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The scale effect of rock joint shearing is of great significance in rock engineering. Most 
existing shear constitutive models could describe the pre- and post-peak deformation of 
rock joints, but only in one particular scale, that is, those existing models will fail to depict 
the rock joint shearing in different length scales. Therefore, this study aims to establish 
a constitutive relationship for rock joints with considering the scale effect. Based on the 
assumption of a random statistical distribution of rock material strength and statistical 
mesoscopic damage theory, damage variables are defined as the ratio of the number of 
damaged elements to the total number in the shear process. Together with the nonlinear 
relationship between the microelement failure and the joint scale, an empirical statistical 
constitutive relationship for joint is established. And then, the determination method of 
constitutive relationship parameters and the variation laws with the scale are discussed. 
Results show that the predicted results of the proposed empirical relationship not only 
agree well with the experimental results but also fully describe nonlinear deformation, pre-
peak softening, post-peak softening, residual stage, and other mechanical properties of the 
shear deformation of joint with different dimensions, thereby demonstrating the rationality 
of the constitutive relationship. The physical meaning of the constitutive relationship 
parameters is clear, and the expressions of the constitutive relationship parameters can 
be deduced from the experimental results. In addition, the influence of scale effect on the 
shear deformation of rock joints can be quantified using parameters, which help accurately 
describe the action form of scale effect.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Rock joints significantly affect the mechanical properties of rock mass engineering and make rock mass significantly 
different from other media [1–6]. It has always been a hotspot in rock mechanics to establish a rock joints shear constitutive 
model which can accurately simulate the whole process of shear deformation and failure. Numerous scholars have conducted 
extensive and in-depth studies since the 1960s, thereby establishing numerous constitutive models of rock joints [7–10]. 
These representative models include the following: pure linear elastic constitutive models, such as Goodman’s model [11]
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Fig. 1. Schematic diagram of damaged idealized rock joints.

and the Saeb–Amadei model [12]; nonlinear models, such as the Barton–Bandis model [13], the Grasselli model [14], and 
the CSDS model [15]; elastoplastic incremental models, including Plesha’s model [16] based on the noncorrelated flow rule, 
Wang’s model [17] reflecting anisotropy, and the DSC model [18] based on damage theory. The above-mentioned studies 
have deepened the deformation and strength of rock joints and have played an important role in the structural analysis 
and numerical simulation of rock mass engineering, including slope and tunnel [19–23]. However, given the complexity of 
rock joints, the existing constitutive models cannot fully describe the entire process deformation characteristics and damage 
evolution law of rock joints shear.

Meanwhile, some studies have also been conducted to investigate the effect of scale on the shear behavior of rock joints. 
Since Pratt, Black [24] first discovered the scale effect phenomenon in the direct shear test of natural rock joints, many 
researchers started to investigate this scale effect theoretically, experimentally and numerically. Barton and Choubey [25]
emphasized that the scale effect of shear strength is closely related to that of JRC based on 136 sets of rock joint direct 
shear test results of eight rocks. Du, Huang [26] established the JRC scale effect fractal model based on the statistical law of 
roughness coefficient of 11064 rock joints surface contour curves. Ueng, Jou [27] conducted a direct shear test on standard 
model rock joints with a JRC of 18–20 and a size of 75–300 mm. The results indicated that a scale effect is closely related to 
surface morphology. Bahaaddini, Hagan [28] used PFC2D to study the relationship between rock joints shear behavior and 
scale. These findings contributed to the understanding of scale effect. However, given the complex mechanical behavior of 
rock materials, the mechanism and form of scale effect were partly elaborated, thereby suggesting a requirement for further 
investigations. Few shear constitutive models [29–32] consider the scale effect and post-peak damage softening property. 
Accurately and comprehensively reflecting the shear behavior of rock joints under various scales and establishing the shear 
constitutive model of rock joints that consider the scale effect has not been explored.

One of the classic explanations of scale effect is Weibull’s statistical theory [33–36], which establishes the microstructural 
basis for the Weibull statistical parameters associated with the development of instability in a wing crack model. Tang, Yang 
[37], Tang, Liu [38] adopted the Weibull distribution to describe the microphysical properties of rocks and made good use 
of RFPA to reproduce the fracture process of rocks. These results indicate that the Weibull distribution is a good choice 
to describe the scale effect. Therefore, based on the theory of damage mechanics and Weibull distribution, a statistical 
constitutive empirical relationship of rock joint shear damage is proposed. The established empirical constitutive relationship 
is adopted to match the direct test results of different-scale rock joints. Finally, the effects of different scales on the damage 
evolution process of rock joints are further discussed.

2. Statistical constitutive relationship of rock joint damage considering the scale effect

2.1. Rock joint damage evolution relationship

Rock joints are substantially thinner than the rock wall on both sides. Thus, rock joints can be simplified into a thin layer 
with finite (small) thickness for the convenience of the present study. The thin layer can be regarded as the composition 
of numerous elements containing various rock material properties [39,40]. In the thin layer, damaged and undamaged 
mesoscopic elements are mixed, as shown in Fig. 1.

According to the damage mechanics, the damage of material is mainly an accumulation process of the mesoscopic el-
ements [36,41–43]. Given the deterioration of the microstructure, the macroscopic physics will also present corresponding 
mechanical responses. The deformation and failure of rock joints are actually the formation, expansion, and penetration of 
microscopic defects in the thin layer. The definition of a damage variable is the basis of damage statistics theory applied to a 
rock joint damage constitutive model. Lemaitre [44] demonstrated that a classical damage model is established on the basis 
of the assumption of strain equivalence. It divides the rock–soil material S under load into the damaged and undamaged 
parts, and the effective stress σ̃ that acts on the undamaged part S̃ is equal to the nominal stress σ acting on the rock–soil 
material, that is,

σ̃ = σ
S = σ

(1)

S̃ 1 − D
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Fig. 2. Typical stress–shear displacement curve.

where D is the damage variable that takes a value between 0 and 1, corresponding to the damage states of the rock from 
undamaged to fully damaged.

However, the Lemaitre model considers the damaged part as non-load bearing. Thus, the total loss of bearing capacity 
when the rock–soil material is completely transformed into the damaged part, and its load-bearing capacity is 0. The 
Lemaitre model assumes that the damaged part cannot bear the load, which is evidently inconsistent with the residual 
strength properties of the rock material. In fact, the damaged material can also bear a certain load [45–48], that is, the 
nominal stress σ suffered by the rock and soil material is shared by two parts.

σ = σ̃ (1 − D) + σr D (2)

where σr and D are the residual strength and damage variable, respectively.
The basic concept of the statistical damage constitutive model for rock joints is to establish a variable that links the 

complete state of the rock material to the damage state. This variable is known as damage variable D , which can be 
expressed as

D = Nf

N
(3)

where Nf is the number of damaged mesoscopic elements under a certain loading, and N is the number of all mesoscopic 
elements.

The strength of the mesoscopic element follows the Weibull distribution function and its failure probability density 
function are

P (Fa) =
{

0 Fa < 0
m
F0

(
Fa
F0

)m−1
exp

[
−

(
Fa
F0

)m]
Fa ≥ 0

(4)

where Fa is the shear strength of the mesoscopic element, F0 and m are the distribution parameters.
Typical rock material damage models, such as the Mazars model [49] and the Sidoroff model, assume that the damage 

of rock material is zero or does not evolve before reaching the peak strength, and the damage only occurs after the peak 
stress. However, analyzing the shear stress–displacement curve of typical rock joints [50] indicates that the damage occurs 
not only after the peak. The typical joint shear process can be divided into the following phases [51] (Fig. 2): elastic phase 
(OA), pre-peak softening phase (AB), post-peak softening phase (BC), and residual phase (CD). Although the shear behavior 
of different tests is partly similar, the main features (yield shear stress τs; peak shear stress, τf; residual shear stress, τr; 
and shear stiffness, ks) are the same.

In the OA section, the shear stress–displacement curve presents linear or nearly linear changes. That is, the microdefects 
in the material remain unchanged, without any damage occurring temporarily. In the section between the yield point and 
the peak value (AB section), the shear stress–displacement relationship has significantly deviated from the straight line, thus 
indicating that the damage to the rock material has occurred at this stage. The consideration of the yield point as the initial 
stage of damage is reasonable. For a mesoscopic element whose shear displacement is u, the threshold value for measuring 
whether it enters the damage state can be set as Fa = ksu − τs by referring to the Mohr–Coulomb criterion. The yield point 
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is the critical point between the elastic phase and the pre-peak softening phase, and the yield stress τs can be expressed as 
τs = ksus, similarly. In addition, the parameter F0 can also be expressed as F0 = ksu0. Thus, the failure probability density 
function (4) can be expressed as

P (u) =
{

0 u < us

m
u0

(
u−us

u0

)m−1
exp

[
−

(
u−us

u0

)m]
u ≥ us

(5)

In Eq. (5), the description of the damage process of the rock material has been transformed from studying the material’s 
microscopic properties to characterizing its macroscopic properties. Damage occurs after the shear displacement reaches us. 
Then, the number of mesoscopic elements with damage (Nf) during the interval from us to u is

Nf =
u∫

us

N P (u)du = N

{
1 − exp

[
−

(
u − us

u0

)m]}
(6)

The substitution of Eq. (6) into Eq. (3) yields

D =
{

0 u < us

1 − exp
[
−

(
u−us

u0

)m]
u ≥ us

(7)

Eq. (7) expresses the statistical damage evolution equation of rock joints shear deformation process.

2.2. Statistical constitutive relationship of rock joint damage

The total shear area of the mesoscopic element in the process of rock joint shear is denoted as S . The total cross-sectional 
area of the undamaged mesoscopic element is denoted as S i , and the total cross-sectional area of the damaged mesoscopic 
element is signified as Sr. S can be expressed directly as

S = S i + Sr (8)

The force balance in the shear direction can be obtained as follows:

τ S = τi S i + τr Sr (9)

Given the random distribution of damage in the rock material, the damaged material is mixed with the undamaged 
one, thereby making the size of the cross-sectional area of the damaged mesoscopic element Sr infeasible to determine 
accurately. As previously described, the material can be divided into damaged and undamaged parts once the damage 
occurs. Therefore, the ratio of the number of damaged mesoscopic elements Nf to the total number of mesoscopic elements 
N can be used to replace the ratio of the total cross-sectional area of the damaged mesoscopic element Sr to the total shear 
area of the mesoscopic element S to measure the damage variable D . The formulation of Eq. (3) is then modified as follows:

D = Nf

N
= Sr

S
(10)

Referring to Eq. (2), Eq. (11) can be obtained by dividing both sides of Eq. (9) by S .

τ = τi(1 − D) + τr D (11)

The linear section load is all carried by the undamaged mesoscopic element. Thus, the effective shear stress τi = ksu. The 
substitution of τi = ksu into Eq. (11) yields

τ = ksu(1 − D) + τr D (12)

When D = 0, the rock joints are positioned in an undamaged state. τ = ksu corresponds to the linear phase of the shear 
stress–displacement curve. When D = 1, the rock joints are in a completely damaged state. In this case, τ = τr corresponds 
to the residual phase of the shear stress–displacement curve. For Eq. (12) listed above, the units of ks and u are MPa/mm 
and mm, respectively.

The substitution of Eq. (7) into Eq. (12) yields

τ =
{

ksu u < us

(ksu − τr)exp
[
−

(
u−us

u0

)m]
+ τr u ≥ us

(13)

Eq. (13) expresses the parameters u0 and m. The key to establishing a reasonable shear damage constitutive relationship 
of rock joints is located in determining the specific expression of u0 and m. The shear stress–displacement curve indicates 
that the slope is 0 at the peak, that is,
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dτ

du

∣∣u=uf,τ=τf = 0. (14)

By combining the equation set of 
{

u = uf
τ = τf

with Eq. (14), the expressions of parameters u0 and m can be obtained as 

follows:⎧⎪⎪⎨
⎪⎪⎩

m = ks(uf−us)

(ksuf−τr) ln
(

ksuf−τr
τf−τr

)
u0 = uf−us[

ln
(

ksuf−τr
τf−τr

)] 1
m

(15)

By substituting Eq. (15) into Eq. (13), the shear damage constitutive relationship of rock joints without considering the 
scale effect can be obtained. It is worth mentioning here that Eq. (15) only applies to the case with obvious residual stress 
τr as shown in Fig. 2. If there is no constant residual stress in the test data, it is suggested to use the method of fitting data 
to get parameters m, u0, and residual stress τr [29,52].

As previously mentioned, the damage is randomly distributed in the mesoscopic element, thereby resulting in the evident 
difference in the damage distribution on rock joints with various scales, which denote the variation in u0 and m with scales. 
Sufficient experimental data [53] illustrate a close nonlinear relationship between parameters and scale when the Weibull 
distribution is adopted to describe the statistical constitutive relationship of rock material damage. In this case, a shear 
constitutive relationship of rock joints considering the scale effect can be established by further exploring such a nonlinear 
relationship between the two parameters and joint scale. Thus, the shear stress–displacement curve of joints in large scale 
can be predicted in accordance with that of joints in small scale. This outcome can provide a reference for constructing 
geotechnical engineering. Based on Eq. (7), the statistical constitutive relationship of shear damage of rock joints considering 
the scale effect is established as follows:

D =
⎧⎨
⎩

0 u < us

1 − exp

[
−

(
u−us
u0(s)

)m(s)
]

u ≥ us
(16)

where u0(s) and m(s) are the nonlinear relationships between Weibull distribution parameters and rock joint scale, respec-
tively.

Therefore, by substituting Eq. (16) into Eq. (13), the constitutive relationship for the shear behavior of rock joints con-
sidering scale effect can be obtained as follows:

τ =
⎧⎨
⎩

ksu u < us

(ksu − τr)exp

[
−

(
u−us
u0(s)

)m(s)
]

+ τr u ≥ us
(17)

In Eq. (17), the specific expression of the damage constitutive relationship can be obtained after specifically determining 
u0(s) and m(s). The subsequent part verifies the rationality of the established constitutive relationship through relevant 
experimental data.

3. Constitutive relationship validation and discussion

3.1. Constitutive relationship validation

The rationality of the constitutive relationship is verified using the direct shear test data of series simulation rock joint 
in the work by Huang, Du [54]. In this experiment, the direct shear tests of simulation rock joint in scales of 20 cm ×
20 cm–100 cm × 100 cm are taken under the normal stresses from 0.2 MPa to 1.0 MPa. The shear stress–displacement 
curves of the straight shear tests of J01 and J02 joints are obtained with many simulation rock joint tests, as presented in 
Figs. 3 and 4.

For data analysis, the method to obtain the required parameters of Eq. (13) from the test data is described as follows: 
The slope of the pre-peak region for data ranging between 25% and 90% of the peak shear stress is defined as the shear 
stiffness ks [55]. The yield stress τs is defined as the stress corresponding to 90% of the peak shear stress τf , and the yield 
displacement us is derived from τs = ksus [56]. As for the residual stress τr, it can be found from Fig. 3 and Fig. 4 that 
when the direct shear experiment is completed, the curve still maintains a downward trend or fluctuates, and there is no 
obvious residual stress remaining constant as shown in Fig. 2. Of course, this phenomenon is very common in shear tests 
of natural joint replicas. However, this still causes some trouble for the value of τr in this paper, which affects the accuracy 
of solving m, u0 by Eq. (15). Refer to the method of Liu and Yuan [29] and Tang, Xia [52], when the residual stress τr is not 
constant, the parameters m, u0, and τr can be obtained by fitting to the experimental data. Therefore, this paper adopts the 
fitting method to get the parameters m and u0 instead of Eq. (15).



566 H. Lin et al. / C. R. Mecanique 347 (2019) 561–575
Fig. 3. Shear stress–displacement curves with J01 joint specimen.

Fig. 4. Shear stress–displacement curves with J02 joint specimen.

The joint shear test data of J01-1000 mm and J02-1000 mm are taken as examples to verify the correctness of the 
constitutive relationship. According to the test results, the shear stiffness ks corresponding to the J01 and J02 are 0.14095 
and 0.2695, respectively. The yield displacement us corresponding to the J01 and J02 are 0.72451 and 0.4863, respectively. 
By substituting the corresponding ks and us into Eq. (15), we have

J01 : τ =
⎧⎨
⎩

0.14095u u < 0.7245

(0.14095u − C)exp

[
−

(
u−0.7245

A

)B
]

+ C u ≥ 0.7245
(18)

J02 : τ =
⎧⎨
⎩

0.2695u u < 0.4863

(0.2695u − C)exp

[
−

(
u−0.4863

A

)B
]

+ C u ≥ 0.4863
(19)

where A, B , and C respectively refer to u0, m, and τr.
The corresponding experimental data are substituted into Eqs. (18) and (19) to fit parameters A, B , and C and the results 

are shown in Figs. 5 and 6.
At this point, all parameters in the constitutive relationship expression are obtained, and the corresponding constitutive 

relationship equations can be obtained by substituting parameters A, B , and C into the constitutive relationship expression 
Eqs. (18) and (19):
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Fig. 5. Comparison between the theoretical curve of damage statistical constitutive relationship and J01 test result.

Fig. 6. Comparison between the theoretical curve of damage statistical constitutive relationship and J02 test result.

J01 : τ =
⎧⎨
⎩

0.14095u u < 0.7245

(0.14095u − 0.0619)exp

[
−

(
u−0.7245

0.8894

)0.6155
]

+ 0.0619 u ≥ 0.7245
(20)

J02 : τ =
⎧⎨
⎩

0.2695u u < 0.4863

(0.2695u − 0.0535)exp

[
−

(
u−0.4863

0.6568

)0.5836
]

+ 0.0535 u ≥ 0.4863
(21)

The fitting curves are plotted in Figs. 5 and 6, with the correlation coefficients of R2 = 0.945 and R2 = 0.954, thereby 
indicating that the established constitutive relationship in this study can accurately simulate the shear deformation process 
of rock joint.

Similarly, the fitting method is also used to obtain the parameters m and u0 corresponding to the remaining experi-
mental data in Figs. 3 and 4, and the processing process is the same as the example. The obtained parameter values and 
fitting correlation coefficients are presented in Tables 1 and 2, correspondingly. It should be noted that there is no regular 
relationship between the obtained residual stress, shear stiffness and size, so only the values of m and u0 that have obvious 
relationship with size are listed in Tables 1 and 2. In Tables 1 and 2, the variation law between constitutive relationship 
parameters and joint size is illustrated in Figs. 7 and 8. In these figures, with the increase in the joint size, the values of 
both parameters generally show a power law decreasing trend. It is worth noting that the points in Fig. 7a seem to have a 
concave tendency, but this paper still uses a convex fitting relationship. According to some existing studies [53,57], when the 
Weibull distribution is used to describe the scale effect, the parameter F0(u0) does show a convex trend with the increase 
of size.
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Table 1
The constitutive relationship parameters corresponding to J01 specimen.

Joint length (m) Parameter u0 Parameter m R2

0.4 1.6598 0.7772 0.8512
0.6 1.4277 0.6610 0.8560
0.8 1.1842 0.6248 0.8616
1.0 0.8890 0.6150 0.9550

Table 2
The model parameters corresponding to J02 specimen.

Joint length (m) Parameter u0 Parameter m R2

0.4 1.5059 0.7165 0.9322
0.5 1.4128 0.7056 0.8177
0.6 1.2250 0.6680 0.9080
0.8 0.7310 0.6220 0.8623
1.0 0.6568 0.5836 0.9335

Fig. 7. Relationship between constitutive relationship parameter u0 and joint length. (a) J01, (b) J02.

Fig. 8. Relationship between constitutive relationship parameter m and joint length. (a) J01, (b) J02.
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Fig. 9. Comparison of results from the theoretical curve of damage statistical constitutive relationship and test.

Table 3
Value of relevant parameters.

Parameter Value

ks 1.4336
us 1.5025
τr 1.51
m 0.98
u0 0.85

The fitting relationship between the joint scale S of J01 and J02 and the parameters u0 and m can be obtained from 
Figs. 7 and 8, as expressed in Eqs. (22) and (23), respectively.

u0 = 1.016S−0.548, R2 = 0.853
m = 0.588S−0.297, R2 = 0.826

}
(22)

u0 = 0.699S−0.903, R2 = 0.883
m = 0.594S−0.227, R2 = 0.919

}
(23)

The previous discussion of the relationship between parameters and joint scale reveals a power function relationship 
between parameters and joint size. This relationship can be expressed as y = Ax−B , where A and B are constants that 
depend on rock joints types and can be determined on the basis of the fitting analysis of test data. By substituting the fitting 
equation into Eq. (17), the joint shear constitutive relationship considering the scale effect can be obtained. For example, 
S = 0.9 (J01-900 mm joint specimen) is substituted into Eq. (22) to obtain the corresponding parameter u0 = 1.07639 and 
m = 0.60669. Fig. 9 presents the comparison between the theoretical curves obtained using the constitutive relationship 
established in this study and the test results of the specific scale joints (900 mm). The theoretical curve exhibited in Fig. 9
agrees well with the experimental results, thereby indicating the rationality and correctness of the established constitutive 
relationship.

3.2. Constitutive relationship discussion

As previously described, the parameters m and u0 severally affect the geometric scale and shape of the shear stress–
displacement curve, which is of great significance to the feasibility and capability of the constitutive relationship proposed. 
Section 3.1 demonstrates that the parameters of the damage statistical constitutive model show a power function decreasing 
trend with the increase in joint size. The influence of different joint sizes on the shear stress–displacement curve is reflected 
in the influence on constitutive relationship parameters. Therefore, the law of the shear stress–displacement curve chang-
ing with joint size can be analyzed through the single variable method to reflect the influence of constitutive relationship 
parameters on the shear stress–displacement curve. For Eq. (16), the single-variable method is adopted to change u0 and m
respectively to obtain the corresponding variation curves, and these relevant parameters used are given in Table 3.

The variation of the shear stress–displacement curve under different parameters u0 are elaborated in Fig. 10. It can be 
concluded from Fig. 10 that the curve groups after the yield stage under the conditions different u0 are approximately 
parallel. The peak shear stress decreases with the parameter u0; that is, the peak shear stress decreases with the increase in 
joint scale. This phenomenon is consistent with the general cognition of the scale effect, thereby confirming the correctness 
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Fig. 10. Influence of parameter u0 on the constitutive relation.

Fig. 11. Influence of parameter m on the constitutive relation.

of the constitutive relationship. A point with such characteristics is defined as the starting point of the residual phase of the 
shear process (point C in Fig. 2): the shear stress at this point subtracted the residual stress to get a difference value, the 
ratio of the difference value to the residual stress should be less than 10−6. During the process of parameter u0 increasing 
from 0.25 to 0.85, the peak shear stress increases by 15.43%, and the shear displacement required to reach the residual 
stage increases by 54.09%. Such an influence on the relationship of the shear constitutive relationship is mainly reflected in 
the damage development stage after the yield point. Thus, the parameter u0 is the reflection of the macroscopic statistical 
average strength of rock materials.

The changes in shear stress–displacement curve for various parameter m are illustrated in Fig. 11. It can be clearly 
seen from Fig. 11 that with the increase of parameter m, the peak shear stress gradually increases and the post-peak part 
of the shear stress–displacement curve gradually becomes steep. When the parameter m changes from 0.98 to 2.08, the 
elastic phase of the shear stress–displacement curve remains unchanged, while the peak shear stress increases by 14.3%. 
By contrast, the shear displacement required for the curve to reach the residual phase increased by 168.49%. It is worth 
noting that residual stress, as an inherent property of rock materials, remains constant no matter how the parameters u0
and m change. It is an interesting phenomenon in Fig. 11 that the stress–displacement curves corresponding to different m
intersect at the same point, which is located between the peak stress and the residual stress. The variation trend of curves 
before and after the intersection point is opposite. The larger the parameter m is, the greater the absolute value of the slope 
of the shear stress–displacement curve at the pre-peak and post-peak stages (the steeper the curve is), indicating that m
mainly reflects the concentration of the strength distribution of the internal unit of rock material.



H. Lin et al. / C. R. Mecanique 347 (2019) 561–575 571
Fig. 12. Influence of joint size on the damage variable.

Fig. 13. Damage variable of joints with different parameters m.

Table 4
Parameters of damage variable.

Parameter Value

us 1.3044
m 0.6248
u0 1.1842

3.3. Damage evolution process

The data obtained from multiple shear tests [54] are substituted into Eq. (7) to draw typical damage evolution curves 
of joints with different lengths, as depicted in Fig. 12. In this figure, the damage performance of joints with different 
sizes is nearly the same: the damage change in the rock joints accelerates with the increase in joint size, and the shear 
displacement required from the beginning of damage (D = 0) to complete damage (D = 1) is reduced. In combination with 
Eq. (16) and the relationship between constitutive relationship parameters and size discussed above, the influence of joint 
size on damage characteristics can be reflected by the change in damage characteristics under various parameters.

The relationship between damage variable D and shear displacement under different parameters (various sizes) is 
demonstrated in Figs. 13 and 14, respectively, thereby showing examples of the variations in the damage variable, which is 
calculated using the damage evolution relationship, at different shear displacement for various joint scales (values of param-
eter). These relevant parameters used in Figs. 13 and 14 are shown in Table 4. In Figs. 13 and 14, joint length significantly 
influences the damage evolution process of rock joints. With the increase in joint length (the decrease in parameters m
and u0), the damage variables that correspond to the same shear displacement show a decreasing trend. With the increase 
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Fig. 14. Damage variable of joints with different parameters u0.

Table 5
Results of direct shear tests [58].

σn (MPa) us (mm) uf (mm) τf (MPa) τr (MPa)

50 0.9825 1.1755 46.3512 31.2801

in m, the shear displacement required to achieve complete damage (D = 1) is small, and the curvature of damage evolution 
curve increases. By contrast, with the increase in u0, the shear displacement required to achieve complete damage is large, 
and the curvature of damage evolution curve is reduced. Therefore, the two parameters play opposite roles in the growth 
rate of damage variables. Parameters m and u0 increase using the same amplitude, and the influence of m on the shear 
displacement and curvature required for the joint damage to reach the complete state is evident. The law of joint damage 
relation of different scales changing with parameters is of certain reference significance for finding precursor information of 
rock mass from stability to failure and implementing stability monitoring and disaster warning.

3.4. Discussion on model applicability

In section 3.1, the data fitting method was used to determine parameters m and u0. In this section, the process of 
parameters solving m and u0 by Eq. (15) was demonstrated through an example with constant residual stress, and the 
constitutive relationship expression was obtained to illustrate the correctness of the constitutive relationship established in 
this paper.

In order to investigate the regularities of the shear strength, shear deformation and other mechanical properties of 
joint rock mass with different roughness values under compression-shear stress, Zhou H, Cheng GT [58] prepared marble 
specimens with dentate heights of 0, 1 and 3 mm respectively. Then direct shear tests were conducted on the marble 
specimens under different normal stresses. As shown in Fig. 15, the test data with h = 3 mm and normal stress of 50 MPa 
was selected for our analysis. The test results are shown in Table 5. According to the test results, the shear stiffness ks

corresponding to the normal stress 50 MPa tests is 41.98. By substituting the relevant data in Table 4, us, uf, τf , τr, and ks

into Eq. (15), we have:

σn = 50 MPa :
{

m =
u0 =

2.4729
0.3849

(24)

At this point, all parameters in the model expression are obtained, and the corresponding model equations can be 
obtained by substituting relevant test data into the model expression – Eq. (13) – at last:

τ =
⎧⎨
⎩

41.98u u < 0.9825

(41.98u − 31.2801)exp

[
−

(
u−0.9825

0.3849

)2.4729
]

+ 31.2801 u ≥ 0.9825
(25)

The shear behaviors obtained from experimental tests and those estimated by the proposed models are compared as 
shown in Fig. 16. The correlation coefficients (R2 = 0.979) show excellent consistency between the constitutive relationship 
prediction and the experimental results.

In conclusion, the constitutive relationship established in this paper has wide applicability. For the shear stress–
displacement curve with constant residual stress, it can be solved by Eq. (15) and relevant experimental data. For the 
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Fig. 15. Relation curves of shear stress and shear displacement under different normal stresses.

Fig. 16. Comparisons between the shear behaviors obtained in tests [58] and those estimated by the proposed constitutive relationship.

shear stress–displacement curve without constant residual stress, it can be solved by a fitting method, which also has good 
fitting accuracy.

4. Conclusion

(1) Based on the assumption of the random statistical distribution of the strength of rock material micro-elements, an 
empirical statistical constitutive relationship of joint shear damage with the scale effect is established by combining the 
damage mechanics and considering the nonlinear relationship between the damage evolution process and joint size.

(2) The curve of the constitutive relationship established in this study agrees well with the test curve. Thus, this con-
stitutive relationship can reflect the whole process of shear deformation of rock joints, especially the characteristics of the 
post-peak residual stage. The constitutive relationship has few parameters with clear physical meaning, thus indicating its 
superiority.

(3) Based on the joint experimental results of different scales, the relationship between constitutive relationship parame-
ters and size is discussed, and the empirical formula for the parameters of the constitutive relationship considering the scale 
effect is expressed. The parameters of the large-scale joints predicted by the formula are substituted into the constitutive 
relationship, and the predicted curves present significant consistency with the test results.
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