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We derive several models of thin plates equipped with a periodic distribution of stiffeners. 
Depending on the orders of magnitude of the different parameters involved, diverse 
situations arise, from classical Kirchhoff–Love behaviour with additional energy term to 
full rigidification.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

To mathematically derive the Reissner–Mindlin model of thin linearly elastic plates (see [1]), we considered a periodic 
distribution of plates abutted together through thin and soft adhesive layers. So, it is natural now to examine the case when 
the adhesive layers are stiff. One of the main motivations is the rigidification of plates through a distribution of parallel 
stiffeners. But it is also a first step in the study of the optimization of plates. In that respect, a more distant goal lies in 
the relation between the design of the plate and the improvement of some selected aspects of its mechanical performances, 
without altering the total quantity of material employed (see [2] for example). We will present here six models indexed by 
p = (p1, p2) in {1, 2, 3} × {1, 2}, where p1 is a geometric parameter linked to the stiffeners layout, while p2 accounts for 
the order of magnitude of the rigidity of the stiffeners.

More precisely, as usual we make no difference between the Euclidean physical space and R3 with orthonormal basis 
{e1, e2, e3} and, for all ξ = (ξ1, ξ2, ξ3) in R3, we define ξ̂ := (ξ1, ξ2) and denote the standard Euclidean distance by dist . Let 

(τ k, νk) := (e3−k, ek), for k = 1, 2 and (τ 3, ν3) := 1√
2
(e1 + e2, e1 − e2), (h, ε, η) three small positive real numbers and ω a 

domain of R2 with a Lipschitz-continuous boundary ∂ω. For all k in {1, 2, 3}, we define:

	k
i :=

{
iενk +Rτ k

}
∩ ω, i ∈Z, Ik :=

{
i ∈Z;	k

i �= ∅
}
, 	k,h :=

( ⋃
i∈Ik

	k
i

)
× (−h,h), 	h

p1
:=

⋃
k≤p1

	k,h
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The following two subsets of 
h := ω × (−h, h) denoted by

Bh
η,ε,p1

:=
{

x ∈ 
h;dist(x,	h
p1

) < ηε
}
, P h

η,ε,p1
:= 
h \ Bh

η,ε,p1

are occupied by linearly elastic materials with strain energy densities μWl and W respectively, where μ is a large stiffness 
parameter. Introducing SN as the space of all N × N symmetric matrices equipped with the usual inner product and norm 
denoted as for RN by · and | · |, W and Wl are two positive quadratic forms on S3.

Fig. 1. The thin plate, the triplet of geometric parameters (η, ε,h) and the stiffeners’ layout in the case p1 = 3.

The structure made of these two parts perfectly bonded together is clamped on �h
D := ∂ω × (−h, h) and subjected to 

body forces and surface forces on �h± := ω × {±h} of densities f h and gh . Hence, the equilibrium of the structure involves 
a quadruplet s := (μ, η, ε, h) of data and leads to:(

P s
p

)
Min

{
J s

p(v); v ∈ H1
�h

D
(
h;R3)

}
where, classically, for all domain G in RN and all smooth part γ of its boundary ∂G , H1

γ (G; RN) denotes the subspace of 
the Sobolev space H1(G; RN ) made of the elements with vanishing trace on γ ,

J s
p(v) :=

∫
P h
η,ε,p1

W (e(v))dx + μ

∫
Bh

η,ε,p1

Wl(e(v))dx − Lh(v)

Lh(v) :=
∫

h

f h · v dx +
∫

�h+∪�h−

gh · v dx̂

e(v) being the strain tensor associated with the displacement field v .

Clearly, if ( f h, gh) belongs to L2(
h × (�h+ ∪ �h−); R3), 
(
P s

p

)
has a unique solution us

p and, considering the data s as a 

parameter, we are interested in the asymptotic behaviour of us
p when s takes values in a countable set of (0, +∞)4 with 

s̄ := (+∞, 0, 0, 0) as a unique limit point. As in the mathematical derivation of Kirchhoff–Love theory of plates (cf. [3,4]), it 
is convenient to introduce the linear mappings h and Sh:

ξ = (ξ̂ , ξ3) ∈R3 �→ hξ = (ξ̂ ,hξ3) ∈R3

v ∈ L2(
h;R3) �→ Sh v ∈ L2(
;R3) s.t. (Sh v)(x) = 1

h
h(v(hx)), ∀x ∈ 
 := ω × (−1,1)

We make the following assumption on the loading:

(H1)

{
∃ ( f , g) ∈ L2(
 × (�+ ∪ �−);R3) s.t.

f h(hx) = hh f (x) a.e. x ∈ 
, gh(hx) = h2h g(x) a.e. x ∈ �±

therefore, us,p := Shus
p is the unique solution to(

Ps,p

)
Min

{
J s,p(v); v ∈ H1

� (
;R3)
}

D
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where

J s,p(v) :=
∫

Pη,ε,p1

W (e(h, v))dx + μ

∫
Bη,ε,p1

Wl(e(h, v))dx − L(v)

L(v) :=
∫



f · v dx +
∫

�+∪�−

g · v dx̂

eαβ(h, v) =eαβ(v), eα3(h, v) = 1

h
eα3(v), 1 ≤ α,β ≤ 2, e33(h, v) = 1

h2
e33(v)

with �D the reciprocal image by h of �h
D and, similarly, index h is dropped for the image by (h)−1 of �h± , 
h , Bh

η,ε,p1
, 

P h
η,ε,p1

, 	k,h and 	h
p1

.

2. A convergence result

We assume that

(H2)

⎧⎪⎨⎪⎩
∃ μ̄ ∈ (0,+∞] s.t. μ̄ := lim

s→s̄
(2μη), μ̄ ∈ (0,+∞) if p2 = 1, μ̄ = +∞ if p2 = 2

lim
s→s̄

ηε

h
= 0, lim

s→s̄

h2

ηε2
= 0

and introduce the space V K L(
) of Kirchhoff–Love displacements vanishing on �D :

V K L(
) :=
{

v ∈ H1
�D

(
;R3) s.t. ei3(v) = 0 in 
, 1 ≤ i ≤ 3
}

and the positive definite quadratic form on S2 defined by

W K L(q) := Min{W (e); e ∈ S3 s.t. ê = q}
where êαβ = eαβ , 1 ≤ α, β ≤ 2, for all e in S3.

Let (τ , ν) in 
{
(τ k, νk), k = 1, 2, 3

}
. We perform the change of coordinates

x = (x1, x2, x3) ∈R3 θ�→ R3 � y = (yτ , yν, y3) := (x · τ , x · ν, x3)

and, for all v in H1(
; R3), define vτ by vτ (y) = v(θ−1(y)) · τ . To shorten notations, we write ∂τ vτ for the derivative in 

the sense of distributions ∂yτ vτ . Note that ∂τ 1 vτ 1 = e22(v), ∂τ 2 vτ 2 = e11(v), ∂τ 3 vτ 3 = 1

2
(e11(v) + 2e12(v) + e22(v)). For all 

k in {1, 2, 3}, we define the real convex quadratic function W k
l by:

W k
l (t) := Inf

{
Wl

(
(Q k)ᵀ e Q k

)
; e ∈ S3, e11 = t

}
where Q k = τ k ⊗ e1 + νk ⊗ e2 + e3 ⊗ e3 and (Q k)ᵀ denotes the transpose of Q k .

Let

V p :=V K L(
) if p2 = 1, V (p1,2) := V K L(
) ∩
( ⋂

k≤p1

{
∂τ k vτ k = 0

})
J̄ p(v) :=

∫



[
W K L(ê(v)) + (2 − p2) μ̄

∑
k≤p1

W k
l (∂τ k vτ k )

]
dx − L(v)

Then we have the following result.

Theorem 2.1. Under assumptions (H1) and (H2), as s goes to s̄, us,p converges strongly in H1(
; R3) toward the unique solution up

to (
P̄p

)
Min

{
J̄ p(v), v ∈ V p

}
and
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J̄ p(up) = lim
s→s̄

J s,p(us,p) (1)∫



W K L(ê(up))dx = lim
s→s̄

∫
Pη,ε,p1

W (e(us,p))dx (2)

μ̄

∫



∑
k≤p1

W k
l (∂τ k (up)τ k )dx = lim

s→s̄
μ

∫
Bη,ε,p1

Wl(e(us,p))dx when p2 = 1 (3)

The elementary proof is achieved in two steps through a standard method of variational convergence.

Step 1 (asymptotic behaviour of us,p )

Proposition 2.1. When s goes to s̄, us,p (up to a not relabelled subsequence) weakly converges in H1(
; R3) toward some up in V p

such that

J̄ p(up) ≤ lim
s→s̄

J s,p(us,p)

Proof. As, clearly, us,p is bounded in H1(
; R3), we deduce that there exists some up in H1
�D

(
; R3) such that, up to a 
not relabelled subsequence, us,p weakly converges in H1(
; R3) toward up , which does belong to V K L(
). Moreover, the 
very definitions of W K L , W k

l , 1 ≤ k ≤ 3, and Jensen’s inequality imply:∫
Pη,ε,p1

W (e(us,p))dx ≥
∫

Pη,ε,p1

W K L(ê(us,p))dx

μ

∫
Bη,ε,p1

Wl(e(us,p))dx ≥ 2μη

∫
R2×(−1,1)

∑
k≤p1

W k
l (∂τ k (< u >k

s,p)τk )dx

where

• < u >k
s,p :=

∑
i∈Ik

1

2ηε

ηε∫
−ηε

ũs,p

(
(x · τ k)τ k + (iε + t)νk

)
dt χk

ε,i

• χk
ε,i is the characteristic function of 

{
(i + t)ενk, 0 < t < 1

}
×R × (−1, 1)

• ṽ is the extension by 0 to H1(R2 × (−1, 1); R3) of all v in H1
�D

(
; R3)

As < u >k
s,p has the same strong limit ũp in L2(
; R3) as ũs,p , a standard lower semi-continuity argument yields the 

result. �
Step 2 (identification of up )

Proposition 2.2. For all v in V p, there exists a sequence vs in H1
�D

(
; R3) such that

lim
s→s̄

J s,p(vs) ≤ J̄ p(v)

Proof. It is straightforward by using test functions like

ws(x) = hh ρ(x) + ε
∑

k≤p1

(
δη(x · νk/ε)hρ(x) + ϕη(x · νk/ε)(ψk,0)

)
with

(ρ, ψk) in C∞(
; R3 ×R2) vanishing on �D ,
δη, ϕη the 1-periodic functions such that

δη(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if t < η

(t − η)/η if η ≤ t ≤ 2η

1 if 2η ≤ t ≤ 1/2

δ (1 − t) if 1/2 ≤ t ≤ 1

, ϕη(t) =
⎧⎨⎩t if |t| < η

η(1 − 2t)

1 − 2η
if η < t < 1 − η
η
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to check that vs defined by

vs ∈ H1
�D

(
;R3) ;
∫

Pη,ε,p1

DW (e(h, vs)) · e(h, w)dx + μ

∫
Bη,ε,p1

DWl(e(h, vs)) · e(h, w)dx =

=
∫



DW K L(ê(vs)) · ê(w)dx + (2 − p2) μ̄

∫



∑
k≤p1

DW k
l (∂τ k (vs)τ k ) · ∂τ k wτ k dx, ∀w ∈ H1

�D
(
;R3)

satisfies the assertion.
Thus up is the unique minimizer in V p of J̄ p and satisfies (1) and, consequently, (2) and (3). Hence, the whole sequence 

us,p weakly converges in H1(
; R3), but also strongly because

lim
s→s̄

∫
Pη,ε,p1

W K L(ê(us,p))dx ≤ lim
s→s̄

∫
Pη,ε,p1

W (e(us,p))dx =
∫



W K L(ê(up))dx ≤ lim
s→s̄

∫
Pη,ε,p1

W K L(ê(us,p))dx

and ∫
Bη,ε,p1

|ê(us,p)|2 dx ≤ C

μ
, lim

s→s̄

∫



|ei3(us,p)|2 dx = 0, 1 ≤ i ≤ 3 �

As quoted in [5,6], to make more precise the asymptotic behaviour of us
p , we develop a variant of Theorem 2.1. As no 

ambiguity ensues, we use the same symbol ê for an element e of S3 such that its non vanishing entries are eαβ = êαβ , 
1 ≤ α, β ≤ 2, and let e⊥ := e − ê. Then we have the following theorem.

Theorem 2.2. There exists a unique zp in L2(
; R3) such that e(h, us
p) converges strongly in L2(
; S3) towards ê(up) + zp ⊗s e3 . 

Moreover,

•
(

DW (ê(up) + zp ⊗s e3)
)⊥ = 0

•
∫



W
(

ê(up) + zp ⊗s e3

)
dx =

∫



W K L(ê(up)) dx

• (up, zp) is solution to(
Qp

)
Min

{∫



[
W

(
ê(v) + z ⊗s e3

)
dx + (2 − p2) μ̄

∑
k≤p1

W k
l (∂τ k vτ k )

]
dx − L(v) ; (v, z) ∈ V p × L2(
;R3)

}

Proof. As e(h, us,p) is bounded in L2(
; S3), it converges weakly toward some ê(up) + zp ⊗s e3 up to a not relabelled 
subsequence. Moreover (up, zp) appears as the unique solution to 

(
Qp

)
because for all element z of C∞(
̄; R3) vanishing 

on �D , e(h, Zh), with Zh = hh Z , Z(x̂, x3) :=
x3∫

0

z(x̂, t) dt , converges strongly in L2(
; S3) toward z ⊗s e3. Hence, the whole 

sequence e(h, us,p) converges weakly in L2(
; S3), but also strongly because∫
Bη,ε,p1

|e(h, us,p)|2 dx ≤ C

μ
,

lim
s→s̄

∫
Pη,ε,p1

W (e(h, us,p))dx =
∫



W K L(ê(up))dx ≤
∫



W
(

ê(up) + zp ⊗s e3

)
dx ≤ lim

s→s̄

∫
Pη,ε,p1

W (e(h, us,p))dx �

Now these mathematical results can immediately be rephrased in terms related to the genuine physical problem 
(
P s

p

)
, 

which will supply our asymptotic model. Let

V K L(

h) :=

{
v ∈ H1

�h
D
(
h;R3) ; ei3(v) = 0,1 ≤ i ≤ 3

}
V h

p :=V K L(

h) if p2 = 1, V h

(p1,2) := V K L(

h) ∩

( ⋂
{∂τ k vτ k = 0}

)

k≤p1
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ūh
p :=S−1

h up

z̄h
p(x) :=zp

(
(h)−1x

)
a.e. x ∈ 
h

then we have

Theorem 2.3. The fields ūh
p and z̄h

p are solutions to

(
P̄h

p

)
Min

{∫

h

[
W K L(ê(v)) + (2 − p2) μ̄

∑
k≤p1

W k
l (∂τ k vτ k )

]
dx − Lh(v) ; v ∈ V h

p

}

(
Q̄h

p

)
Min

{∫

h

[
W

(
ê(v) + z ⊗s e3

)
+ (2 − p2) μ̄

∑
k≤p1

W k
l (∂τ k vτ k )

]
dx − Lh(v) ; (v, z) ∈ V h

p × L2(
h;R3)

}

and

lim
s→s̄

1

h3

∫

h

|ê(us
p) − ê(ūh

p)|2 dx = 0,

∫

h

|e⊥(us
p)|2 dx ≤ Ch3 (4)

∫

h

|e⊥(us
p) − hz̄h

p ⊗s e3|2 dx = o(h3) (5)

3. Physical interpretation

The second line of hypothesis (H2) refers to the design of the stiffeners but also to their layout. The condition 
ηε

h
→ 0

is clear: the stiffeners have to be slender. As to 
h2

ηε2
→ 0, it encloses various information. On the one hand, because 

h2

ηε2 = h

ε
/
ηε

h
, it says that the slenderness of the microscopic plates constituting the genuine plate 
h (see Fig. 1) is lesser 

than the one of the stiffeners. On the other hand, the thickness h of the plate being given, it yields that the distance 

between two nearest parallel stiffeners has to be large enough (more precisely, the condition is ε � h

ηε
).

Theorem 2.3 tells us that, when the order of magnitude of the rigidity of the stiffeners is 
1

2η
, the asymptotic behaviour 

of the structure is the one of Kirchhoff–Love type. The stiffeners supply an additional term μ̄
∑

k≤p1

W k
l (∂τ k vτ k ) to the classical 

term W K L(ê(v)) stemming from the sole W . When the rigidity is of an order of magnitude larger than 
1

2η
, the periodic 

distribution of stiffeners of direction τ k implies a vanishing stretch in this direction. Hence, to get a full rigidity, it suffices 
to use three families of stiffeners, in our case a fourth direction like 

e1 − e2

2
is not necessary.

To go to the essential we assumed that the stiffness of each family of layers was the same, it is easy if not tedious to 
consider pk

2 ∈ {1, 2}, k = 1, 2, 3!...
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