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During machining processes, materials undergo severe deformations that lead to different 
behavior than in the case of slow deformation. The microstructure changes, as a 
consequence, affect the materials properties and therefore influence the functionality of 
the component. Developing material models capable of capturing such changes is therefore 
critical to better understand the interaction process–materials. In this paper, we introduce 
a new physics model associating Mechanical Threshold Stress (MTS) with Dislocation 
Density (DD) models. The modeling and the experimental results of a series of large strain 
experiments on polycrystalline copper (OFHC) involving sequences of shear deformation 
and strain rate (varying from quasi-static to dynamic) are very similar to those observed in 
processes such as machining. The Kocks–Mecking model, using the mechanical threshold 
stress as an internal state variable, correlates well with experimental results and strain 
rate jump experiments. This model was compared to the well-known Johnson–Cook model 
that showed some shortcomings in capturing the stain jump. The results show a high 
effect of rate sensitivity of strain hardening at large strains. Coupling the mechanical 
threshold stress dislocation density (MTS–DD), material models were implemented in 
the Abaqus/Explicit FE code. The model shows potentialities in predicting an increase in 
dislocation density and a reduction in cell size. It could ideally be used in the modeling of 
machining processes.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

During shaping operations, the material is generally subjected to severe deformation conditions [1–3]. The strain rate 
suddenly changes from a quasi-static to a dynamic state. These conditions of deformation are accompanied by a change in 
the microstructure, and therefore influence the mechanical properties of the materials. The most representative models in 
the literature are often phenomenological, such as the model of JC. In this article, we introduce an original MTS–DD physical 
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Fig. 1. Geometry of the thin-walled tubes used. The dimensions are in mm.

model that aims to give a physical meaning to the phenomena that accompany plastic deformation under severe conditions 
(large deformations, high strain rate. . . ).

The understanding of deformation behavior over a wide range of temperature and strain rates is necessary for many 
engineering application. Almost all experimental studies on strain rate effects have concentrated on instantaneous rate 
sensitivity at relatively small strains [4]. Moreover, many researchers have performed a series of experiments at constant 
strain rate or constant temperature. However, accounting for complex paths of deformation, temperature, and strain rate is 
an important requirement of constitutive laws for large-strain problems [5,6]; in this paper, we will be only interested in 
the strain-rate history effects at large strain in the case of polycrystalline copper.

An advantage of strain rate sequence experiments is their capability of imposing a rate change within a short period of 
time. The first experiments involving dynamic strain rate were conducted in compression on aluminum by Lindholm [7,8]. 
Many investigators have examined the effects of strain rate on copper, and recent reviews can be found in Mao et al. [9], 
Zhang et al. [10], Chen et al. [11], Huang et al. [12], Jiang et al. [13], Senseny [14], Tanner et al. [15,16]. They observed that 
the transient flow stress remains between the two constant strain rate curves and approaches the higher-rate curve.

Another challenge in modeling metals is to understand how their microstructure changes during strain rate jump. The 
dislocation density model was developed by Estrin et al. [17]; it consists of a set of differential equations to evaluate 
the dislocation density evolution rates, and they applied it to grain refinement assessment in the equal channel angular 
processing (ECAP) of copper. Also, Estrin et al. [18,19], Lee et al. [20] and Lemiale et al. [21] have used this model to predict 
the evolution of the microstructure and texture in severe plastic deformation by the ECAP process. More recently, Bacca et 
al. [22] proposed a new microstructure model estimating the grain size at severe plastic deformation and applied it to the 
simulation, using FE modeling, of machining Aluminum alloy Al6061-T6. The capability of a particular model is estimated 
based on its prediction potential from actual measured experimental data that is obtained under the same loading condition, 
and also for conditions that have not been determined experimentally.

The present paper also focuses on the multi-physics and multi-scale modeling of the behavior of metallic oxygen-free 
high conductivity (OFHC) copper under different strain rates. To this aim, the MTS physics model is coupled with the 
dislocation density model (DD) and implemented in the Abaqus software by the VUMAT subroutine using a FORTRAN code. 
This code has the advantage to be able to perform the simulation analysis of the grains size during extreme dynamic 
loading.

The paper is organized as follows. The first section describes the experimental procedures used to evaluate the behavior 
of an OFHC Cu metallic material under different strain rates. The second one highlights the governing equations of the 
Johnson–Cook model and of Mechanical Threshold Stress (MTS). The Dislocation Density model is also recalled in this sec-
tion. In the last one, the experimental results are presented, and the capability of the two constitutive models is discussed. 
Finally, section 5 presents our conclusions.

2. Experimental technique

Torsion experiments at room temperature were conducted on a thin-walled tubular specimen of polycrystalline cooper 
(99.96% pure) at two different nominal strain rates and at large shear strains.

2.1. Quasi-static loading

The quasi static torsion test consists of a thin-walled tubular specimen that is held fixed at one end and twisted at 
the other using a universal closed-loop testing machine; in that way, the gauge length of the specimen is under a state 
of pure shear. The specimen geometry is illustrated in Fig. 1. This testing machine is equipped with a digital system of 
data acquisition and can reach angular velocities ω of about 35◦/s and a rotation angle ϕmax = 110◦ , which corresponds to 
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Fig. 2. Split Hopkinson Tensional Bar (SHTB).

the maximum nominal strain. Γmax ∼= 3. The load capacity of the machine is 150 N·m. Experiments were performed at the 
nominal strain rate Γ̇max ∼= 10−3 s−1.

2.2. Dynamic loading

The high-strain-rate experiments were performed at the nominal strain rate Γ̇max ∼= 350 s−1 using a modified Split 
Hopkinson Tensional Bar (SHTB) (Fig. 2) apparatus developed by Zenasni et al. [23]. In this technique, a tabular specimen is 
sandwiched between two bars, known as the incident and transmitted bars. The specimen is loaded by an elastic tensional 
stress pulse propagated along the incident and transmitted bars. The loading pulse is produced by the sudden release of the 
stored torque by the clamp C .

The torque is stored on the left side of the incident bar by pre-twisting the clamp part of the bar using an electric motor 
and a redactor R1. Upon release of the clamp, the torsional incident wave γ1(t) of constant amplitude propagates down 
along the incident bar in the specimen. A part of the incident wave is reflected as the reflected wave γR(t) and a part is 
transmitted to the transmitter bar as the transmitted wave γT(t). All three waves are detected by two four-arm electric 
resistance strain gage bridges T2 and T3. The electric signals are recorded with a digital oscilloscope DO and stored on the 
hard disc of a computer for further analysis. Since the maximum nominal shear strain is limited with the SHTB technique to 
Γ ∼= 0.4, one specimen has to be consecutively loaded from six to eight times to reach the desired large strain Γ ∼= 2.5. For 
every segment of the dynamic test, the incident, reflected, and transmitted waves were analyzed by a computer providing 
the constitutive segment of the dynamic curve (Γ , τ (Γ )). The shear strain and shear stress in the specimen can at any time 
be determined after some calculation based on the theory of elastic wave propagation in bars. The shear strain is given by:

Γ (t) = C0rm

LR

t∫
0

(γ1 − γR − γT)dt (2.1)

where C0 is the longitudinal wave propagation and R is the radius of the bar. L and rm are the length and the mean radius 
of the specimen, respectively. The shear stress, assumed uniform, is given by

τ (t) = G R3

8rme
(γ1 + γR + γT) (2.2)

where G is the shear modulus and e is the thickness of the tubular specimen.

3. Modeling numerical analysis

We have considered at first the case of a simple shear test. Comparing the experimental results of our shear tests on 
OFHC copper at different strain rates with the numerical results, we check the implementation of the MTS model for this 
loading case. The relationship between the nominal shear rate Γ̇ and the applied velocity V is:



604 Z. Zenasni et al. / C. R. Mecanique 347 (2019) 601–614
Fig. 3. Flowchart of the implementation of the coupled MTS–DD model with user subroutine VUMAT in Abaqus/Explicit.

Γ̇ ≈ V

L
(3.1)

Quadrilateral, four-node, linearly interpolated elements with automatic hourglass control and reduced integration were used. 
The MTS model, dedicated to representing the thermoviscoplastic behavior of the material during deformation, is imple-
mented, in association with the DD model, dedicated to predicting the microstructure change in the specimen, via the user 
material VUMAT written in FORTRAN of the Abaqus/Explicit software. Fig. 3 shows the main steps of the implementation 
procedure of the coupled MTS–DD model.

We assume the material to be incompressible and isotropic. The inelastic behavior is described using the finite strain 
version of the J2 flow theory. The total strain rate is decomposed into its elastic and plastic parts as:

ε̇ = ε̇e + ε̇p (3.2)

The elastic deformation rate is governed by Hooke’s law, Eq. (3.2), and the inelastic one is governed by the rate equation 
(3.5) or (3.6)–(3.7).

σ̇ = 2μLε̇
e + λLT r

(
ε̇e)I (3.3)

Moreover, μL and λL are the Lamé constants, which can be expressed by Young’s modulus, E , and Poisson’s ratio, ν:

μL = E

2(1 + ν)
, λL = ν

E

(1 + ν)(1 − 2ν)
(3.4)

The plastic strain rate is given by the J2 flow theory:

ε̇p = 3

2

S

σe

˙̄εp (3.5)

where S i j is the deviator part of the stress tensor, σe and ˙̄εp represent the effective stress and the effective plastic strain 
rate, respectively given by:

σe =
√

3

2
S : S ˙̄εp =

√
2

3
ε̇p : ε̇p (3.6)

The accumulated plastic deformation is defined by:
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ε̄p =
t∫

0

√
2

3
ε̇p : ε̇p dt (3.7)

The physical properties of copper are depicted in Table 1.

Table 1
Physical properties of the material [20].

Property E [GPa] G [GPa] ν ρ [kg/m3] Tm [K] C v [J/kg·K]

Copper 127.72 46.31 0.351 8960 1356 385

The material behavior is assumed to be described by two constitutive models: the Johnson–Cook model and the MTS–DD 
model (Tables 2 and 3).

Table 2
JC flow stress parameters of copper [21].

Parameters A [MPa] B [MPa] n C M T ref [K] Tm [K] ε̇0 [s−1]

Copper 90 292 0.31 0.025 1.09 300 1356 1

Table 3
MTS model parameters of OFHC Cu (Gourdin and Lassila [26]).

Parameters g0ε A p q σ̂εs0 [MPa] α K /b3 [MPa] ε̇εs0 [s−1] ε̇0e [s−1]

Copper 1.6 0.235 2/3 1 1100 2 0.823 5.66 1010 107

3.1. The Johnson–Cook model

Johnson et al. [24] proposed a constitutive model for metals subjected to large strains, high strain rates, and high tem-
peratures. This model has enjoyed much success because of its simplicity and because of the availability of parameters for 
various materials of interest. In the Johnson–Cook model, the flow stress is expressed as:

σy = (
A + Bε̄pn)(

1 + C ln

( ˙̄ε
ε̇0

))(
1 −

(
T − T0

Tm − T0

)m)
(3.8)

The JC flow stress parameters of copper are presented in Table 2.
Where ε̇0 is a reference strain rate (ε̇0 is usually taken to be 1 s−1), T , T0, and Tm are the current, initial or reference, 

and melting temperatures, respectively. In the right-hand side of equation (3.8), the first term gives the stress as a function 
of the strain-hardening coefficient B and the strain hardening exponent n, the second term represents the instantaneous 
strain rate sensitivity and the last term represents the temperature dependence of flow stress. Here, C is the strain-rate 
parameter and m is the thermal-softening parameter. The material constant of that material have been identified by Johnson 
et al. [24].

3.2. The Mechanical Threshold Stress–Dislocation Density model (MTS–DD model)

3.2.1. MTS model
In order to represent correctly the thermoviscoplastic behavior of the work material during machining, the MTS model, 

written in the form proposed by Follansbee and Kocks [25] and Gourdin and Lassila [26] is introduced here. The model 
has been investigated by other authors (e.g., Mecking and Kocks [27], Klepaczko and Chiem [28], and Klepaczko [29]. It 
consists of a description of the material behavior at constant structure and of a description of structure evolution during 
deformation. These authors attempted to establish a direct relation between dislocation behavior and macroscopic behavior. 
A reference threshold stress (σ̂ ) is employed as the sole internal state variable representing a measure of the hardness of 
the material at its current dislocation structure. This variable represents an isotropic resistance to plastic flow, which may 
be related to the dislocation density. The mechanical threshold stress is separated into two components, an athermal stress 
(σ̂a) and a thermal stress (σ̂t). Based on this assumption, the following expression is derived for the flow stress [25]:

σy = σ̂a + σ̂t

σ̂ = σ̂ S
(
ε̇p, T

) (3.9)

t D
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where σ̂D is the thermal component related to the dislocation and the factor S(ε̇p, T ) is less than 1, so it expresses the 
dislocation stress, which is lowered due to thermal activation. So, we can write the flow stress in the following form:

σy = σ̂a + σ̂D S
(
ε̇p, T

) = (σ̂ − σ̂a)

(
1 −

(
K T

g0εGb3
ln

(
ε̇0e

ε̇p

)) 1
q
) 1

p

(3.10)

The athermal stress σ̂a = 0.278√
D

, which characterizes the rate-independent interactions of dislocations with long-range barri-

ers, depends on the initial average grain size (D ≈ 50 μm) as reported in Gourdin and Lassila [26]. In Eq. (3.10), g0ε is the 
activation energy, ε̇0e is the reference strain rate, K is the Boltzmann constant, b is the Burgers vector, T is the temperature, 
and G is the shear modulus. The shape of the obstacle profile is characterized by the constants p and q, 0 ≤ p ≤ 1 and 
1 ≤ q ≤ 2. Equation (3.10) is completed with a hardening law, which takes dislocation accumulation and dynamic recovery 
into account. Hardening, denoted by θ , is given by:

θ = dσ̂D

dεp = θ0
(
1 − F (X)

)

F (x) = tanh(αX)

tanh(α)
, X = σ̂ − σ̂a

σ̂εs − σ̂a
= σ̂D

σ̂εs − σ̂a

(3.11)

The initial strain hardening rate θ0, due to dislocation accumulation, is expressed as θ0 = 2150 + 0.034ε̇p. This expression 
is found by curve fitting to data obtained for OFHC copper with a similar initial grain size [26]. α = 2 is an empirical 
parameter, σ̂εs is the saturation stress dependent on temperature and sensitive to the strain rate, given by the expression:

σ̂εs = σ̂εs0 exp

(
K T

Gb3 A

)
ε̇εs0

ε̇p (3.12)

ε̇εs0 is constant, A is a dimensionless activation energy, σ̂εs0 represents the saturation threshold stress at 0 K and corre-
sponds to the stress at zero work hardening rate.

When metals are subjected to plastic deformation, heat is generated. If the deformations are applied slowly, such as in 
quasi-static loading conditions, heat is conducted away from the deformed regions and the entire specimen is essentially in 
an isothermal condition. On the other hand, when deformations are rapidly applied, the process is essentially adiabatic [30]. 
Thus, for quasi-static loading conditions, we assume isothermal conditions. Concerning dynamic loading, the prediction 
is made for adiabatic condition. The temperature is calculated assuming that 95% of the work of plastic deformation is 
converted into heat, which results in a temperature rise given by:

�T = Ω

ρC p

ε̄p∫
0

σe dε̄p (3.13)

where Ω = 0.95 is the Taylor–Quinney coefficient, ρ is the mass density, and C p is the specific heat.

3.2.2. Dislocation density model (DD)
To predict the microstructure evolution on the specimen during shearing in terms of dislocation density and cell size, the 

DD model developed by Estrin et al. [17] is introduced. A dislocation cell structure is assumed to form during deformation, 
which consists of two parts, dislocation cell walls and cell interiors, and obeys a rule of mixtures. Different types of disloca-
tion densities are distinguished in the model: the cell interior dislocation density (ρc) and the cell wall dislocation density 
(ρw), which is further divided into two distinct groups: statistical dislocation density (ρws) and geometrically necessary 
dislocation density (ρwg). The corresponding evolution laws are as follows:

ρ̇c = α∗ 1√
3b

√
ρws + ρwgγ̇

r
w − β∗ 6

bdf (1 − f )
1
3

γ̇ r
c − k0

(
γ̇ r

w

γ̇0

)−1
n

ρcγ̇
r

c (3.14)

ρ̇ws = β∗
√

3(1 − f )

f b

√
ρws + ρwgγ̇

r
c + (1 − ξ)β∗ 6(1 − f )

2
3

f db
γ̇ r

c − k0

(
γ̇ r

w

γ̇0

)−1
n

ρwsγ̇
r

w (3.15)

ρ̇wg = ξβ∗ 6(1 − f )
2
3

bdf
γ̇ r

c (3.16)

The first term on the right-hand side of Equations (3.14) and (3.15) corresponds to the generation of dislocations due to 
the activation of Frank–Read sources. The parameters α∗ , β∗ , and k0 are numerical constants, b is the magnitude of the 
Burgers vector, d is the dislocation cell size. The loss of cell interior dislocations to cell walls where they are ‘woven in’ is 
accounted for by the second term in Equations (3.14) and (3.15). Finally, the last (negative) term in each one of the evolution 
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Table 4
DD model parameters of OFHC copper (Ding [34]).

Material α∗ β∗ K0 B γ̇ r
0 f0 f∞ H M γ̄ r ρw0 ρc0 b

Copper 0.04 0.01 12 14,900 4E3 0.25 0.077 10 3.06 3.2 1E7 1E8 2.56E–7

equations represents the annihilation of dislocations leading to dynamic recovery in the course of straining. The density of 
geometrically necessary dislocations is assumed to arise from a friction ξ of the dislocations coming into cell walls from 
the cell interiors (see Equation (3.14)), n is a temperature sensitivity parameter that corresponds to recrystallization or 
annihilation of the dislocation microstructure (n = B

T , with B a constant and T a temperature), f is the volume fraction 
of the dislocation cell wall, γ̇ r

w and γ̇ r
c are the resolved shear strain rate for the cell walls and interiors, respectively, and 

γ̇ r
0 is the reference resolved shear strain rate. It is assumed that the resolved shear strain rates across the cell walls and 

cell interiors are equal (i.e. γ̇ r = γ̇ r
w = γ̇ r

c ), which satisfies the strain compatibility along the interface between interiors and 
boundaries. The resolved shear strain rate can be calculated by the plastic strain rate given by the MTS model with the 
Taylor factor M as follows:

γ̇ r = Mε̇ (3.17)

The coupling of the two models (MTS–DD) is based on the Taylor hypothesis [31]. He proposes a model for the behavior 
of polycrystals in the form of a hypothesis based on experimental observations. He concludes that the deformation field in 
polycrystals is homogeneous. This means that each grain deforms exactly as the polycrystal, that is, each grain conforms to 
the macroscopic stress imposed on the polycrystal.

However, with this hypothesis, the state of the stress is not continuous, but varies abruptly at the grain interfaces and 
also depends on the orientations of the different grains, so that each grain satisfies the relation (3.17), where M is the 
Taylor factor, which can vary depending on the texture of the material texture. The value is approximately 3.06 for isotropic 
polycrystals, such as OFHC Cu.

Since the crystallographic slip of ductile materials causes shearing, which acts on well-defined planes, the nominal 
value σ of the stress to which the tensile specimen was subjected was not considered, but only the tangential component 
τ = M	σ (cission stress), which is in the sliding plane and follows the slip direction.

Finally, the proposed coupling of the MTS and DD models is done by the Taylor transformation at each time increment. 
Knowing the thermo-mechanical state given by the MTS model, then it is possible to evaluate the microstructure evolution 
with the DD model.

Their evolution with strain governs the overall mechanical threshold stress behavior of the deforming material. The total 
dislocation density is given by a rule of mixtures:

ρtot = f (ρws + ρwg) + (1 − f )ρc (3.18)

An important element of the model is the consideration of the evolution of the volume fraction of the cell walls based 
on experimental observations. According to Muller et al. [32], f decreases with strain monotonically, as the dislocation 
cell walls become sharper and narrower with strain. The variation of f can be expressed through the following empirical 
relation [17]:

f = f∞ + ( f0 − f∞)e
(

−γ r

γ −ξ )
(3.19)

where f0 is the initial value of f and f∞ is its saturation value at large strains.
The dislocation cell size d is related to the total dislocation density ρtot according to Holt’s formula:

d = H/
√

ρtot (3.20)

where the parameter H is about 10 for copper [33].
The process of grain refinement during plastic deformation in the specimen, subjected to large deformation, is assumed 

to follow a scenario in which the accumulation of misorientations between neighboring dislocation cells with strain gradu-
ally converts the dislocation cell structure into a new grain structure. In this study, the average cell size (d) can be identified 
as the grain size. The process of grain refinement during shearing, subjected to large deformation, is assumed to follow a 
scenario in which accumulation of misorientations between neighboring dislocation cells with strain gradually converts the 
dislocation cell structure into a new grain structure. In this study, the average cell size (d) can be identified as the grain 
size after processing application. The DD model parameters of OFHC copper are presented in Table 4.

4. Result and discussion

In the first part of the test program, the specimens were strained at a constant strain rate Γ̇ = 10−3 s−1, by using a 
universal closed-loop machine. All tests were performed up to large strain Γmax ∼= 2.5. Using the SHTB technique, a second 
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Fig. 4. (a) Comparison between rheological tests data and JC models calculations for OFHC Cu during shearing deformation. (b) Comparison between 
rheological tests data and MTS models calculations for OFHC Cu during shearing deformation.

series of tests was performed at the nominal strain rate, Γ̇ = 350 s−1. Since the maximum shear strain is limited to 0.4, 
one specimen has to be consecutively loaded from 6 to 8 times to reach the desired large strain Γmax ∼= 2.5. This method of 
loading produces practically isothermal stress strain curve at relatively high strain rate. To check this condition of isothermal 
deformation, numerical calculations were performed using the finite element code Abaqus/Explicit for Γ̇ = 350 s−1 up the 
shear strain equal to 0.4. We assume that the process is adiabatic, the results obtained show that the maximum of rise 
temperature is attained in the center of the sample, at about 380 K. So, the isothermal process of deformation used in the 
analysis of the experimental results is justified. Consequently, the other numerical calculations are performed by assuming 
isothermal conditions.

To study strain history effects, another series of tests were performed at low strain rate (Γ̇ = 10−3 s−1) up a shear strain 
equal to Γ ∼= 1.5 and next loaded twice dynamically using the SHTB. Fig. 4a shows the experimental and numerical pre-
dictions results of the Johnson–Cook Model for polycrystalline copper. We note a small difference between the quasi-static 
and dynamic curves at small strain, as found previously by Klepaczko [28]. But with the progress of plastic deformation, 
the stress difference at the same level of strain substantially increases. For example, when Γ ∼= 2.5, the dynamic curve (Γ , 
τ (Γ )) is twice higher as the quasi-static one. We note also, that each time after two pre-strains the dynamically reloaded 
curve (Γ , τ (Γ )) shows enormous strain hardening θ . The instantaneous response is not detectable within the resolution of 
the split Hopkinson tensional bar technique. Numerical differentiation of reloaded curves confirmed at a very high value θ
(about 4.5 × 103), so the value of θ/G is equal to 0.1 with G ∼= 4.45 × 104 MPa; these results are in good agreement with 
the literature.

The confrontation of the Johnson-Cook and the experimental results carried out on copper is shown also in Fig. 4a. 
The solid lines represent the model prediction, while discontinuous lines represent experimental data. We note that the 
Johnson-Cook model does not correctly predict the behavior of copper at large strain and the strain rate history effect. 
In fact, numerical calculations show an overshoot when the strain rate is changed from the lower to the higher values. A 
similar effect is found only for BCC metals [9].
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Fig. 5. (a) Simulated developments of the average grain and cell sizes obtained during shearing. (b) Evolution of the average total dislocation densities in 
the cell.

Fig. 4b illustrates the experimental and numerical predictions results of the MTS model for polycrystalline copper. The 
MTS model correlation is shown using the solid lines, while the experimental data are shown with discontinuous lines. In 
this case, the continued straining at the new rate caused the flow shear stress to tend gradually and asymptotically towards 
the corresponding constant rate. The predictions of the MTS model are in excellent agreement with the measured data.

To understand the strain rate jump process of microstructure dislocation, the dislocation density model is coupled with 
the MTS model and implemented in the Abaqus software. The obtained results are presented in Fig. 5a. This figure shows 
the dislocation density as a function of shear deformation for different strain rates. We notice that the dislocation density 
in the quasi-static case increases, but with a lower rate compared to that of the dynamic case. For a shear strain value 0.3, 
the gap is zero. This difference increases as the shear strain increases to reach a maximum value 0.2 × 108. Consequently, 
more the shear strain is significant, more the cells size formed is weak (see Fig. 5b).

During severe deformation, a significant plastic work appears; this energy is transformed into a form of internal heat. 
To study the influence of the strain rate jump on temperature generated by the material, we calculated the temperature as 
a function of the strain rate. Fig. 6 shows the dependence of temperature evolution on the shear strain at different strain 
rates.

The evolution of the temperature is very high in the adiabatic dynamic case; on the contrary, an isothermal behavior in 
the quasi-static case is observed. During thermo-mechanical loading, the temperature begins to increase immediately after 
the strain jump.

5. Conclusion

The understanding of materials deformation and its consequences on the microstructure is critical to achieve accurate 
materials processing models, especially in the context of manufacturing. This study presents a robust model that can be 
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Fig. 6. Simulated evolution of the average temperature.

used for capturing the materials behavior in severe plastic deformation-based process, such as ECAP, machining, forming, 
etc. A new physics model based on the Materials Threshold Stress (MTS) associated with a Dislocation Density (DD) model 
is proposed. A set of experiments are performed to determine the quasi-static and dynamic shear–stress behavior of poly-
crystalline copper (OFHC) at room temperature. In addition to this, strain rate history effects are examined. The new model 
is compared to the Johnson–Cook empirical model. The Johnson–Cook model demonstrated shortcomings in describing the 
strain rate history effects. It was not able to give a satisfactory correlation with the experimental response. The proposed 
model based on the mechanical threshold stress as an internal state variable gave an excellent correlation with experimental 
data. The model also demonstrated that the microstructure evolution in the context of dislocation densities and the grain 
size is limited in relation to the strain.

Appendix: Time integration of the combined MTS–DD model

Appendix A. Time integration of the TEVP model (Thermo-Elasto-Visco-Plastic) including the MTS model

The FE (Finite Element) implementation of the TEVP model described in section 3, which includes the MTS hardening 
model, requires the numerical integration of constitutive equations over a time increment �t , from a known state at time 
tn to the unknown state at tn+1, given the total strain tensor increment �ε, and the stress tensor σ and state variables y
at tn . An explicit time integration scheme based on the forward Euler scheme is adopted to implement the TEVP model in 
Abaqus/Explicit FE software via the user subroutine VUMAT. The forward Euler scheme allows direct calculation (i.e. without 
iterative calculation) over �t . The forward Euler scheme is efficient when �t is small enough, so time derivatives involving 
in the TEVP model could be evaluated by the known variables at tn . This is the case in the FE simulation of the severe 
deformation process in the Abaqus/Explicit code, where �t is small enough to consider derivatives at tn when assessing 
increments of state variables.

The algorithm assumes an elastic behavior prediction and a plastic behavior correction (when required). Giving �ε , σ n

et yn , the elastic state over �t is calculated by:

�σ trial = C : �ε (A.1)

and elastic stress state at the end of increment is:

σ trial
n+1 = σ n + �σ trial (A.2)

In this case, hardening state variables did not evolve (increment of state variables �y = 0), since loading is assumed purely 
elastic (�εp = 0 since there is no plastic strain, and �εth = 0 since there is no temperature increase due to plastic strain). 
Hence, the internal state variables associated with plastic deformation do not evolve, so:

yn+1 = yn (A.3)

Then, by checking the sign of the yield criterion:

sign
[

F (σ n+1,yn) = σ̄ (σ n+1) − σy(yn)
]

(A.4)
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Table A.1
Time integration, based on forward Euler scheme, of the TEVP 
model, including the MTS hardening model.

Input data: �ε, σ n , ε̄
p
n and yn

Elastic prediction
�σ trial = C : �ε, σ trial

n+1 = σ n + �σ trial

Check yield criterion
sign[F (σ n+1,yn) = σ̄ (σ n+1) − σy(yn)]
1. If sign < 0, then the loading is purely elastic
�σ = �σ trial , �y = 0, �ε̄p = �λ = 0
2. Else the loading is elastoplastic
Vn = ∂ F

∂σ

∣∣
n , �ε̄p = �λ = Vn :C:�ε

Hλn
, �εp = Vn�λ

�σ = C : (�ε − �εp), �y = �λh(σ n,yn)

Update variables
σ n+1 = σ n + �σ , yn+1 = yn + �y, ε̄

p
n+1 = ε̄

p
n + �ε̄p

Return σ n+1, ε̄
p
n+1 and yn+1

if sign < 0 then the loading over �t is effectively elastic, so

σ n+1 = σ trial
n+1

yn+1 = yn

ε̄
p
n+1 = ε̄

p
n

(A.5)

By cons, if sign > 0, there is a plastic loading and the state should be updated, including work hardening. In this case, 
first the plastic flow direction is calculated at tn , as

Vn = ∂ F

∂σ

∣∣∣∣
n

= 3

2

σ ′
n

σ̄n
(A.6)

Then, the equivalent plastic strain increment is calculated as follows:

�ε̄p = �λ = Vn : C : �ε

Hλn
(A.7)

So that Hλn is calculated as:

Hλn = Vn : C : Vn + Hσyn = 2G|Vn|2 + Hσyn (A.8)

Given that |Vn| = √
V ij V i j =

√
3
2 , Hλn becomes:

Hλn = 3G + Hσyn (A.9)

For the MTS model, Hσyn , given by Eq. (3.11), is evaluated with known variables at tn:
The plastic strain tensor increment is then calculated as:

�εp = Vn�λ (A.10)

The thermal strain tensor is calculated as follows:

�εth = α�T · I (A.11)

The stress tensor increment �σ is then calculated as:

�σ = C : (�ε − �εp − �εth)
(A.12)

The stress tensor, state variables and equivalent plastic strain are updated as follows:

σ n+1 = σ n + �σ
yn+1 = yn + �y
ε̄

p
n+1 = ε̄

p
n + �ε̄p

(A.13)



612 Z. Zenasni et al. / C. R. Mecanique 347 (2019) 601–614
Appendix B. Time integration of the DD model

Using updated state variable from time integration of the TEVP model, including the MTS model, it is possible to estimate 
physical quantities (i.e. dislocations density, grain size) related to the microstructure evolution during cutting.

According to Eqs. (3.14), (3.15), and (3.17), it is possible to write dislocation densities rates in the following forms:

ρ̇c = Γcγ̇
r = ΓcMε̇ (B.1)

ρ̇ws = Γwsγ̇
r = ΓwsMε̇ (B.2)

ρ̇wg = Γwgγ̇
r = ΓwgMε̇ (B.3)

with

Γc = Γc( f ,d,ρc,ρws,ρwg)

= α∗(1/
√

3b)
√

ρws + ρwg − 6β∗(bdf (1 − f )1/3)−1 − k0(γ̇
r
w/γ̇0)

−1/nρc
(B.4)

Γws = Γws( f ,d,ρws,ρwg)

= β∗(
√

3(1 − f )/ f b)
√

ρws + ρwg + (1 − ξ)β∗(6(1 − f )2/3/bdf ) − k0(γ̇
r

w/γ̇0)
−1/nρws

(B.5)

Γwg = ξβ∗(6(1 − f )2/3/bdf
)

(B.6)

Over a time increment �t , it is possible to write these ODEs using Euler’s forward integration scheme, in the following 
form:

�ρc = Γc|t+�t �γ r = Γc|t+�t M�ε (B.7)

�ρws = Γws|t+�t �γ r = Γws|t+�t M�ε (B.8)

�ρwg = Γwg
∣∣
t+�t �γ r = Γwg

∣∣
t+�t M�ε (B.9)

The increment of dislocation densities ρws and ρwg are then deduced to:

ρc|t+�t = ρc|t + �ρc (B.10)

ρws|t+�t = ρws|t + �ρws (B.11)

ρwg
∣∣
t+�t = ρwg

∣∣
t + �ρwg (B.12)

The total dislocation density, given by the rule of mixtures (3.18), is then calculated by:

ρtot|t+�t = f |t+�t (ρws|t+�t + ρwg
∣∣
t+�t) + (1 − f |t+�t) ρc|t+�t (B.13)

with

f |t+�t = f∞ + ( f0 − f∞)e(− γ r
∣∣
t+�t/γ̄

r) (B.14)

where

γ r
∣∣
t+�t = γ r

∣∣
t + �γ r = γ r

∣∣
t + M�ε (B.15)

From Eq. (B.13), the average grain size is then estimated, using Eq. (3.20), by:

d|t+�t = H/

√
ρtot|t+�t (B.16)

Appendix C. Implantation of the MTS model – integration over a time increment

1. Model parameters

g0i, A, p,q, σ̂Ds0,α,
K

b3
, ε̇Ds0, ε̇0D , E,μ,ρ, C p,ϑ. (C.1)

2. Initialization at the first increment

�ε,σy(0) = σ̂a = 0.278√
D

, ε̄P
0 = 0,�ε̄p = 0, Tn = Tref, σ̂D(0) = 0, σ̂Ds(0) = 0 (C.2)

3. Increment start

�t,�ε,σy(n), ε̄
P
n, Tn,�ε̄P

n, σ̂D(n), σ̂Ds(n) (C.3)
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4. Elastic state test

• Elastic test stress calculated on a time increment �t:

�σ trial = C : �ε (C.4)

• The stress tensor at the end of the increment is:

σ trial
n+1 = σn + �σ trail (C.5)

• Then, by verifying the threshold surface function sign

sign
[

F = σ̄
(
σ trial

n+1

) − σy(n)

]
(C.6)

• If (sign ≤ 0), the loading is elastic on the increment �t:

σn+1 = σ trial
n+1 (C.7)

ε̄
p
n+1 = ε̄

p
n (C.8)

�ε̄
p
n+1 = 0 (C.9)

σy(n+1) = σy(n) (C.10)

Tn+1 = Tn (C.11)

5. Plastic state
If (sign < 0), then the loading is plastic.

• Calculation of the plastic multiplier:

�ε̄p = σ(σ trial
n+1 ) − σy(n)

3μ + θn
≈ σ(σ trial

n+1 ) − σy(n)

3μ
since θn � 3μ (C.12)

• Calculation of the plastic deformation:

ε̄
p
n+1 = ε̄

p
n + �ε̄p (C.13)

• Calculation of the deformation rate:

˙̄εp = �ε̄p

�t
(C.14)

• Calculation of the flow stress:

o Saturation stress σ̂Ds:

σ̂Ds(n+1) = σ̂Ds0 exp

(
K Tn

μb3 A

)
ε̇Ds0

˙̄εp
(C.15)

o The thermal stress related to dislocations from the hardening function σ̂D is:

θ0 = 2150 + 0.034 ˙̄εp (C.16)

Xn = σ̂D(n)

σ̂Ds(n)−σ̂a
(C.17)

θn = θ0

[
1 − tan(αXn)

tan(α)

]
(C.18)

�σ̂D = θn�ε̄P (C.19)

σ̂D(n+1) = σ̂D(n) + �σ̂D (C.20)

• Flow stress:

S D(n) =
[

1 −
(

K Tn

g0iμb3
ln

ε̇0D

ε̇p

) 1
q
] 1

p

(C.21)

σy(n+1) = σ̂a + S D(n)σ̂D(n) (C.22)
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• Stress tensor:

σn+1 = σ trial
n+1 − 3μ�ε̄p

σ̄n
σ ′

n (C.23)

• Temperature calculation (adiabatic test):

Tn+1 = Tn + np

ρC p
σ̄n�ε̄p (C.24)
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