2. Asymptotic Numerical Method (ANM) and vectorial Padé approximant

Many engineering problems can be reduced to solve nonlinear problems depending on a control parameter λ. These 
problems are written in the following general form:

{R ({U }, λ)} = {0} (1)

where {U } is the unknown vector of Rn , λ is a parameter and {R} is a vector function with values in Rn assumed to be 
sufficiently regular with respect to its arguments {U }, and λ. The Asymptotic Numerical Method (ANM) [16,22] is a family of 
algorithms for path-following problems. This principle is simply to expand the unknown ({U }, λ) of the nonlinear problem 
(1) in power series with respect to a path parameter a:⎧⎨

⎩
{U s}(a) − {U j} = ∑N

k=1 ak{Uk}
, a ∈ [0,as

max]
λs(a) − λ j = ∑N

k=1 akλk

(2)

where ({U j}, λ j) is a started vectorial solution, ({Uk}, λk) is a vectorial unknown and N is the truncation order of the series. 
The validity range [0, as

max] is deduced from the computation of the truncated vector series (2). So, the step length as
max is 

computed a posteriori by the following estimation, which has been proposed in [16]:

as
max =

(
εs

||{U1}||
||{U N}||

) 1
N−1

(3)

where εs is a given tolerance parameter and ||.|| indicates a standard norm. The step lengths depend on the definition of 
the path parameter a and we must add an auxiliary equation to define this parameter [16–18]. By using the evaluation 
of the series at a = as

max, we obtain a new starting point and define, in this way, the ANM continuation procedure. This 
continuation method has been proved to be an efficient method to compute the solution to nonlinear partial differential 
equations [9,11,12,16–18,22].

In order to increase the validity range of each solution branch, we replace the vectorial representation (2) by the vectorial 
Padé approximant of order M = N − 1:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

{U p}(a) − {U j} = ∑M
k=1

�M
M−k(a)

�M
M(a)

ak{Uk}
, a ∈ [0,ap

max]
λp(a) − λ j = ∑M

k=1

�M
M−k(a)

�M
M(a)

akλk

(4)

where �M
k (a) = ∑k

i=0 bM
i ai , 0 ≤ k ≤ M , with bM

0 is equal to 1, bM
k , 1 ≤ k ≤ M , are computed by a Gram–Schmidt orthonor-

malization technique of the vectors {Uk}, 1 ≤ k ≤ M , and ap
max is a step length that determines the validity range of this 

approximant. Recall, for a given tolerance parameter εp, that the computation of the step length ap
max is done numerically 

by solving the following equation [13]:

||{U p
M}(ap

max) − {U p
M−1}(ap

max)||2
||{U p

M}(ap
max) − {U j}||2

− εp = 0 (5)

This Eq. (5) has been solved by the dichotomy method [16]. In the same way as in the case of the series continuation, we 
have proceed to a continuation of each branch by replacing ({U j}, λ j) by 

({U }(ap
max), λ(ap

max)
)
.
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In order to facilitate the computation of the relative error E M(a), we propose, in this paper, to introduce a matrix 
formulation used recently in [23] of the rational representation (4) in the following form:

{U p}(a) − {U j} = 1

�M
M(a)

[U M ][B M ]{aM} ; a ∈ [0,ap
max] (6)

where [U M ] = [{U1} · · · {U M}] is the matrix of order N DL × M (N DL is the number of degrees of freedom) whose columns 
are the vectors {U1} · · · {U M}, [B M ] is the upper triangular matrix of order M defined by:

[B M ] =

⎡
⎢⎢⎢⎢⎣

1 bM
1 · · · bM

M−1
... 1 · · · ...
...

. . . bM
1

0 · · · 0 1

⎤
⎥⎥⎥⎥⎦ (7)

and t{aM} =< a, a2, · · · , aM >.
The objective of the following section is to search analytically the step length ap

max by defining a relative error between 
two Padé approximants truncated at the consecutive orders M − 1, and M .

3. Proposition of an analytical formula of the step length ap
max

To establish an analytical formula of the step length ap
max, let us recall that the relative error is given by:

E M(a) = ||{U P
M}(a) − {U p

M−1}(a)||2
||{U p

M}(a) − {U j}||2
(8)

With the help of the matrix formulation (6), it is shown that the formula (8) can be rewritten in the following form:

E M(a) = aM−1 ||∑M−1
k=0 ak[R M ]{ϕk}||2

||∑2M−2
k=0 ak[R M ]{ηk}||2

(9)

where [R M ] = (
αi j

)
1≤i≤ j≤M is an upper triangular square matrix of order M obtained by a factorization method Q R from 

the matrix [U M ]; with αi j are the orthogonalization coefficients of Gram–Schmidt, the vectors {ϕk}, 0 ≤ k ≤ M −1, and {ηk}, 
0 ≤ k ≤ 2M − 2 are functions of the coefficients bM

k (1 ≤ k ≤ M) of the polynomial �M
k of the Padé approximants truncated 

at orders M , and M − 1, whose expressions are detailed in Appendix A.
By a simple computation (see Appendix B), we show that the development of the relative error E M(a) at order 3 with 

respect to the path parameter a in the neighborhood of 0 is written as:

E M(a) = aM−1(e0 + e1a + e2a2 + e3a3 + O (a4)) (10)

where the computations of e0, e1, e2, and e3 are detailed in Appendix B. Taking into account Eqs. (5) and (10), the step 
length ap

max is solution to the following equation:

E M(a) − εp = 0 (11)

The resolution of Eq. (11) consists in computing the roots of the polynomial P (a) given by (see Appendix B):

P (a) = a3 + β2a2 + β1a + β0 (12)

where the coefficients β0, β1, and β2 are given in Appendix B. In order to determine the roots of the polynomial P (a), we 

replace the parameter a by z − β2

3
, which allows us to obtain the following equation verified by z:

z3 + pz + q = 0 (13)

where p = β1 − β2
2

3
, and q = 2β3

2

27
− β1β2

3
+ β0. By introducing u, and v such that:

z = u + v, (14)

Eq. (13) becomes:

u3 + v3 + (u + v)(3uv + p) + q = 0 (15)

Therefore, if u, and v verify the following system
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⎧⎪⎨
⎪⎩

u3 + v3 = −q

uv = − p

3

(16)

then u3, and v3 are the roots of the trinomial:

X2 + qX − p3

27
= 0 (17)

Then the roots of (17) for a positive discriminant �0 = q2 + 4
p3

27
> 0 are given by:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u3 = −q + √
�0

2

v3 = −q − √
�0

2

(18)

Knowing the roots u, and v , then z1 = u + v is a root of (13). In the case where the discriminant is negative, there exists 
θ ∈R such that u3, and v3 verify⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
u3 = −q + i

√−�0

2
=

√
q2 − �0

4
expiθ

v3 = −q − i
√−�0

2
=

√
q2 − �0

4
exp−iθ

(19)

Therefore, z1 =
(

q2 − �0

4

) 1
6 [

exp
(

iθ
3

)
+ exp

(−iθ
3

)]
= 2 

(
q2 − �0

4

) 1
6

cos

(
θ

3

)
is a root of (13). Note that the equalities in 

(19) show that:

θ = arccos

(
−q√

q2 − �0

)
(20)

Knowing a root z1 of (13), the other two roots z2, and z3 of (13) are those of the polynomial of degree 2 obtained by the 
Euclidean division of (13) by z − z1. So, the roots of the polynomial P (a) are given by:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 = z1 − β2

3

a2 = z2 − β2

3

a3 = z3 − β2

3

(21)

Finally, the step length ap
max is given by the smallest positive root:

ap
max = min (a1,a2,a3) (22)

4. Numerical applications

In this section, we have computed analytically the smallest positive real root of (19) that we have compared with the 
value of ap

max obtained by the dichotomy method applied to Eq. (7) for the same residual. The used coefficients bM
i of the 

Padé approximant are those computed by the Gram–Shmidt orthonormalization technique of the vectors {U i} (1 ≤ i ≤ M). 
A comparison between this new formula (19) and the one determined numerically by the dichotomy method is illustrated 
on examples of bending and buckling of structures. The D K T 18 element is used for finite element analysis [24,25].

4.1. Nonlinear bending of a square plate

We consider the nonlinear bending of an elastic, homogeneous and isotropic square plate of length L = 200 mm and 
thickness h = 1 mm, embedded at the four edges and subjected to vertical loading λF in its center, with F = 4 N. The 
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Fig. 1. Geometrical characteristics of the plate.

Table 1
Comparison between the results obtained by 8 ANM steps of the three types of continuation C S , C P C , 
and C P A for the order N = 10 and for the tolerance parameters εs = 1·10−7, εp = 7.98·10−5, and 
εp = 1.5·10−3, respectively.

Order C S , εs = 1.0·10−7 C P C , εp = 7.89·10−5 C P A, εp = 1.5·10−3

10
N (steps) λ w N (steps) λ w N (steps) λ w

8 14.41 1.34 8 202.6 4.06 8 208.9 4.10

Fig. 2. Load-displacement and residual-displacement curves obtained by 8 ANM steps of the three algorithms C S , C P C , and C P A for the truncation order 
N = 10.

mechanical characteristics of this plate are: Young’s modulus E = 3·104 MPa and Poisson’s ratio ν = 0.3 (see Fig. 1). The 
plate is discretized in 32 D K T 18 finite elements, i.e. 150 degrees of freedom.

In this numerical experiment, the obtained results are compared between three types of continuations. The first is a con-
tinuation series C S using the representation (2), the second is a continuation Padé approximant using the representation (4), 
where the step length ap

max is computed by the dichotomy method C P C and the third is a continuation Padé approximant 
using the representation (4) where the step length ap

max is defined by the analytical formula (19) C P A.
In Table 1, we report the results obtained by 8 ANM steps with the truncation orders N = 10 for the same residual. Note 

that with the continuation series C S , we have reached a deflection w = 1.34 mm, however with the continuation Padé of 
type C P C , we have reached a deflection w = 4.06 mm. If we use the continuation Padé of type C P A with the new formula 
of step length ap

max, we have reached a deflection w = 4.10 mm. From the obtained results, we note that for N = 10, the 
proposed analytical formula works well and gives same results as the dichotomy method.

In Fig. 2, we present a comparison between the results obtained at the forced node by the continuation series C S and 
the continuation Padé approximant using the two definitions of the step length ap

max C P C , and C P A. These results are 
obtained with the truncation order N = 10 in 8 ANM steps and with a tolerance parameter that gives the same quality of 
the solution (see Fig. 2b). From these results, we note that the two continuations of Padé approximants are comparable.

In Table 2, we show a comparison between the results obtained by the continuation series C S and the continuation 
Padé where the step length ap

max is computed by the dichotomy method and by the proposed analytical formula (19). These 
results are obtained with a truncation order N = 16 in 8 ANM steps. According to this table, we note that, also for this 
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Table 2
Comparison between the results obtained by 8 ANM steps of the three types of continuation C S , C P C , and 
C P A for the order N = 16 and for the tolerance parameters εs = 1.0·10−7, εp = 1.0·10−4.2, and εp = 1.1·10−3, 
respectively.

Order C S , εs = 1.0·10−7 C P C , εp = 1.0·10−4.2 C P A, εp = 1.1·10−3

16
N (steps) λ w N (steps) λ w N (steps) λ w

8 48.59 2.35 8 157.5 3.70 8 275.8 4.53

Fig. 3. Load-displacement and Residual-displacement curves obtained by 8 ANM steps of the three algorithms C S , C P C , and C P A for the truncation order 
N = 16.

Table 3
Comparison between the results obtained by 8 ANM steps of the three types of continuation C S , C P C , and 
C P A for the order N = 20 and for the tolerance parameters εs = 10−7, εp = 5·10−5, and εp = 3.211·10−4, 
respectively.

Order C S , εs = 10−7 C P C , εp = 5·10−5 C P A, εp = 3.211·10−4

20
N (steps) λ w N (steps) λ w N (steps) λ w

8 76.08 2.81 8 178.2 3.87 8 272.9 4.52

choice of order N = 16, the continuation Padé approximant using the analytical formula (19) to compute the step length 
ap

max gives good results. With 8 ANM steps, we reach a deflection of w = 4.53.
Fig. 3 illustrates the load-displacement and residual-displacement curves at the forced node obtained by 8 ANM steps of 

the three continuations C S , C P C , and C P A for the truncation order N = 16 and for the tolerance parameter that gives the 
same quality of solution.

Table 3 represents a comparison between the results obtained by the three continuations C S , C P C , and C P A for the 
truncation order N = 20 in 8 ANM steps and for tolerance parameters that give the same quality of solution. From the 
obtained results, it is clear that the step length of the continuation C P A are greater here than those of the two other 
continuations.

Fig. 4 illustrates the load-displacement and residual-displacement curves at the forced node obtained by 8 ANM steps of 
the three continuations C S , C P C , and C P A for the truncation order N = 20 and for the tolerance parameter that gives the 
same quality of solution.

4.2. Buckling of a cylindrical shell loaded in the center

This second application concerns the buckling of a cylindrical shell articulated along the two opposite edges and free on 
the two other ones. This structure is of length 2L = 504 mm, of radius R = 2540 mm, and has an angle of half opening 
θ = 0.1 rad, made of a homogeneous, elastic, and isotropic material of Young’s modulus E = 3102.75 MPa and Poisson’s 
coefficient ν = 0.3, subjected to a vertical loading λF applied at its center, with F = 1000 N. Due to the symmetry, only a 
quarter of the structure is discretized in 200 triangular elements of type D K T 18, i.e. 726 degrees of freedom. Two types 
of thickness are studied in this application: h = 12.7 mm and h = 6.35 mm (see Fig. 5). For this benchmark example, the 
response curve based on the value of the thickness h has limit points in λ, and w . This is a good test for the continuation 
methods [12,22].
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Fig. 4. Load-displacement and residual-displacement curves obtained by 8 ANM steps of the three algorithms C S , C P C , and C P A for the truncation order 
N = 20.

Fig. 5. Geometrical and mechanical characteristics of the studied structure and the used mesh.

Table 4
Comparison between the results obtained by 6 ANM steps of the three types of continuation C S , C P C , and 
C P A for the order N = 10 and for the tolerance parameters εs = 3·10−6, εp = 10−6, and εp = 1.7·10−5.1, 
respectively.

Order C S , εs = 3·10−6 C P C , εp = 10−6 C P A, εp = 1.7·10−5.1

10
N (steps) λ w N (steps) λ w N (steps) λ w

6 0.75 22.01 6 0.78 22.2 6 1.27 24.4

In this second numerical experiment, we treat first the buckling of a thick cylindrical shell (h = 12.7 mm) while com-
paring the results obtained by the three types of continuations C S , C P C , and C P A. We made the same numerical study as 
in the first example.

In Table 4, we report the results obtained by 6 ANM steps with the truncation order N = 10 for the same residual. 
The parameters εs, and εp have been chosen in order to get the same residual. Note that with the continuation series C S , 
we have reached a deflection w = 22.01 mm, however with the continuation Padé approximant C P C , we have reached a 
deflection w = 22.2 mm. If we use the continuation Padé approximant C P A with the new proposed formula (19) of ap

max, 
we have reached a deflection w = 24.4 mm. From the obtained results, we note that for N = 10, the proposed analytical 
formula is less better than the two other in this example.

In Fig. 6, we present a comparison between the results obtained at the forced node by the continuation series and the 
continuation Padé using the two definitions of the step length ap

max. These results are obtained with the truncation order 
N = 10 in 6 ANM steps and with a tolerance parameter that gives the same quality of solution (see Fig. 6b).

Table 5 represents a comparison between the results obtained by the three continuations C S , C P C , and C P A for the 
truncation order N = 15 in 5 ANM steps and for the tolerance parameters εs, and εp that give the same quality of solution. 
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Fig. 6. Load-displacement and residual curves for h = 12.7 mm and N = 10 obtained by 6 ANM steps of the three continuations C S , C P C , and C P A.

Table 5
Comparison between the results obtained by 5 ANM steps of the three types of continuation C S , C P C , and 
C P A for the order N = 15 and for the tolerance parameters εs = 2.0·10−6, εp = 10−6, and εp = 8.0·10−5, 
respectively.

Order C S , εs = 2.0·10−6 C P C , εp = 10−6 C P A, εp = 8.0·10−5

15
N (steps) λ w N (steps) λ w N (steps) λ w

5 2.47 27.8 5 17.38 44.44 5 28.53 51.03

Fig. 7. Load-displacement and residual curves for h = 12.7 mm and N = 15 obtained by 5 ANM steps of the three continuations C S , C P C , and C P A.

From the obtained results, it is clear that the step length of the continuation Padé approximant C P A is greater here than 
those of the two other continuations.

In Fig. 7, we present a comparison between the results obtained at the forced node by the continuation series and 
the continuation Padé approximant using the two definitions of the step length ap

max. These results are obtained with the 
truncation order N = 15 in 5 ANM steps and with a tolerance parameter that gives the same quality of solution (see Fig. 7b).

Table 6 provides a comparison between the results obtained by the three continuations C S , C P C , and C P A for the 
truncation order N = 20 in 4 ANM steps and for the tolerance parameters εs, and εp that give the same quality of solution. 
From the obtained results, it is clear that the step length of the continuation C P A is greater here than those of the two 
other continuations.
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Table 6
Comparison between the results obtained by 4 ANM steps of the three types of continuation C S , C P C , and 
C P A for the order N = 20 and for the tolerance parameters εs = 2.0·10−6, εp = 5.0·10−6, and εp = 10−4.1, 
respectively.

Order C S , εs = 2.0·10−6 C P C , εp = 5.0·10−6 C P A, εp = 10−4.1

20
N (steps) λ w N (steps) λ w N (steps) λ w

4 2.39 27.6 4 13.11 41.19 4 15.24 42.88

Fig. 8. Load-displacement and residual-displacement curves for h = 12.7 mm and N = 20 obtained by 4 ANM steps of the three continuations C S , C P C , 
and C P A.

Table 7
Comparison between the results obtained by 22 ANM steps of the three types of continuation C S , C P C , and 
C P A for the order N = 10 and for the tolerance parameters εs = 6.0·10−7, εp = 12.0·10−7, and εp = 9.3·10−6, 
respectively.

Order C S , εs = 6.0·10−7 C P C , εp = 12.0·10−7 C P A, εp = 9.3·10−6

10
N (steps) λ w N (steps) λ w N (steps) λ w

22 −0.36 17.38 22 0.67 29.97 22 0.64 29.80

In Fig. 8, we present a comparison between the results obtained at the forced node by the continuation series and 
the continuation Padé approximant using the two definitions of the step length ap

max. These results are obtained with the 
truncation order N = 20 in 4 ANM steps and with tolerance parameters εs, and εp that give the same quality of solution 
(see Fig. 8b).

In this second numerical experiment, we treat also the buckling of a thin cylindrical shell (h = 6.35 mm) while comparing 
the results obtained by the three continuations C S , C P C , and C P A.

In Table 7, we report the results obtained by 22 ANM steps with the truncation order N = 10 for the same residual. 
Note that with the continuation series C S , we have reached a deflection w = 17.38 mm, however with the continuation 
Padé approximant C P C , we have reached a deflection w = 29.97 mm. If we use the continuation Padé C P A with the new 
formula (19) of the step length ap

max, we have reached a deflection w = 29.80 mm.
In Fig. 9, we present a comparison between the results obtained at the forced node by 22 ANM steps of the three 

continuations C S , C P C , and C P A with the truncation order N = 10 and with a tolerance parameter that gives the same 
quality of solution (see Fig. 9b).

Table 8 presents a comparison between the results obtained by 16 ANM steps of the three continuations C S , C P C , 
and C P A for the truncation order N = 15 and for the tolerance parameter that gives de same quality of solution. From 
the obtained results, it is clear that the step length of the continuation C P A is less here than those of the two other 
continuations.

In Fig. 10, we present a comparison between the results obtained at the forced node by 16 ANM steps of the three con-
tinuations C S , C P C , and C P A. These results are obtained with the truncation order N = 15 and with a tolerance parameter 
that gives the same quality of solution (see Fig. 10b).
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Fig. 9. Load-displacement and residual-displacement curves for h = 6.35 mm and N = 10 obtained by 22 ANM steps of the three continuations C S , C P C , 
and C P A.

Table 8
Comparison between the results obtained by 16 ANM steps of the three types of continuation C S , C P C , and 
C P A for the order N = 15 and for the tolerance parameters εs = 6.0·10−8, εp = 6.0·10−8, and εp = 12.0·10−7, 
respectively.

Order C S , εs = 6.0·10−8 C P C , εp = 6.0·10−8 C P A, εp = 12.0·10−7

15
N (steps) λ w N (steps) λ w N (steps) λ w

16 −0.37 16.34 16 0.31 27.62 16 0.18 26.58

Fig. 10. Load-displacement and residual curves for h = 6.35 mm and N = 15 obtained by 16 ANM steps of the three continuations C S , C P C , and C P A.

Table 9 presents a comparison between the results obtained by 14 ANM steps of the three continuations C S , C P C , 
and C P A for the truncation order N = 20 and for the tolerance parameter that gives the same quality of solution. From 
the obtained results, it is clear that the step length of the continuation C P A is less here than those of the two other 
continuations.

In Fig. 11, we present a comparison between the results obtained at the forced node by 14 ANM steps of the three con-
tinuations C S , C P C , and C P A. These results are obtained with the truncation order N = 20 and with a tolerance parameter 
that gives the same quality of solution (see Fig. 11b).
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Table 9
Comparison between the results obtained by 14 ANM steps of the three continuations C S , C P C , and C P A for 
the order N = 20 and for the tolerance parameters εs = 10−8, εp = 10−9.5, and εp = 10−6.14, respectively.

Order C S , εs = 10−8 C P C , εp = 10−9.5 C P A, εp = 10−6.14

20
N (steps) λ w N (steps) λ w N (steps) λ w

14 −0.37 16.74 14 1.01 31.7 14 0.84 30.85

Fig. 11. Load-displacement and residual curves for h = 6.35 mm and N = 20 obtained by 14 ANM steps of the three continuations C S , C P C , and C P A.

It should be noted that the continuation C P C uses the numerical solution ap
max to Eq. (5) when the pole of the denom-

inator of the Padé approximants is greater than as
max of Eq. (3) and otherwise it uses as

max, whereas the continuation C P A
always uses ap

max of Eq. (22).

5. Conclusion

In this work, we have proposed an analytical formula of the step length ap
max that defines the validity range of Padé 

approximants in the ANM algorithm. In order to determine this formula, we have defined the relative error between two 
consecutive vectorial Padé approximants. Then, with the help of a matrix formulation, we have developed this relative error 
at the order 3. From the obtained results, it can be seen that, when this new analytical formula, is used it is possible to 
ensure a purely Padé continuation. Moreover, it is clear that the proposed formula makes it possible to have comparable 
step lengths with the same residual compared to continuations of series C P S and Padé using the dichotomy method C P C . 
It should be noted also that the continuation C P C requires, in addition, the computation time of ap

max from Eq. (5).

Appendix A. Computation of the vectors {ϕk}, and {ηk}

The components ϕk
i , 1 ≤ i ≤ M of vectors {ϕk}, 0 ≤ k ≤ M − 1 that appear in Eq. (9) are such that:

ϕ0
i =

⎧⎨
⎩

bM−1
M−i for 1 ≤ i ≤ M − 1

1 for i = M
, ϕM−1

i =
⎧⎨
⎩

bM−1
M−1bM

M−i − bM
MbM−1

M−i−1 for 1 ≤ i ≤ M − 1

bM−1
M−1 for i = M

(23)

and, for 1 ≤ k ≤ M − 2,

ϕk
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bM−1
k bM

M−i + bM−1
M−1bM

k−i+1 + ∑M−2
n=k+1

(
bM−1

n bM
M+k−i−n − bM

n bM−1
M+k−i−n

)

−bM
M−1bM−1

k−i+1 − bM
MbM−1

k−i for 1 ≤ i ≤ k,

bM−1
k bM

M−i + ∑M+k−i
n=k+1

(
bM−1

n bM
M+k−i−n − bM

n bM−1
M+k−i−n

)
for k + 1 ≤ i ≤ M − 1

bM−1 for i = M

(24)
k
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The other vectors {ηk} for 0 ≤ k ≤ 2M − 2 are given by:

{ηk} =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

t < 1,0, · · · ,0 > for k = 0

t < fk, fk−1, · · · , f1,1,0, · · · ,0 > for 1 ≤ k ≤ M − 1

t < gM
1,k−M , gM

2,k−M , · · · , gM
M,k−M > for M ≤ k ≤ 2M − 1

(25)

where the components fk , and gM
i,k−M are given by:

⎧⎪⎨
⎪⎩

fk = ∑k
n=0 bM

n bM−1
k−n for 1 ≤ k ≤ M − 1

gM
i,k = ∑Min(M−1;M+k−i)

n=k bM−1
n bM

M+k−i−n for 1 ≤ i ≤ M, 1 ≤ k ≤ M − 1
(26)

as explained in the paper [23].

Appendix B. Computation of the polynomial P (a)

In order to approach E M(a) − εp of Eq. (11) by its truncated development at the order 3 with respect to the parameter 
a in the neighborhood of 0, let

{γ k} = [R M ]{ϕk} for 0 ≤ k ≤ M − 1

{ξk} = [R M ]{ηk} for 0 ≤ k ≤ 2M − 2
(27)

We have

E2
M(a) = a2M−2 H(a)

Q (a)
(28)

where H(a), and Q (a) are given by:

⎧⎪⎪⎨
⎪⎪⎩

H(a) = ||{γ 0}||22 + (2 < γ 0 > {γ 1})a + (< γ 0 > {γ 2} + ||{γ 1}||22)a2 + 2(< γ 1 > {γ 2}+ < γ 0 > {γ 3})a3

+O (a4)

Q (a) = ||ξ0||22 + (2 < ξ0 > {ξ1})a + (< ξ0 > {ξ2} + ||ξ1||22)a2 + 2(< ξ1 > {ξ2}+ < ξ0 > {ξ3})a3 + O (a4)

(29)

Subsequently, for a small enough, we have:

E M(a) = aM−1
(

e0 + e1a + e2a2 + e3a3 + O (a4)
)

(30)

where e0, e1, e2, and e3 are given by:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e0 =
(

‖{γ 0}‖2
2

||{ξ0}||22

) 1
2

e1 = e0

2
B

e2 = e0

(
G

2
− B2

8

)

e3 = e0 H

2
− e0 BG

4
+ e0 H3

16

(31)

with
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B = 2 < γ 0 > {γ 1}
‖{γ 0}‖2

2

− 2 < ξ0 > {ξ1}
‖{ξ0}‖2

2

C =
(

2 < ξ0 > {ξ1}
‖{ξ0}‖2

2

)2

− 2 < ξ0 > {ξ2} + ‖{ξ1}‖2
2

‖{ξ0}‖2
2

D = −4
< ξ0 > {ξ1} < γ 0 > {γ 1}

‖{ξ0}‖2
2

E = 2 < γ 0 > {γ 2} + ‖{γ 1}‖2
2

F = ‖{γ 0}‖2
2

⎛
⎝4

< ξ0 > {ξ1}
‖{ξ0}‖2

2

(
2 < ξ0 > {ξ2} + ‖{ξ1}‖2

2

)
‖{ξ0}‖2

2

− 8

(
< ξ0 > {ξ1}

‖{ξ0}‖2
2

)3

− 2
< ξ1 > {ξ2}+ < ξ0 > {ξ3}

‖{ξ0}‖2
2

⎞
⎠

+ 2
(
< γ 1 > {γ 2}+ < γ 0 > {γ 3})

G = ‖{γ 0}‖2
2C + E + D

‖{γ 0}‖2
2

H =
2 < γ 0 > {γ 1}C − 2

< ξ0 > {ξ1}
‖{ξ0}‖2

2

E + F

‖{γ 0}‖2
2

(32)

As E M(a) = εp, then

aM−1
(

e0 + e1a + e2a2 + e3a3 + O (a4)
)

= εp (33)

we deduce

a
(

e0 + e1a + e2a2 + e3a3 + O (a4)
) 1

M−1 − ε
1

M−1
p = 0 (34)

which gives, after development truncated at the order 3 with respect to the parameter a, the following equality

A3a3 + A2a2 + a − A1 + O (a4) = 0 (35)

where A1, A2, and A3 are given by:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A1 =
(
ε2

p
‖{ξ0}‖2

2

‖{γ 0}‖2
2

) 1
2M−2

A2 = B

2M − 2

A3 = 1

2M − 2

(
‖{γ 0}‖2

2C + E + D

‖{γ 0}‖2
2

)
+ 3 − 2M

8(M − 1)2
B

(36)

By neglecting in (35) the term O (a4), we get the following equation:

A3a3 + A2a2 + a − A1 = 0 (37)

which is written as:

P (a) = a3 + β2a2 + β1a + β0 = 0 (38)

where β0, β1, and β2 are given by:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β0 = − A1

A3

β1 = 1

A3

β2 = A2

A3

(39)
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