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The Shallow–Water Equations (SWEs), also referred to as the de Saint-Venant equations, 
constitute the current governing mathematical tool for free-surface water flows. These 
include, e.g., flood flows in rivers and in urban zones, flows across hydraulic structures as 
dams or wastewater facilities, flows in the environmental fields, glaciology, or meteorology. 
Despite this attractiveness, the system of two partial differential equations has an exact 
mathematical solution only for a limited number of problems of practical relevance.
This historical work on the SWEs is based on a correspondence between two 19th-century 
scientists, de Saint-Venant and Boussinesq. Their well-known papers are thus commented 
from the point of development of their theory; the input of both scientists is evidenced by 
their writings, and comments of both to each other that led to what is commonly known 
as the SWEs. Given the age difference of the two of 45 years, the experienced engineer de 
Saint-Venant, and the mathematician Boussinesq, two eminent researchers, met to discuss 
not only problems in hydraulics, but in physics generally. In addition, their correspondence 
embraced also questions in ethics, religion, history of sciences, and personal news.
The results of the SWEs cease to hold if streamline curvature effects dominate; this 
includes breaking waves, solitary and cnoidal waves, or non-linear waves in general. In 
most other cases, however, the SWEs perfectly apply to typical flows in engineering 
practice; they are considered the fundamental system of equations describing open channel 
flows. This work thus provides a background to its birth, including lots of comments 
as to its improvement, physical meanings, methods of solution, and a discussion of the 
results. This paper also deals with the steady flow equations, gives a short account on 
the main persons mentioned in the Correspondence, and provides a summary of further 
developments of the SWEs until 1920.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The de Saint-Venant or Shallow Water Equations (SWEs) currently represent the standard set for free-surface flows, both 
in one (1D) and two (2D) dimensions. The 1D equations have been proposed in 1871 by Adhémar Barré de Saint-Venant 
(dSV) thereby allowing for the first computations of unsteady free-surface flows; in addition to the system of equations, dSV 
solved these equations for a particular case, to be highlighted below. The SWEs are based on two assumptions, namely (1) 
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the hydrostatic pressure distribution, apt for shallow flows, whose typical flow depth is much smaller than the typical wave-
length, and (2) the uniform velocity distribution, describing the cross-sectional velocity distribution with its time-averaged 
local mean value. The SWEs constitute in the 1D setup a system of hyperbolic nonlinear partial differential equations for 
the two unknowns, flow depth h and cross-sectional average velocity V , as functions of the streamwise coordinate x and 
time t . This set may be complemented by additional equations describing sediment transport, or environmental quantities; 
these are excluded in the following, however, given the detailed literature on these topics.

The advance of free-surface equations started almost two centuries ago, when Navier [1] proposed a generalized form 
of the 3D Euler equations, thereby accounting for viscous effects. The complexity of the currently called Navier–Stokes 
equations is large. dSV’s simplification thus was welcomed mainly by engineers although his set of equations was also inac-
cessible for practical purposes. The first insight into the Navier–Stokes equations was given by Prandtl [2] in his fundamental 
paper on the boundary layer theory. By restricting considerations to a thin layer along a solid boundary, and treating the 
remaining flow away from the wall with the Euler equations, the mystery of flows involving a boundary layer was solved for 
the first time. The final advance was made by Lighthill and Whitham [3] proposing the simplest set, namely the Kinematic 
Wave Theory. Whereas the mass conservation equation in all the above-stated flow theories is retained, the momentum 
equation of the kinematic wave theory only requests equality between the local bottom and friction slopes. This approach 
thus applies for extremely shallow flows, as, e.g., encountered in hydrologic rainfall/runoff processes. It will here not be 
considered any further. The relevance is, however, that the advance in the governing set of equations describing free-surface 
flows, is from top (Navier) to bottom (Lighthill and Whitham). The latter set was proposed just at the onset of the era of 
first computer usage, so that only few applications of all of these sets were attempted prior to this time.

dSV [4] derived the SWEs and their application to flood propagation in two notes of 17 and 24 July in the French 
journal Comptes rendus hebdomadaires des séances de l’Académie des sciences, Paris [referred to as the Académie], spanning over 
10 pages. This paper remained largely unnoticed given that few realized the value of its content. For example, Ritter [5], 
known for the Ritter Dam Break Solution, re-derived the identical equations without any account on dSV. It thus appears 
pertinent to deal with the advance of the SWEs alternatively, namely the large correspondence between dSV and Joseph 
Valentin Boussinesq (JB), located at the Library of the Institut de France, to which the Académie belongs. The first author 
(WHH) spent weeks in this Library to take photos, then transcribing these letters (as far as possible due to some poor 
lettering quality and optical problems). WHH has by now a MS Word file containing the transcribed letters of more than 
1,300 pages.

It appears evident that a complete translation from French into English of all these letters is out of the scope of this 
paper. Given the many topics addressed, only these relating to the SWEs shall be dealt with. Sketches usually drawn by dSV 
in his letters to JB are also reproduced after cleaning and re-lettering, as requested by the Académie.

An important restriction on the diffusion or publication of the original letters of the Correspondence was imposed by the 
Académie. Once WHH had received access to the Library, he was asked to sign a document in which strict personal use of 
the letters was requested. Accordingly, none of these letters can be published, and they remain property of the Académie. 
The only way to diffuse their contents thus was to transcribe them first into French, from where the English version was 
gained. The effort to obtain these transcriptions was heavy, but given their significance for the history of open channel 
hydraulics, the authors are convinced to add to this relevant topic of science.

The contents of this paper is a description of the Correspondence, the steady and unsteady forms of the SWEs followed 
by a resume of dSV’s final paper on the topic. The many names of colleagues both from France and Europe mentioned in 
the Correspondence are highlighted in the Appendix for retrieval.

1.1. Correspondence

The correspondence between dSV and JB was made available by the nephew of JB, Marius Boussinesq, shortly after 
the death of his uncle in 1929, with whom he had a good personal acquaintance. JB likely discussed this procedure with 
Marius before passing away. The total number of letters kept at the Library is exactly 600, of which 247 are contained in 
Manuscript Ms 4226, and 353 in Ms 4227. These were photographed as double pages on 1,152 sheets. The quality of most 
letters is good, except for some which were written on poor paper or on which mainly dSV had problems of writing due to 
his advanced age. The letter pages are numbered consecutively, starting each year with number 1.

Mrs. Françoise Bérard, the Director of the Library, stated to WHH that, except for some isolated documents, the entire 
Correspondence has never been viewed. Given its importance, the authors decided to publish the major findings in paper 
form. Given the breadth of interests of both dSV and JB, letters dealing with SWEs are solely discussed. This restriction 
allows for a first insight into the world of 19th-century world-class scientists, who were in personal contact from 1868 to 
1885.

When glancing through the Correspondence, it is soon evident that many letters are missing. Either a question, posed in 
a previous letter, is only answered in a later one, or important statements are missing; mostly letters written by JB to dSV 
are absent. Moreover, both have in addition had correspondences with many other scientists of the late 19th century. Given 
the length limitation of this journal, some letters are not contained in the paper but in a Complementary Data Section. To 
facilitate reading of the letters, these texts are presented in smaller lettering.
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The first letter written by dSV to JB is not contained in the Correspondence. JB’s answer (Letter 1) is dated 17 March 1868, 
written from Gap, where JB then was professor of mathematics at the High School [Lycée]. JB thanks dSV for his interest in 
his publication, and states:

You can, with a look on the improved manuscript, observe that I have profited in all parts from your good advices, and realize at the 
same time that the majority of all passages on which you improve, astonish me mainly in terms of your comments because these are 
too short and need to be clarified. I hope that my thinking will be well explained in the developments given in the revised text. Have 
a look particularly at the first paragraph, which is, as you know, the most important. Here are the explanations which you have asked 
me in your letter dated 9 March.

Given that this letter treats questions in optics, it is not commented. JB closes this letter with:

I thank you again for your goodwill, and the thoughts that you have for me. I wish from my very soul, and with lots of hope, that you 
will receive the title Member of the Institut [de France], Yours very devoted servant and disciple, JB.

This first letter reflects the close affection of JB to his mentor. Note that JB could have been the grandson of dSV. As will 
be evidenced below, dSV guided JB, whereas the latter investigated numerous scientific details, in which dSV was hardly able 
to advance. After years, the two have developed, apart from scientific exchanges, also a close friendship. Their relationship 
was a win-win situation for both. Note further that dSV was appointed in 1868 president of the Mechanics Section of the 
Académie, so that he was the key person not only heading it, but also in accepting or rejecting papers submitted to the 
journals issued by the Académie.

Letter 3, dated 24 April 1868: JB congratulates dSV for having been appointed president of the Mechanics Section. With 
this position, dSV was installed at one of the top seats of the French scientific system. These had previously served as 
platform of important scientists, including, e.g., Navier, Poisson, or Darcy.

Letter 4, dated 7 May 1868: dSV offers to send proofs of JB’s manuscripts either directly to the printer (Gauthier-Villars, 
Paris), or to himself, so that dSV, could pass them to the printer and possibly give advice how to make corrections. dSV 
also indicates to JB that he can ask for a second proof if questions still are unsolved. Notice that dSV usually had to go each 
week to the Académie by train from his hometown Vendôme for three hours, to head the sessions of his Section.

Letter 5, dated 10 May 1868: JB thanks dSV for his suggestion to send papers to Prof. Liouville, editor of the Journal de 
mathématiques pures et appliquées, then a top journal. JB mentions that his papers include excellent ideas, so that they would 
open his way to become Lecturer at the Faculté des Sciences, Paris.

Letter 8, dated 13 June 1868: dSV provides to JB the following advice relating to his professional career:

As to me, dear Sir, I can only make recommendations to you. If you would like to have in any case a chair or a Faculty position to 
become a member in a scientific center offering you resources for your studies, there exists nothing better than in Paris, where the 
Stanislas College makes a better stand as a Faculty than anything else in France. Professors there are well received and well payed. If 
this proposal would be made, you should accept.

Letter 9, dated 1 July 1868: JB thanks dSV for his advice. He continues:

I would have to prepare details in physics, an ungrateful work if there is no laboratory: It is the more important for this preparation 
to give the practical proof of phenomena in physics. If these items will not advance next year, I will put it as part of my profession.

JB also tells he would spend his annual vacations at his hometown in southern France.
Letter 23 (dated 25 November 1868): dSV communicates to JB that he is about to prepare a Note on extremely small 

and continuous movements without vortex generation. dSV notes that the maximum velocity of such a flow would be 544 
m/s, an enormous value under the equilibrium condition between the driving and resisting forces. Given the wall presence, 
this value appeared to be excessive. dSV thinks that even for extremely smooth wall properties, the flow patterns close to 
it will be highly rotational, thereby significantly increasing head-losses. dSV correctly realizes the significant wall effect on 
the flow properties, addressing the issues to be considered by Reynolds [6], and particularly by Prandtl [2].

These early letters at once reveal the widespread topics addressed by the two then of age 72 and 27. During the next two 
years, other topics were dealt with, so that it is proposed to continue here with questions in hydraulics and fluid mechanics. 
Note the enormous frequency of letters exchanged in the Correspondence. On average, more than one letter was written per 
week. These were on average three to four pages long, indicating the long preparation time apart from the daily business.

2. Steady open channel flows

From April 1871 to October 1872, dSV and JB discussed the equations of steady free-surface flows based on the energy 
and the momentum principles. Whereas dSV used energy conservation, focusing on the velocity correction coefficient α, JB 
favored the momentum approach, introducing the velocity correction coefficient α′ , currently referred to as β . Note that the 
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cross-sectional average velocity was written by dSV as U , whereas JB denoted it by V ; both are identical. In the following, 
this parameter will be written as V , to avoid confusion.

Letter 6, dated 20 April 1871, of JB:

I have made a Note on the permanent movement of water. You can find it in the package sent to you, with a sheet of developments 
that I did for you, if you want to check details. I do not send you this Note with the intention to submit it for publication in a few 
days; keep it the time which you consider suitable. I know that you are interested in this topic, that’s why I send it.

Based on earlier works of dSV on hydraulics, including for instance dSV [7–9], JB realized that his colleague would be 
a person of relevance when starting work on the equations of free-surface flows. dSV therefore was the most attractive 
‘reviewer’ for JB, given that dSV not only had previously published outstanding works in this field, but also that he was 
much inclined to engineering practice. He realized that his future was not only in complicated formulations of theories 
in applied physics, but that he had also to attract readers from engineering practice who would support his professional 
career. It is true, JB was rather scientist than engineer, but was open to the latter branch because of the discussions with 
dSV, who posed the questions of relevance and hoped that JB would find answers that would be accepted by the engineering 
community.

Letter 7, dated 16 May 1871, from dSV to JB:

I tell you now what prevented me to send to the printer your two articles on ‘Varied permanent movement of water in channels [and 
pipes]’. I think they hardly will interest surveyors,1 who have a minor esteem for results to the application of a little high or subtle 
analysis to problems of practice. I fear that submission in my request of the two new notes as they are, would be harmful to you.

dSV continues:

These who read the two Notes will find, while you are based on similarities with the formula of Bazin, you are at odds with the 
usual formulas adopted. It was deduced from his data that RC′/V 2 is no constant, but a binomial b1 + (b2/R), proposed by Darcy and 
Bazin [10].

They demonstrated (1) that the uniform flow formula applies both to open channel and pressurized pipe flows, (2) that the 
hydraulic radius R is the important length scale, (3) that the boundary roughness is relevant, and (4) that the quadratic 
velocity effect applies to turbulent rough flows.2

dSV further states:

You say well, and very wisely, that [the constant] B in your 1870 Note depends on the average hydraulic radius, and in your 
1871 manuscript, A and B vary also with the size of the cross-section. But, immediately after that, you assign constant values of 
0.00065, and 0.00081; you rely on the crude formula bi = 0.0004V 2 proposed by engineers of Lombardy, or even Bazin’s formula 
Ri = 0.00028(1 + 1.25/R)V 2.3

The good form b1 + b2/h given to hi/V 2 is not paying to your new formula giving u versus z.4 Yet, the idea is not the same as 
a monomial of the exponent like what I proposed in 1864 (as also in 1868) to the Philomathic Society, and in my 1865 brochure on 
Du Buat, and which in 1867 was presented by Mr. Gauckler with roughly the real exponent (−1/3 instead of −0.3) based on a large 
number of experiences. I believe this factor R−1/3 to the second member, or R4/3i to the first, is long accepted.

If A and B depend on the cross-sectional shape, should we not keep these for both the wide channel and the circular pipe? One 
thing you will have to consider more strongly appears that you do like Darcy, Bazin or Dupuit: it is V 2 to the second power but not V
and V 2 as a binomial. I believe nevertheless that a binomial in V , as according to Prony and Eytelwein, based on Coulomb and Girard, 
and even on [Daniel] Bernoulli, is much more in-line with what’s going on. Darcy, Bazin, Gauckler would be forced to be convinced, 
because the first two recognized that for a small section and the third for slopes i < 0.0007, i.e. for all navigable rivers, V instead of 
V 2 is relevant. Such a jump is impossible; therefore, a binomial formula dominating one of the two terms, depending on the values 
of V or i, such as R4/3i = aV + bV 2, or 1/V 2 = a′/(R4/3i) + b′/(R4/3i)2, has to be considered instead of aV + bV 2, to highlight the 
effect of velocity.5

1 Representing another Section of the Académie.
2 dSV and JB considered two formulas for uniform channel flows, namely these of Chézy [11], and of Girard [12] and Prony [13], the latter of which was 

adopted similarly by Darcy and Bazin [10]. These read, with R as hydraulic radius and S as the constant bottom slope equal to the free-surface slope,

V = C(RS)1/2, aV + bV 2 = RS.

The constants of proportionality a, b, C are dimensionally inhomogeneous, a fact only fully understood in the 20th century. An early review on uniform 
flow is provided by Mouret [14]. Chézy’s modified formula involving R2/3 instead of R1/2 was first proposed by Gauckler [15].

3 With i as the pressure gradient.
4 The horizontal velocity distribution across the vertical u(z).
5 The above three equations are another attempt of dSV to access uniform flow by a simplified procedure. He correctly recognized that extremely small 

flow depths and high velocities have to be excluded. Currently, we know that the first may produce laminar flows, whereas the second lead to high-speed 
air–water flows. The discussion shall not be deepened here given that the time was not yet mature to detail this fundamental issue in hydraulics.
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Fig. 1. Application of the uniform flow concept to a rectangular channel and a circular pipe.

As these formulas would become impossible when combined with (−F )z=h = ρg × (a binomial in u0),6 we could say that, without 
pretending to embrace extreme cases and, as you said, velocities neither too large nor too small, according to research, which you 
know since your Note of August 1870, you generalize to

F + ρg sin i = 0, F = ρg Au0h1+n(du/dz), (−F )z=h = ρghp(
B ′u

)m
,

from where

u = (h + ai)1/m/
(

B ′hp) + B ′/(z A)
[
hp−n−1/m]

A′ 1−1/m[
1 − (z/h)2],

simplifying for p = 0 and even more by taking p = r, because then

u = (h sin i)1/m/
(

B ′hn) + [
B ′/(z A)

]
(h sin i)1−1/m[

1 − (z/h)2].
Due to two foreign scholars whose usage I did not support, we would have n = 1/3. As to m, for a long time equal to 2 or rather a 
little less, such as 21/11 or 1.9 according to Du Buat and Mr. Bazin for steep channels, since you overlooked flat rivers, which are the 
most useful to be considered; German hydraulicians advanced it even to 1.5; so 1.7 on average. Dear Sir and friend, edit your notes 
based on considerations as these.

Consider Mr. Bazin’s proposal for velocity u at depth z with a parabolic formula u = u0 −(24 or 22)(hi)1/2(z/h)2 satisfying du/dz =
0 at the surface z = 0. However, this gives according to me a discrepancy, because he noticed, according to Mr. Boileau (who gave 
the same application as Bazin, almost independent of air friction), and also Mr. Rancourt, for whom the maximum of u occurs below 
the water surface, either at 1/4 or 1/5 of depth. Consider also to include the rectangular channel, for which the maximum velocity is 
defined not at the half depth abcd, but at the 6/10 or 5/8 depth, viz., a′b′cd, or the conduit DCcd. (Fig. 1.)

Here are some other observations. Don’t you want in general to use i, the ordinary notation, instead of α for the angle of the 
bottom slope, to be better understood? α has a meaning in hydraulics, it is 

∫
(u/V )3(dω/ω) whose value is approximately 1.10, with 

ω as channel cross section. On page 2, it seems to me that Case 1 does not differ from Case 3 so that you mention only two, the only 
two for which you perform calculations. Do you mean by u the local averages (as also averages between components of the actual 
velocity at a certain point in space and for a time comprising more than one period), and the general average of V , so that the reader 
is not confused!

The term driving force for M(dv/dt) = M(d2s/dt2) of a mass M is no longer used and has never been, I think, because we [ordinar-
ily] refer to the total force. Today we rather call it inertia, or inertial force of negative sign. It is especially Poncelet who no longer needs 
to be invoked because we ask for a balance between the driving forces P , P ′, P ′′ etc. or F and the terms −m(d2x/dt2), −m(d2 y/dt2).

The determination of w = ∫ H
z (du/dz) dz or w = −(1/r) 

∫ R
0 (du/dr)r dr is ingenious, as it is what you conclude in the second Note; 

it certainly deserves to be reserved for another paper. Nobody had considered to account for the word blossoming (épanouissement) h′ . 
Nevertheless, I vaguely believe, if it is proven as on page 1 of the second Note, that we obtain the same formulas (6)7 as in the 
uniform regime if dh/dx is very small compared to 0.006, i.e. it is apparently only a thousandth; this means there was no need of all 
the calculation to be performed. Can’t you then say that you are certain of all that?

At the end of the letter, dSV makes an extremely important statement:

Thank you to employ my definitions ‘torrents’ and ‘rivers’, which will be useful and are highly appropriate in my opinion, and no 
one employs them though I proposed these in 1852. You learned very well the condition of torrents V 2 > g H 8 obtained if we adopt 
Hi = b1 V 2, that is to say a simple slope condition i > gb1 (except for a slightly different coefficient of unity). Yet, I do not at all 
understand the end of your second Note, where the need for a hydraulic jump in the tailwater is proposed for the case of a river (as 
it is necessary that there is one upstream for a torrent). It would be good for new studies that you add to the essentials of the current 
knowledge.9

6 With u0 as the velocity at the bottom then considered different than 0.
7 This formula was most probably stated in an attachment to the letter.
8 dSV still describes here the flow depth with H instead of h.
9 dSV was indeed the first to recognize the important distinction between rivers and torrents, or when using the Froude number Fr stating the ratio 

between the actual flow velocity V and the elementary wave propagation velocity c [= (gh)1/2 in the rectangular channel] as Fr = V /c. Flows with Fr < 1
are characterized by the backwater effect, i.e. any flow perturbation is propagated both up- and downstream from the perturbation source, whereas for 



W.H. Hager et al. / C. R. Mecanique 347 (2019) 632–662 637
Fig. 2. Sketch explaining the energy conservation concept.

I’ll send with Gauckler and Stapfer’s notes the brochure The hydraulic axis of Boudin, who no doubt will quote you unless you 
yourself will provide the proof of the entire study. I will finally send you the 1828 Memoir of Bélanger [17], who since changed his 
views regarding the hydraulic jump: the only thing of interest is where he talks on the deduction of two kinds of water flows.

This first letter of dSV sent to JB dealing with open channel flows thus includes a rich source of information, by which 
the ensuing developments in open channel hydraulics were impressed. The response of JB to dSV is no less interesting to 
read. Letter 8 (dated May 19, 1871) states:

I just received your letter of 16 May; thank you a thousand times for all the devotion that you persistently invest in my interest. I 
see, reading your excellent comments on my Note ‘Permanent movement of gradually-varied water flow’, that this subject cannot be 
properly treated in a few pages, a short cut like I did; this leads to misunderstandings, and sometimes triggers further ideas in my 
thoughts.

JB continues:

Regarding the consistency of A and B , based on the experiences of Bazin on the ‘varied movement’, I thought to admit whether the 
role of the hydraulic radius along the considered current is not too strong, and, whether what I did by selecting b1 = 0.0004 as Bresse 
is better. This would replace the functions A and B by simple numbers, and thus shorten the text so as not to exceed the maximum 
of 4 pages.10 If I suggested for open channel flows that the maximum velocity is very close to the surface, it is that I confined myself 
to the case of a very wide bed and a large enough velocity, conditions for which this is true according to Mr. Bazin.

On page 1, I consider only uniform motion [or the case of a straight horizontal pipe of constant section], connecting two basins 
whose levels are different; if the relative velocities of the molecules were reduced, the pressure along the pipe would equally vary. 
This case study leads easily to one where the hydraulic radius varies strongly from one end to the other, but quite slowly so that the 
movement on a small length is uniform. I do not need to demonstrate that, for dh/dx ≤ 0.006, the velocity distribution at any section 
differs hardly from that of the uniform regime, because it is not obvious that the absolute velocity for h′ = 0.006 does not differ from 
that of the uniform regime.

I did not understand how others introduced the coefficient α. Bresse, the only reference available, does not seem to be clear on 
this point. This question is embarrassing enough to hardly reconcile with my formulas. The conclusion of my second article, too brief 
to be well understood, goes with what I said at its beginning, with the hydraulic jump I have sent to you; please keep it (because I 
have a good copy).

The remainder of this long letter includes other topics, not discussed here.
Letter 9 (dated 29 May 1871) gives the answers of dSV to JB as follows:

It is unfortunate that Bresse confused simple things by an innovative move into science to expose hydraulics. And in his backwater 
problem (p. 135 of the 1868 study), to ask for the equation of permanent movement relative to the channels. Finally, he saw the duty 
to simplify this corrective coefficient (which is slightly greater than 1), introduced by Coriolis and Poncelet, and retained by Bélanger 
(in the lithographed notes, which must affect the driving force due to the average velocity of a slice of water over time dt to have 
the real ‘living force’). The simplest and clearest way to ask for the equation of non-uniform permanent water flow is based on the 
theorem of the active forces and work, applied to a channel portion, as previously considered by Coriolis or Bélanger.

Let a0b0b1a1 be a portion of the current, of length s1, with boundary sections a0b0 and a1b1. These become after a time step 
dt sections a′

0b′
0 and a′

1b′
1, respectively, with V 0, V 1 as the average velocities across the first and the second section, with V 0 =

(1/ω0) 
∫

u0du0, V 1 = (1/ω1) 
∫

u1du1, with i as the surface slope and ω as the cross-sectional area. (Fig. 2.)

Fr > 1 perturbations are propagated only in the flow direction. The so-called critical flow state Fr = 1 divides the above two regimes; it also is the state 
under which a flow has minimum energy head for given discharge, or maximum discharge for a given energy head.

Hager and Castro-Orgaz [16] wrote a paper on the Froude number, the most important notion in open channel hydraulics. They concluded that it is a 
misnomer, and should rather be referred to as the de Saint-Venant number, given his works on the topic. Froude, an outstanding naval engineer, was not 
involved in open channel hydraulics. The authors did not propose a name change of the Froude number, but tried to set things correctly. Note also that 
Froude’s paper was only published in 1872.
10 Publications in the Comptes rendus were limited to four printed pages.
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The living power (i.e. the half living force11) acquired by a0b0b1a1 during dt will be reduced, because the branch output a1b1b′
1a′

1
equals the branch input a0b0b′

0a′
0; their masses for a stream tube are ρ dω1u1 dt , ρ dω0u0 dt . A half living force will thus be 

gained (ρ/2) dt
∫

u3
1 dω1 − (ρ/2) dt

∫
u3

0 dω0, in which α0 = ∫
(u0/V 0)

3(dω0/ω0), α1 = ∫
(u1/V 1)

3(dω1/ω1), ρ dtω1u1α1(V 2
1 /2) −

ρ dtω0u0α0(V 2
0 /2). The work of gravity is equal to the weight ρgω0u0 dt = ρgω1u1 dt of each of the two elements a0b0b′

0a′
0, 

a1b1b′
1a′

1, multiplied by the difference of the level of their gravity values G0, G1. Combining with the work of the pressures on 
sections a0b0, a1b1, which is ω1ρgG1a1 V 1 dt − ω0ρgG0a0 V 0 dt , yields ρgV dt(ξ1 − ξ0), in which ξ1 − ξ0 represents the surface slope 
of a0 to a1, or the difference of the two ordinates ξ1 − ξ0 of the two slopes relative to the horizontal. The resistance force is due to the 
presence of the bottom and the wall surfaces. With χ as the wetted portion of section ω, whose abscissa is s and where the average 
velocity is V , and F is the friction by meter squared, χFV dt expresses that this work involves the average velocity V . The equation 
of work is obtained by dividing by ρω0u0 dt = ρω1u1 dt = ρωV dt , so that

α1
(

V 2
1 /2

) − α0
(

V 2
0 /2

) = g(ξ1 − ξ0) −
∫

(χ/ω)(F/ρ)ds.

According to Prony and Eytelwein, F/ρ = aV + bV 2, χ/ω = 1/R , R being the average hydraulic radius, with F/ρ = 0.00028[1 +
(1.25/R)]V 2, according to Mr. Bazin, unless we replace this expression by b1 R−1/3 according to Mr. Gauckler with 1.75 as the exponent 
of V , thereby transforming the last term on the right-hand side into − 

∫
(b1/R4/3)V 7/4 ds. (Lahmeyer and other Germans adopted 3/2

for the exponent of R). This relative friction term is the clearest way to present the equation of water flows, applicable to practice for 
a stream, even irregular, by dividing it into small portions of length. That is how we were taught at École centrale.12,13

I state in this way that Bresse should show the reason why the coefficient α = ∫
(u/V )3(dω/ω) is always greater than unity. He 

found for it the value 1.08 by assuming a parabolic velocity distribution from the surface to the bottom, and a surface velocity of 5/4
of the average velocity V . I take it as 1.10 or 1.12 relative to the actual average velocity. Wouldn’t this be equal to your 1.08? Verify 
this, dear Sir and friend! And if your factor is not the α of Coriolis [18], wouldn’t you do well to say how it differs?

dSV continues:

Experimental data may be represented by different empirical formulae, as evidenced by the equations of Gauckler and the four 
proposals of Darcy and Bazin [10], respectively, on pages (1) 130, (6) 133, (7) 134, (8) 142, summarized on page 223 of Bresse [19]. 
It appears that in these four formulae the effect of R on b1 considerably differs depending on the wall roughness, despite the fact 
that Gauckler represents it for all categories by R−1/3. I think, when considering earthen banks, one would adopt Gauckler’s proposal 
R−1/3 in the second member, or R−4/3i in the first.

You accept that the term V dV of the dynamic equation has to be multiplied by α′ = ∫ ω
0 (u/V )2(dω/ω), closer to unity than 

α = ∫ ω
0 (u/V )3(dω/ω). However, you base your approach on the momentum theorem. Note that you have to pay attention in doing 

so: its usage is much less safe when compared with energy considerations. This is caused by: (1) the energy approach involves forces 
as the wall reactions whose work is zero, whereas the momentum approach requires their knowledge, because the reactions have 
a component in the flow direction, that is required to formulate the momentum balance in the flow direction; (2) with the energy 
approach, one accounts for velocities in their real directions without any decompensation in certain directions.

For example, as is noted in the lecture notes of Bélanger to be sent, you will realize how simple it is to determine the energy 
equation by Torricelli’s principle, V = (2g H)1/2 or rather V = [2g H(1 − Ω2/O 2)]1/2.14 By applying d’Alembert’s momentum theorem 
to a section abb′a′ , one would commit an error by stating an equation by not accounting for the fluid weight and the pressure 
on sections ab, b′a′ , because one would omit the normal wall reactions of sections aa′ , bb′ . Decomposed in the vertical direction, 
these reactions give an additional pressure from bottom to top similar to that if section a′b′ had the same area as ab. Poisson, who 

11 In today’s terminology, the half living force is the flux of kinetic energy through a cross-sectional element.
12 Then one of France’s five top universities.
13 In the language of modern physics, ‘life power’ is ‘flux of kinetic energy’. Within an element of the trajectory at a certain position of a cross-section 

b0a0(b1a1), see Fig. 2, this corresponds to

ρ

2
dt

∫
u3

1 dω1 − ρ

2
dt

∫
u3

0 dω0

Denoting ∫ u dω by V ω, where V is the cross-sectional average velocity, and introducing the abbreviation

α =
∫ (

u

V

)3 dω

ω

the change of the kinetic energy, now for the element (b′
0a′

0b′
1a′

1) dt , is

ρ dtω1u1α1
V 2

1

2
− ρ dtω0u0α0

V 2
0

2

Note that u (u0, u1), v (v0, v1) are the horizontal and vertical Cartesian velocity components at the cross-sections (b′
0a′

0) and (b′
1a′

1), respectively. The 
work done by the hydrostatic pressure is again incorrectly written in the letter of dSV. It should read ρgVv(ξ1 − ξ2), where v is missing if ξ1 and ξ2

are just the slopes of a1 and a2. The last sentence of the paragraph may be better written as follows. Writing the relative friction term in this form (in 
which Lahmeyer and other Germans adopted 3/2 for the exponent of V ), the clearest way of presenting the equation of water flow [is reached] that is 
immediately applicable to practice for even irregular streams when dividing it into small portions of length.
14 With H as the energy head and Ω , O as the efflux and reservoir cross-sectional areas.
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Fig. 3. Sketch explaining the differences between the application of the energy and momentum concepts.

overlooked the effect of wall reactions, had to accept equal pressures at the two walls by invoking the hydrostatic pressure assumption; 
these problems do not occur with the energy theorem.

Today, the energy and momentum equations are applied to gradually varied open channel flows. These principles are 
based on two notions of mechanics. Before the energy principle was securely established, dSV based all his hydraulic the-
ories on the first principle, whereas JB applied the second. Yen [20] reviewed the analysis, finding no final answer. Both 
approaches are physically accurate if correctly applied. However, the knowledge on flow details requires different inputs, 
mainly on the velocity distribution and the source terms.15

dSV continues:

I am currently working on the theory of non-permanent fluid flow (observed during floods and their retreat, as also flows near 
river mouths of the sea). There, I have to include also normal bed reactions AA′ between two sections MM′ , because I will else omit 
important information. Wouldn’t you have a proposal how to include this detail into the equation of your last letter? Don’t you equally 
have to decompose your velocities in a certain direction, given that you operate with the momentum approach? Wouldn’t all this solve 
the differences between α′ and α? I leave this for your comments. It would be difficult to accept concepts providing results different 
from those generally accepted, except you tell me how you established your approach. It is well possible that your way of accounting 
for the difference between the real velocity distribution across a section, and that of the uniform flow assumption, adds still an effect 
on the coefficient α. It would be good to describe this detail; I personally think that it is only a second-order effect. (Fig. 3.)

It is here that dSV announces his research on unsteady free-surface flows, to be discussed below; the topic of steady 
free-surface flows will be first terminated here. dSV apparently did not yet realize the difference between the energy and 
momentum approaches, given his critique on the two different velocity correction coefficients. This will be detailed below. 
He ends his letter with the statement:

Could you highlight an analogy between the superior and inferior hydraulic jumps in torrents and rivers, which I do not well under-
stand yet, following the approach proposed by M. Boudin16? It appears that he had done a study on this question. You will receive, 
along with Bélanger’s course notes, an article published in the Comptes rendus authored by Lt. Col. Boileau and a summary of his book 
On the gauging of flowing water, with an addition of my Note on the maximum velocity as compared with the surface velocity. As usual, 
I would like to express my affectionate feelings, dSV.

In Letter 10 dated 30 May 1871, the response of dSV is as follows:

Dear Sir,
The coefficient α = ∫ ω

0 (u/V )3(dω/ω) by which you have to generally multiply the square of the average cross-sectional velocity, 
V 2, to obtain the mean of the individual squared velocities u2 is motivated by a simpler approach than expressed in my letter dated 
28 May. Indeed, by considering a surface element dω, the flow passing across it during time dt is u dt such that the mean of the 
squared velocity u2 requires the introduction of the two quantities 

∫
u3 dω/[∫ u dω] = ∫

u3 dω/[ωV ] = V 2
∫
(u/V )3(dω/ω).

You mentioned in the first lecture notes of Bélanger his computation of the hydraulic jump in 1828, which is based on the energy 
theorem. He should have added the effect of unequal velocities by coefficient α. A reconsideration with the momentum theorem, as 
he did later, has changed this concept. When considering the square of individual velocities, don’t you always have to use the same 
coefficient?

The Table at the end of your ‘Note on hydraulic jumps’ appears to be a justification of Bélanger’s formula h1 = −(h0/2) +[(h0/2)2 +
(2/g)(Q 2/(b2h0))]1/2.17 Your proposal, by which the term in square brackets is increased by some 5%, generally gives a slightly better 
approximation (Bélanger’s formula is included in my Note of 18 July 1870, ‘On the propagation of the solitary wave’). This should be 
added to your Note. Would you, therefore, dear Sir, understand this ‘Note on the hydraulic jumps’ and examine once again the full 
background? Aren’t you of the same opinion?

15 Today’s understanding is clear – and was already expressed by Euler – that the momentum and the energy balance equations express identical physical 
facts in 1D flow problems. Perhaps this may not have been aware by dSV and JB in their letters.
16 Boudin [21].
17 Bélanger [22].
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The remainder of the letter refers to solitary waves of which JB sent a draft to dSV.
Letter 11, dated 3 June 1871, of dSV reads:

Dear Sir, before re-examining your improvements of the ‘Notes on the permanent motion of water and the hydraulic jumps’, and your 
letter dated 31 May, I would like to remind you that Coriolis committed an error affecting the square of the cross-sectional average 
velocity, V 2. His value α = ∫

(u/V )3(dω/ω) differs from yours α′ = ∫
(u/V )2(dω/ω), due to the different account of interior work 

done by the fluid, namely the frictional work between the stream tubes. Indeed:
(1) Friction and its work are not included in this coefficient. If this would be the case in the free-surface equation by a term ∫ s

s0(χ/ω)(F/ρg) ds (where F/ρg refers to friction; it is given by aV + bV 2, or C V m , or even b1 V m R−0.3 per unit surface), it would 
also have to be added to an equation in which frictional effects are excluded. This was exactly made by Poncelet and Lesbros [23,24]
resulting in 

∫ ω
0 u3 dω = ωV 3 + 3V 2

∫ ω
0 ε2 dω with u = V (1 + ε).18

(2) There is absolutely no omission of frictional effects when writing (Coriolis [18]) for the bottom friction χ(aV + bV 2), where V
is the average velocity rather than the basal velocity V 0. In 1835, I sent to him a theorem, stating that the frictional work per unit time 
is equal to the product of the total friction along the bottom plus the walls of an infinitely wide rectangular channel, multiplied by 
the excess of the mean cross-sectional velocity V with respect to the bottom velocity V 0, a theorem contained in my Note published 
on 16 May 1846, later included by Bélanger in his Lecture notes.

Dear Sir, before presenting your three Notes,19 I will study it along with your comments to see whether you consider Coriolis’ 
formula 
α(V 2/2g) as exact, or whether you refer to yours, thereby committing an apparent omission. I intend to insert in your Note 
the statement that the principle of energy conservation is inexact. If you stick to it, you might be exposed to criticism because this 
principle currently reigns the industrial and applied mechanics. If you account for something that had been omitted by Coriolis, as 
the effect of convergent or divergent streamlines, all changes of velocity V from one section ω to another will result in transverse 
components w having their own kinetic energy contribution as the streamwise component u; wouldn’t this ask for an increase of α
instead of a reduction?

From 1834 onwards, I corresponded with Coriolis also on another topic by which α would be increased. Vortices, whose mean 
local values are of the order of u, are nothing else than velocities close to the value of v oscillating within a period of time T such that 
one has v = u[1 + n sin(2πt/T )]. To retain (1/T ) 

∫ T
0 v3 dt , one has to multiply u3 by 1 + (3/2)η2 so that the unit kinetic energy would 

be [1 + (3/2)η2] · ∫ ω
0 (u/V )3(dω/ω) · (V 2/2). I do not see how one would obtain from the momentum theorem, in which internal 

actions are overlooked, an increase, to be included in V 2 and thus in the flow equation.
I have told you in one of my letters that, if Bresse would not have talked of α as a man of precarious opinion, this is probably 

due to the late Dupuit who disagreed on the use of this coefficient. I reread Dupuit’s Études.20 I realize that he does not contest 
its existence, but he pretends as if a velocity increase would result in a reduction of the individual velocity differences, so that in 
α1(V 2

1 /2g) − α0(V 2
0 /2g), one cannot accept both α1 and α0 to be equal to 1.10, because α1 has to be significantly smaller than α0. 

This is all he states including any other type of velocity distribution. I even admit when ignoring such a mismatch, you or he omit 
something. How do you think then, to exclude errors on the equation of energy conservation?

(3) Establishment of the gradually varied flow equation using an approach more rigorous than that of Coriolis, who did not 
accurately account for the external frictional effects, neglecting the effect of non-parallel streamlines on the velocity distribution. 
[. . .] You see, dear Sir, I am interested in the final solution to the problem of Coriolis’ α, and the publication you intend to submit. You 
should closely study this, and I will engage you to do so. You could entitle this work ‘On a comparison of the energy and momentum 
theorems in hydraulics’, and ‘On the Coriolis coefficient affecting the velocity square in the equation of permanent free-surface flow’.

I propose that you revise the text using clear statements as you teach your students at Gap, excluding repetitions to avoid that you 
have difficulties so that finally there will be no conviction. You best start with a simple case, considering a wide rectangular channel, 
for which T1 = P2 if frictional effects are excluded. Then you may pass to an arbitrary section along two friction forces T3, T2. If this 
will be slightly longer than a usual article for the Comptes rendus, I could send it to Liouville or to Belgium. You have particularly to 
pay attention to convincing clarity, to make it easily understood. And it would be good, by using an example of velocity distribution 
from the free surface to the bottom, as e.g. a cubic parabolic distribution, because the second order parabola gives no difference to 
the uniform distribution, thus indicating the error differences committed when the equation of Coriolis is applied. However, I repeat, 
take your time, to finally arrive at an improved work easy to be reviewed. Please use f for the friction between fluid layers, and F
for the bottom friction. If my comments are an inspiration to you, then I will be happy to re-review your resubmission. Yours highly 
affected dSV.

This letter evidences the affectedness as well as the scientific quality applied by dSV to JB. dSV did not stop to ask for 
improvements in technical and editorial features, so that a product of outstanding quality would emerge. JB had to go 
through detailed advices and helps of suggested amendments, but finally was accepted by dSV both as an outstanding 
human as well as an excellent scholar. It was this feature that made their friendship living over such a long time.

Letter 17, written by dSV on 8 July 1871, continues with the issues on velocity correction coefficients. Given that it 
is similar to the previous letter, it is contained in the Supplementary Material. Note that dSV became interested in these 
coefficients, and the differences between the two mechanical conservation theorems.

18 See also Poncelet [25] for a general account.
19 To the Académie.
20 Dupuit [26].
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Letter 19, also dated 8 July 1871, contains an offer of JB to dSV for collaboration:

You told me in your last letter, dated 6 July, that you will have lots of things to do. I do not lament over this heavy work, because I do 
not feel well since years without work, and as soon as I stop to actively think or reflect to my friends’ queries, this world becomes for 
me an illusion without consistency, a kind of abyss without base. As a curtain of clouds of all colors, mostly grey, representing what 
we see, and at the light surface I see myself staying for several days. However, don’t we feel better when working hard? And couldn’t 
you engage me strongly for contributions (myself, who can certainly spend more forces than you without getting tired), if you find on 
your way difficulties in analyses, or computations which are too hard. You would perhaps advance your beautiful edition on Navier. 
Without any mention of myself (given that I would only act as your handyman), couldn’t you charge me with parts of your projects, 
passing to me some manuscripts to be improved, which you then improve as you like after having told me what you expect from me. 
I will well profit for the continuation of these relations of which I have already gained lots from you and your goodwill.

In the article to be published on 17 July, I denote the celerity ω as ‘propagation velocity’ [. . .]. In future, I will adopt this notation 
following your advice.21

Could you pass to me the address of Mr. Bazin as also of the members of the Section of Mechanics? I will send them a copy of my 
articles on hydraulics. I will also ask Mr. Bazin to pass to me information on the work of Mr. Lahmeyer, of whom he talks in his ‘Study 
of free-surface profiles’22 on experimental results relating to the resistance of river bends. If you can send me the three reports on the 
Memoirs of Mr. Joly, one relating to fluid friction, the other on earth pressure, and another of your report on my memoir concerning 
the internal friction of regular flows, I would appreciate. I will send you copies of my article ‘On the solitary wave’.

My wife imposes on me that I demand at the Ministry for a position as Lecturer at a Faculty. The inspectors of the Academy, and 
without doubt the Rector of Grenoble, published in their annual report wishes in this regard. However, I know that all this has no 
impact in the Ministry of Public Instruction, and my candidature even less. I remain, with a deep respect, your thankful disciple, JB.

During the remainder of the year 1871, the correspondence did no longer pertain to open channel flows. Solitary waves, 
permanent waves, sea waves, curve flows, optics, ductile solids, or energy versus momentum principles were discussed. JB 
sought ways to obtain a faculty position in Paris, or even to become a Member of the Academy. It becomes evident from 
the letters that dSV considered time had not yet come to risk such a difficult endeavor.

In Letter 14, dated 10 March 1872, dSV returns to the SWEs:

Dear Sir, I do not want to give you new topics of study, which would increase your fatigue. Yet, perhaps I can propose a study on 
watercourses, to be prepared specifically within a large memoir.23

Vortices are, according to Poncelet [28], a means used by nature to moderate the speed of currents and, as you have noticed, 
a way to lower the differences in speed of adjacent fluid layers, which would result in huge differences, especially close to walls, 
or from the bottom of wide channels of a certain radius or depth according to the constant friction coefficient of 1/7488, or if the 
movements remained regular as in the small tubes of Poiseuille. Wouldn’t this be a way to determine the value for each case close to 
walls, namely the condition that du/dr or du/dz does there not exceed a certain limit, representing the local average speed?

I feel it difficult to implement this idea. Is it indeed (by merely restricting to infinitely wide straight channels) du/dz to reach 
a maximum, or (h/um)(du/dz), with um as the maximum velocity and h as the maximum flow depth? In other words, isn’t this a 
lottery of nature if large differences between the velocities of consecutive layers occur, when these velocities themselves are large, 
and the distances of the layers between which velocities should not exceed certain differences, can they not be larger if the total fluid 
mass is thicker? In a large watercourse, one has for the motion of a slice of depth z

ε(−du/dz) = ρgIz, um − u = (
ρgIz2/2c

)
, V = (1/h)

h∫
0

u dz = um − [
ρg Ih2/(6ε)

]
.

If we adopt hI = 0.0004V 2 = bV 2 from Tadini,24 and (um/V ) − 1 = 14(hI/V 2)1/2 = c(hI/V 2)1/2 from Bazin, i.e. (um/V ) − 1 = cb1/2, 
then ε = [ρgb/(σ cb1/2)]hV = (ρgb1/2/σ c)hV . Thus, at the bottom z = h, (−du/dz)z=h = ρg Ih/ε = ρgV 2b/[(ρgb1/2/σ c)hV ] =
(σ cb1/2)(V /h). According to the laws of Tadini and Bazin, one would get (h/V )(−du/dz)z=h instead of (−du/dz)z=h , limited to a 
constant value of σ cb1/2 = 6 · 14 · 0.02 = 1.68. The value of (h/uh)(−du/dz)z=h would be 3.82 since um = 0.44V . My idea of limiting 
the relative speed or sliding of consecutive fluid layers is, as you see, the difficulty of proving to take (h/um)(−du/dz) instead of 
(−du/dz), given that the latter is limited. Can we admit this as a principle, or must we treat it as a computational basis, by deriving 
the indeterminacy in selecting the value of the internal friction coefficient ε?

21 In contrast to dSV, denoting with ω the cross-sectional area.
22 Lahmeyer [27].
23 It is exactly here where dSV proposes to JB to write a memoir on open channel flows, based on his previous Notes in hydraulics, as well as his future 

researches directed mainly to flood flows close to river mouths into the sea. JB may have been astonished on this proposal, but set things up to finally 
present on outstanding work in open channel hydraulics, including the equations of steady and unsteady flows, as well as all aspects of free-surface flows 
such as the effects of streamline curvature, liquid friction, or flow stability. This project took JB more than five years, due to immense complications mainly 
from the side of the Académie.
24 Tadini [29].
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Fig. 4. Sketch illustrating the effect of sloping bottom on the governing flow equations.

dSV, who took already in 1843 a great interest in deriving the so-called Navier–Stokes equations, was continuously 
baffled by the enigma ‘friction’. As many others before and after him, this question appeared essential to him, and by 
exposing his ideas to JB, he hoped that JB would be able to advance the issue.

The topic was taken up by dSV in Letter 23, dated 1 June 1872, in which he states:

I will send you to Saint-André-de-Sangonis25 your memoir on the permanent motion, but only after an even more detailed review in 
order to properly understand you. It is only today that I realize the origin of the coefficients (1 + η + ζ ) multiplied with the square 
of the average velocity, instead of Coriolis’ α. I also inferred by your statement made in the Note for the Comptes rendus, (and it was 
impossible to give credit to you), that you consider ζ = 0 for uniform flow, because streamlines then follow a different path than for 
the gradually varied flow, resulting in boundary friction proportional to u2

0 , a different multiple of V 2 than for uniform flow. However, 
I see that this is not at all the point. The term of your equation, representing the bottom friction, is b1 V 2 = 0.0004V 2 as for uniform 
flow, because what would be added to b1 based on dh/dx does not have to be accounted for; the velocity distribution is roughly that 
of uniform flow. It is the inertial term that is affected by dh/dx = d(q/V )/dx = −(q dV )/(V 2 dx), including (1 + η + ζ ), and I think 
that the difference with Coriolis imposes you to take u′ = u(du/dx) + v(du/dy) = −u(dv/dy) + v(du/dy) = −u2 d(v/u)/dy, whereas 
Coriolis refers to u′ = u(du/dx). I have to understand this, and compare it with your mid-1871 correspondence.

dSV continues:

I tell you, while waiting for your manuscript read on 15 April, that things must become clearer than in other of your texts; you need 
to improve the draft. It must not only be worthy for you and comparable to what you did best, but it still has to become readable, 
that even engineers understand you at each page which you develop. It must also include more fruitful results. So, please accept 
that I ask you to make me understand the setting of the centrifugal forces due to Coriolis from the bottom to the surface of the 
flow. This will cause a small difficulty of setting up the equation that you will easily overcome, because you can no longer take the 
bottom as the x-axis. You will probably take the horizontal line as x-axis. Parameters z and h include, therefore, the surface and the 
bottom a bit obliquely, which cannot be avoided. Yet you will have to do this like I did when deriving the equation for non-permanent 
flows. Recall that by taking the axis horizontally, I was obliged to balance the dynamic forces of a slice abcd, to account for the 
horizontal component of the normal bottom reaction ad, plus its tangential component, balancing all horizontal force contributions in 
the tetrahedron adcb. (Fig. 4.)

You told me having taken the bottom as x-axis; there is no other possibility. Perhaps, to this end, you can always take the 
parallelepiped with parallel side to the bottom, of direction x′ , and perpendicular faces, of direction z′ , of slope i along x and x′ . You 
will demonstrate that the equation is the same by placing this parallelepiped even in the direction of the streamlines, which is what 
you will have to present. Prepare all this and send it before your vacation to prepare your memoir. I will spend 36 hours in Paris for 
a discussion. Well, it was again my pleasure to entertain you. My family is sensitive to the good memory of Madame Boussinesq, pass 
her my regards. Your very affectionate dSV.

This letter thus includes the question of an optimum coordinate system to tackle open channel flows. And dSV was 
correct, because Cartesian coordinates appear better than curvilinear ones, as used until then by JB. He did not immediately 
take up this question, but dSV has another proposal in Letter 25, dated 14 June 1872, by stating:

Dear Sir, here is my draft report on your last memoir. It presumes, that your memoir is clearer than other writings and announces a 
real improvement in the way you write and present things, but I say, it needs improved wording at various points.

First, to allow engineers for the comparison between your equation (60) and that of Coriolis and Bélanger, namely hI = b1 V 2 +
αh(d/dx)(V 2/2g), such that it is the result of the theorem of the active forces, it must be said that replacing sin i − (dh/dx) cos i
or i − (dh/dx) by the surface slope, and (V 2/g)(dh/dx) by (V 2/g)(dq/V /dx) = −(q/g)(dV /dx) = −h(d/dx)(V 2/2g); equation (60) is 
then written as

25 The birthplace of JB, where he often spent his summer holidays.
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Fig. 5. Effet de la géométrie du fond courbe sur les équations d’écoulement.

hI = b1 V 2 + (1 + η + β)h
d

dx

V 2

2g
+ (

η′ − β ′) V 2h2

g

d3h

dx3
.

This is different from the Coriolis equation as follows:
(1) h(d/dx)(V 2/2g) originates only from inertia multiplied by (1 + η) instead of α ∼= (1 + 3η),
(2) the other term h(d/dx)(V 2/2g) multiplied by β is much larger than η, resulting from the bottom friction, Bu2

0, agreeing with 
its value b1 V 2 for the case of uniform motion; it is an important term that has in common only the shape of that and includes the 
inertia effect by putting α = ∫ h

0 (u/V )3(dz/h) instead of (1 + η) = ∫ h
0 (u/V )2(dz/h),

(3) there is still the term involving (d3h/dx3) due to the centrifugal forces.
The nature of the coefficient B was in my contribution, I must tell you, the subject of extensive research with despair to form my 

ideas. I was unable to understand the details and only finally noticed that Bu2
0 − b1 v2 had a similar form as the term due to inertia, 

i.e. h(d/dx)(V 2/2g) multiplied by a quantity which is β .

dSV continues:

It is important that your memoir26 is not only a report, but equally addresses readers. [. . .] Engineers have kept few theoretical habits 
that you should attract to make you understood, and you must attract teachers as Collignon, Bresse and Phillips (of the Central School) 
who might include results in their lectures, regardless of Boudin, Rankine, Clebsch, who lecture outside France.

After a statement pertaining to JB’s Note published in 1871, dSV continues:

I see no reason to say that, while we neglect streamline curvature, your and Coriolis’ equations achieve similar statements indicating 
that [(1 + η) + σ ] does not differ much from α. This depreciates without need your result to the point that I thought for a moment, 
in 1871, that the two items could be identical at the end. Yet this is not the case. Even Coriolis [18] provides an example resulting in 
α = 1.47, that he considered a bit high, but then he finds on p. 330 α = 1.16 considering this a bit low, thus concluding that α = 1.40. 
It was Mr. Vauthier,27 stating values between 1.03 and 1.10, yet without comment. According to your calculation, (α = 1 + 3η) equals 
only 1.054. Thus, there is no place to say that α gives about the same as (1 + η + β), consisting of two distinct parts with which this 
has absolutely nothing in common.

And, based on the periodicity of local motions, he tends to accept the Coriolis coefficient on the basis of the momentum equation. 
However, as this fortuitous quasi-coincidence between your result and that somewhat insecure approach of many engineers, there 
results a downgrading in the less conspicuous part of your work from practical relevance (even more because you find the passage 
from the uniform to the gradually varied states curious, and only of interest in theory). I consider it necessary, in your future memoir, 
to include the pressures due to the centrifugal force of the bottom curvature. Then, you will have to give up the bottom as x-axis 
as it is more natural to take the horizontal and vertical sections.28 We have dh/dx = dz0/dx − dz1/dx = i − I , d3z/dx3 = d3z0/dx3 −
d3z1/dx3. There will be nothing more complicated than to establish the limit velocity at the bottom, because the friction of the side 
‘ab’ of ‘abcd’, equals the friction F = Bu2

0; one will add the component on ‘ab’ of the section perpendicular to the bottom p0, a reaction 
nearly equal to ρgh, plus the portion of the centrifugal force, if the bottom surface is curved. (Fig. 5.)

Make the exposure clear by providing a comprehensive analysis in chapter 1, assuming that there is neither curvature along the 
bottom nor at the surface, and taking, as you do, the horizontal bottom profile as reference for the x-axis. In this first chapter, the 
second of the conservation equations (16) yields (1/ρg)(dp/dx) = − cos i, or dp/dz = ρg , and there is no comment needed except for 
the hydrostatic pressure but absolutely nothing on P , d3z/dx3 or even μ. It is only in a following chapter that you would enter the 
surface curvature, along with that of the bottom, and it would matter for μ and M; you would take your x-axis horizontal, or, better 
perhaps (to reduce the quantities of second order) use an intermediate fixed slope j, demonstrating that the results are independent 
of the somewhat arbitrary selection of this slope j along the x-axis. Nothing would inhibit that the coefficient B not only varies 
with the nature of the bottom roughness, but also with its curvature, concave or convex, and even perhaps with dh/dx, without yet 

26 JB’s Essai [31].
27 Vauthier [30], on which Coriolis [18] made a discussion thereby introducing the coefficient α.
28 ‘Pente’ in the sketches means slope.
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Fig. 6. Sketch highlighting the selection of the streamwise coordinates x and x′ .

Fig. 7. Effect of bottom undulations on the free-surface profile.

engaging in assumptions their effects on vortices and on the numerical value of the coefficient B , given by the average value 0.00081 
to determine η and β , which are only small numbers. (Fig. 6.)

Once η and β thus are set, as you did by supposing the average b1 = 0.0004 of Tadini, it is good to recall that by applying the 
formula hI = b1 V 2 + (1 + η + β)h(d/dx)(V 2/2g) + · · ·, one should replace b1 V 2 by 0.0004V 2, expressed as 0.00028[1 + (1.2b/h)]
or 0.00035V 1.9h−0.3. This would improve the representation of experiments made in a canal of depth and section similar to that 
considered under these conditions.

And even though engineers often have to deal with artificial currents such as in ditches, or in wide rivers, I think it would be 
good to give them in this very memoir also hints on the second extreme case, the semi-circular canal. It could be put after chapter 
1, excluding the effect of the centrifugal force in this chapter except for wide channels, and after having said that you can determine 
A and B with sufficient approximation to obtain η and β , starting from Tadini’s hI = 0.0004V 2 and u = u0 − 24(hi)1/2(z/h)2 from 
Darcy and Bazin [10], resulting in V β/(2A) = 24, V B/(3A) = 16, so that A = 0.000643, B = 0.000869. You would add: However, 
based on another formula of Mr. Bazin on semi-circular canals, as will be seen in chapter 2 relative to these types of channels, we 
take B1/2/(3A) = 21 instead of 16, which gives for A and B the slightly different values A = 0.00064, B = 0.00081. However, in taking 
B identical for rectangular and semi-circular channels, don’t you modify A, since it may affect something else?

The remainder of this letter deals with streamline curvature effects, not discussed here.
In Letter 26, dated 17 June 1872, dSV details his comments on JB’s book project:

Dear Sir, here is my draft report on your manuscript. Do you want to annotate my statements in a margin? No doubt, you will have 
to change especially the end because I still do not understand the expressions ‘fast’ and ‘moderate’ torrents, nor even your ‘between 
rivers and torrents’. From the bottom of p. 22, it seems that i < i0 or i > i0 distinguishes rivers from torrents, but there is more to say.

When you have completed your memoir accounting for the streamline curvature and bottom undulations, there is still to make a 
distinction, not because of more or less bottom slope, but by V 2/(gh1)<, or >1, with h1 as a local average flow depth resulting from 
what you refer to as a non-wavy line including bottom undulations, if present. If the regime is torrential, will small ripples on the 
bottom bumps not be felt on the surface once the uniform regime is established, or are they dampened under the river regime for 
which [V 2/(gh)] or [1 + η + β)V 2/(gh)] < 1? However, is this not what you say, on pp. 25–26, the double effect of a simple pebble? 
As long as the bottom is undulated, even when not overly affected by short wave lengths, the vortex intensity will not strongly be 
increased in the torrential regime, so that A and B will have to be increased?

Taking into account the magnitude of the dynamic pressure terms due to the bottom undulations, does this not influence the 
extreme pressures on the two sections ab, a′b′ bounded by a finite portion abb′a′ of the current, so that the centrifugal forces 
generated along the intermediate sections a′′b′′ , a′′′b′′′ , etc. would have no influence on the movement of mass abb′a′? If it were so, 
then you should determine the motion in natural streams involving typical bottom undulations to model observations; you need to 
increase the turbulence intensity due to their presence. (Fig. 7.)

Isn’t the condition i < i0 or i > i0, respectively, characterizing rivers and torrents, with i0 = (gb1ϕ(h)/α′)[1 + (3/4)(g/α′)
(12 f b1ϕH)2/3], nearly equal to V 2/(g H) < 1, or > 1? Why not quote Bélanger? To determine the height of the hydraulic jump, 
he explains it (as you say) by the loss of kinetic energy accompanying a sudden flow deceleration, or by accompanying turbulences; 
why the momentum theorem according to him is used? And couldn’t you add something of your 1871 Note ‘On the hydraulic jumps’, 
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to which I added a small table comparing calculation and experiments, that I judged at the time important enough to be printed in 
the Comptes rendus, since the non-modified formula of Bélanger seemed to give the same to ±1 or 2 cm. Yours truly dSV.

The above two letters again demonstrate the vivid interest of dSV in both the fundamental equations of fluid flow, and 
JB’s exceptional researches. However, dSV realized that things had to be improved to become acceptable by the scientific 
community, proposing JB to reconsider his comments. JB explains in Letter 28, dated 10 August 1872, written at Saint-
André-de-Sangonis:

Sir and dear Master, I plan for the end of August my main tour to my parents, able to spend eight days on the questions that you wish 
to see me study, i.e. those concerning the canal of curved bottom, and unsteady flows. I hope that the results achieved will enable 
you to solve the issue, despite being only approximate, but I did perform integrations, as for a plane bottom, by assuming a slightly 
different flow depth as that fitting the uniform regime.

Two differential equations for these problems are obtained by following the approach that led me to the steady motion in an 
entirely plane channel. Here is the equation of steady motion in a curved bottom channel, s denoting the coordinate taken along the 
longitudinal bottom profile, i the bottom slope, h the variable flow depth, V the average cross-sectional velocity, q = V h the unit 
discharge; then

q2
[
η′ − β ′

g

∂3h

∂s3
− η′′ − β ′′

g

∂2i

∂s2

]
+

[
h cos i − α′V 2

g

]
∂h

∂s
= h sin i − b1ϕ(h)V 2 + 1

2
h2 sin i

[
1 − B

6A + 2B

]
∂ i

∂s
.

In this equation, the two new coefficients η′′ and β ′′ are given by the expressions

η′′ = [
(1/2) + (5/12)(B/A) + (11/120)(B/A)2]/[1 + (B/3A)

]2
,

β ′′ = (1/12)(B/A)
[
1 + (2/3)(B/A) + (1/8)(B/A)2]/[1 + (B/3A)

]2
,

with A = 0.00064 and B = 0.00081, η′′ = 0.58074, β ′′ = 0.07506, from where η′ − β ′ = 0.3691 instead of 1/3 for B/A = 0, η′′ − β ′′ =
0.4747, differing hardly from 0.5 for B/A = 0.

At the points where the bottom has undulations of small amplitude or the regime differs slightly from uniform flow, the surface 
profile is the same as for a flat bottom, and this is close to a periodic term of the bottom undulation with identical period. This 
term communicates to the surface the same many undulations as has the bottom. If K divides the half-amplitude of the bottom 
undulations, S is the length of one of those undulations, K1 is its half-amplitude of the surface, im is the average bottom slope, and 
k2 = (η′ − β ′)/g , k2

1 = [(η′′ − β ′′) − (η′ − β ′)]/g , one has

K1

K
=

√√√√√ 1 + [ H3

3fb1ϕ(H)
]2[ α′

gH2 − 4π2k2
1

S2 ]2 4π2

S2

1 + [ H3

3fb1ϕ(H)
]2[α′ im−b1 gϕ(H)

gim H2 + 4π2 K 2

S2 ]2 4π2

S2

.

For im = 0, K1 = 0, in a channel of wavy bottom but small slope, bottom undulations are not felt on the surface. As im increases, the 
ratio K1/K also does so. It is equal to 1 for

im = gb1ϕ(H)

2α′[1 + (K 2−K 2
1 )g

2α′ 4π2 H2

S2 ]
∼= 0.001808H−0.3

1 + 4.233 H2

S2

.

It is about half of the slope separating rivers from torrents. The ratio K1/K increases until

im =
gb1ϕ(H)

α′

[1 + gK2

α′ 4π2 H2

S2 ]
∼= 0.003616H−0.3

1 + 13.43 H2

S2

.

This is about the slope separating rivers from torrents. The maximum of K1/K is

K1

K
=

√
1 +

[
H3

3fb1ϕ(H)

]2[
α′

gH2
− 4π2k2

1

S2

]2 4π2

S2
∼=

√
1 +

[
52.65H0.3

(
1 − 4.969

H2

S2

)
H

S

]2

.

For, e.g., H/S = 0.1 and H = 1, this maximum value is about K1/K = 5, and the resulting surface undulations caused by those at the 
bottom are much deeper. The K1/K ratio decreases then without reaching 0 as im continues to grow. It is equal to 1 for

im = b1ϕ(H)

(K 2 + K 2
1 ) 4π2 H2

S2

∼= 0.0001965H−0.3 S2

H2
.

However, I think that, if the ratio H/S is sufficiently small, the expression then becomes [α′/(g H2)] − (4π2k2
1/S2) > 0; S/H > 2

corresponds to the ordinary case.

JB stepped with this outstanding theory into a completely new era of the hydraulic description of open channel flows. 
Even today, few have come to this point in understanding his eminent advances based on a thorough mathematical process 
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description, the prominent application of the mathematical tools, and then the physical description of the governing phe-
nomena associated with open channel flows in a complex environment. The ensuing considerations expressed in this Letter 
then pass to unsteady open channel flows, not further discussed here.

Letter 29, dated 10 September 1872; dSV first congratulates JB for having obtained the Prix Poncelet from the Académie
for his outstanding papers, and then comes back to the steady flow equations as follows:

I hope to send you my new draft relating to a channel whose bottom has a slightly curved profile so that d3h/dx3 is not fully 
negligible, but where the surface curvature is assumed negligible; this occurs in all rivers, even in those whose bottom is extremely 
rough. I refer the surface profile to the x-axis, and the calculation is simple. I find [for slope I of the free surface]

I = (F0/h) + (1 + η + σ)(d/dx)
(

V 2/2g
) + (

η′′′ − σ ′′′)h2(d3/dx3)(V 2/2g
)

with

η′′′ = (1/6)
[
1 + (7/10)(B/A) + (19/142)(B/A)2]/[1 + B/(3A)

]2
,

σ ′′′ = (2/45)
[
1 + (3/14)(B/A) + (2/121)(B/A)2]/[1 + B/(3A)

]2
.

Take your η′′ − η′ , σ ′′ − σ ′ . Perhaps I’ll obtain the final solution, since the bottom curvature can cause similar undulations on the 
surface, to give the complete equation

I = F0

h
+ (1 + η + σ)

d

dx

(
V 2

2g

)
− (

η′ − σ ′)h2 d3

dx3

(
V 2

2g

)
− hV2

g

(
η′′ − σ ′′) d2i

ds2
,

transforming into

I + (
η′′ − σ ′′) hV2

g

d2i

dx2
= F0

h
+ (1 + η + σ)

d

dx

(
V 2

2g

)
− (

η′′′ − σ ′′′)h2 d3

dx3

(
V 2

2g

)
.

I would take the x-axis at the free surface instead of at the bottom, given that the surface is normally less curved, and that computa-
tions are then simpler.

I recommend clarity in your writing, which I do not recognize from the precision of the sentences. I wish to understand the 
basis of each item, each transformation, which you plan to do, and how you arrive there. And, please, give detailed evidence for each 
statement, without giving the reader the ultimate penalty to guess. Please reread it, put yourself in the same position as the poor 
attentive reader and start over without leaning back. I am absolutely unwilling to indulge on your new, so long and painful texts, 
and prospective thoughts, which you delivered to me; to decipher your first drafts, to understand what you want to say. I would also 
refer you to your manuscripts to redo the draft if not everything is clearly developed and lucid. This is the attitude that I take for 
all manuscripts, without restarting again to avoid too much trouble. I hope you find me clear! Well, take me as a guide if it is so; 
moreover, what is even better, to take many other guiding persons, especially little old persons. My respectful compliments and those 
of my family to Madam Boussinesq. Your very affectionate dSV.

P.S. Why not leave, as I do, very wide margins to your manuscripts, to allow for draft changes? This takes just a few cents more 
for postage.

At this stage, dSV even had his own proposal for the equations of steady water flow. He proposed a number of practical 
issues to JB, from the improved paper editing to the point of writing not so densely in his letters. Let’s see how the entire 
correspondence continues. Letter 30 of dSV, dated 17 September 1872, mainly deals with streamline curvature effects, and 
thus is available in the Supplementary Material.

Addition on 20 September:

I started reading your Memoir. It is very well written, clear, rigorous and deep. As to your annotations in the margins for printing, 
I would use Italic instead of English, so that the composers understand you better. You know that an underline is enough: l m n τ
means l, m, n, τ in italic. Composers apply italic if you are not asking them for something else. In the final draft, add a notation, 
including:
• I as angle of the line taken by the x-axis with the horizontal axis,
• p0 as pressure at a point of this axis indicating the section and repeated in several places so that I and p0 are defined.
However, I will correct this when I re-review your memoir, unless something else stops me for a few days. Please accept my friendly 
compliments, dSV.

As previously, dSV not only proposes technical perfections to JB’s manuscript, but also gives hints how to present the 
final work. JB, then only 30 years old, was certainly happy to receive this support from his experienced Master.
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In Letter 31, dated 27 September 1872, JB deals with the open channel equations. He writes:

I already told you that I consider your third approximations useful, but it seems to me that what you propose for the expression 
∂/∂x[∫ z

0 (u2/V 2)(z/h)(dz/h)] is perhaps not sufficiently accurate; this derivative seems to me in fact to have to be expressed as ∂h/∂x, 
because z is constant, while h is variable. It would be different if both z and h were variables, from one point to another along the 
x-axis, or even if you had to take the derivative in x of 

∫ h
0 (u2/V 2)(z/h)(dz/h).

I have almost finished things concerning curved bottoms, but I was unable to account for centrifugal forces, or rather the non-
hydrostatic pressure distribution, by replacing terms depending only on u by V , which must be sufficiently approximate, simply 
rendering factors 1/3 and 1/2 instead of η′ − β ′ , and η′′ − β ′′ .

I had already noticed that A, B , b have the dimension (length)−1 and (time)2; to put the equation of uniform flow RI = bV 2 is so 
evident that I thought to replace them with 1/A, 1/B , 1/b, thereby introducing lots of fractions in the text. I indicated to set English 
lettering, so that I did not set A and B in italics, in order not to confuse this with other italics, having another meaning. So, please 
return to my original notation. I am with a profound respect and the most affectionate recognition, your devoted disciple, JB.

JB thus tries to follow the editorial advices of dSV, but still has clear ideas why notation should be selected as originally 
proposed. In Letter 32, dated 28 September 1872, dSV resumes his previous findings, namely:

Dear Sir, what would you say if, for a streamline element whose streamwise momentum equation is dh/dz + dp/dx = ρg I +
(V 2/gh)(dh/dx), I would simply propose for dp/dz = ρg − ρ(z/h)(d2h/dx2)V 2 as deduced from the radius of curvature r at depth z? 
With r0 as the radius of the bottom curvature, and r00 the radius of the surface curvature, one can approximately assume (I thought 
of you already for a long time when I was asking for the equation by driving forces)

1/r = 1/r00 + (z/h)(1/r0 − 1/r00),

which reduces for a plane bottom, where 1/r00 = 0, to

1/r = −(z/h)
(
d2h/dx2).

Adding to the elementary weight ρg dxdz its centrifugal force ρ dx dz(V 2/r) gives

(dp/dz)dx dz = ρg dx dz + ρ dx dz
(

V 2/r
)
.

This is identical to what is stated in the equation

dp/dx = ρg − ρ(z/h)
(
d2h/dx2)V 2.

This establishes your fundamental equation, including the third derivative of h as
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Including all concerns relative to the determination of 1 + η, η′ , σ , σ ′ , and neglecting all quadratic terms of the products of 
dh/dx ×d2h/dx2, can you really neglect the second derivative of h? Is there any principle to ensure that assuming d3h/dx3 is negligible 
and therefore the effect of the centrifugal force? Would the formula also apply for a slightly curved water surface? Because (1/r0 −
1/r00) = −d2h/dx2, or 1/r = −dI/dx − (z/h)d2h/dx2, then dp/dz = ρg − ρu2(dI/dx) − ρu2(z/h)(d2h/dx2), and therefore

p = poo + ρq2 − ρ
dI

dx

z∫
0

u2 dz − ρ
d2h

dx2

z∫
0

u2 z dz

h
.

Moreover, one must add to u/u0 only a single term of the form d2 I/dx2, having in its final equation both β ′ and d3h/dx3. Yet, the 
part of your memoir that remains for me to review, will give me the answer. Well, save your health, Your very affectionate dSV.

P.S. You could solve the problem of a poor manuscript by writing less tightly. With a post stamp of 15 cents more, you give 
yourself the necessary wideness. I say this especially with regard to the compositions for the printers.

In Letter 33, dated 29 September 1872, dSV continues to comment on JB’s draft. He writes:

Dear Sir, at the end of your memoir there are excellent things yet difficult to understand, and I do not support them with full 
conviction. I agree with you perfectly on equation (108)29 sin I = (Q 2/σ 3)[b′χ − (α′/g)(dσ/ds)], which is equal to sin I = F0/(σ/χ) +

29 Equation numbers agree in most cases with those stated by JB [31].
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Fig. 8. Effect of the bottom roughness on the flow pattern.

Fig. 9. Effect of bottom slope on the flow equations.

(1 + η + δ) d/ds(V 2/2g) if F0 = b′V 2, V = Q /σ and 1 + η + δ = α′ . However, I cannot follow what you deduce from (109), dσ/ds =
l(I0 − I), etc. I0 corresponds to the slope under which dσ/dx = 0, so that from eq. (108) one would have sin I0 = (Q 2b′χ/σ 3), by 
replacing the respective terms, namely (I0 − I) = (α′ Q 2/gσ 3)(dσ/ds). I do not see that this is identical to (109).

You obtain from (110bis) [1 − (α′ Q 2l/gσ 3)](1/l)(dσ/ds) = I0 − (b′ Q 2χ/σ 3), a deduction which I do not understand. As previously 
demonstrated, the method of approximation which you employ to establish the equation of gradually varied flows does not provide 
any trustworthiness with respect to the degree of approximation, because (1/l)(dσ/ds) (equal to dh/dx for a wide rectangular section) 
exceeds 0.01, and because the second member I0 −(b′ Q 2/σ 2)(χ/σ ) is of the order 1/1000. You conclude that if 1 −(α′/g)(Q 2l/σ 3) =
[I0 − (b′ Q 2/σ 2)(χ/σ )]/[(1/l)(dσ/ds)] > 0.001/0.01 = 0.1, the gradually varied flow regime is necessarily destroyed (to allow without 
doubt place for the regime of hydraulic jumps, thus for momentum conservation). I do not at all see this consequence.

If a computational method is unable to provide with certainty the approximation which one is looking for, I see no reason that we 
wish to hold back owing to lack of a gradual variation of parameters. Your inference would be important, before concluding anything 
on the establishment of hydraulic jumps, below eqs. (124bis).

As you do not leave anything at random, I claim that your conclusions are correct. Perhaps, as soon as your analysis of slowly 
gradually varied flows becomes applicable, for example if the bottom slope is larger than 0.01, with sensitive curves, then perhaps, 
I said, that the formation of these highly turbulent fluid portions ABC will start. In such a case, the momentum equation will be 
used such that it leads to the theorem of Borda as in abruptly diverging pipes. If you can demonstrate this, and as a result present 
equations for water flow with this abruptly varied bottom geometry, you will render a great service; but it must be well checked in 
all small speculations by experiments that you propose to be done. Yet, your present analysis does not yet establish things sufficiently 
clear, and there may be place to redesign few parts of the draft at the end of your memoir, which has already required so much work 
from you. (Fig. 8.)

In view of these comments, dear Sir, be not discouraged. What I find not sufficiently clear will not stop me to present a favorable 
report.30 What I am telling you should rather give you courage and confidence. What you did to advance the theory of water flows is 
already a lot, and you find the time to complete your manuscript. Your very affectionate dSV.

In Letter 34, dated 1 October 1872, dSV asks for additional items to be included in the Memoir. He writes:

Dear Sir, I finally understand dσ/ds = l(I0 − I). It would have been easier to understand it with a sketch showing that
NN0 = ds(I0 − I) = dσ/l. I understand that I0 is the bottom slope at N0. When Laplace said: It is clear, then there is always something 
confusing to realize. (Fig. 9.)

Yet, I do not understand eq. (127). The cause is the long sentence that you have even lengthened by an addition on the margins, 
and that you, no doubt, intend to cut it into several portions in the final draft. I neither understand the sentence that follows. And 
I confess to understand hardly anything of this §XIV. I do not doubt its correctness, even though you are talking there several times 
about the limit above which gradually varied flows are not established; this limit, seems to me again, is not yet clearly established. 
Yet I hope, dear Sir, that once you have completed the remainder of your memoir that I will receive and consider it with pleasure; 
you will certainly once more improve the draft of this §XIV. Reproduce in the course of writing once again Equation (110a), saying 
from where it originates, what it represents, what is increasing, and repeat what σ ′ , σ ′′ , I ′0, etc. stand for. Is σ ′ the section of uniform 
flow?

I see that σ ′′ is eliminated by 1 − (α′V 2/gh′′) = 0, with h′′ as average flow depth σ ′′/l′′ . This is the distinction between rivers 
and torrents, and the statements (130) indicate that (σ ′′/χ ′′) J ′′ is smaller or larger than b′V ′′ 2, i.e. the hydraulic radius multiplied 
by the bottom slope is smaller or larger than its value at uniform flow. Would this not become clearer if being expressed in simpler 

30 dSV, president of the Section of Mechanics, had to furnish a report in which he and his commission agree on its acceptance or rejection.
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language? I would like that you will have readers, successors or perhaps disciples, that your memoir may become the subject of a 
book instead of staying buried in the Savants étrangers, not being consulted by anyone.

§XV is much clearer.
When you return to my draft report, do neither overlook the comments in the margins, nor remove them by cancelling because I 

know that this would have to be completely redone. Moreover, you do not have to explain the assumptions, because your proposals 
along with your improved writings give adequate reasons. There will be at most parts of the first pages that can currently be used.

I assumed originally to take into account the centrifugal forces, as you do now, based on equal average velocity V , as that seems 
to be sufficient. Yet, couldn’t you say that instead of adopting the hypothesis u = V to approximate these forces, one could adopt 
any other assumption, for example that u varies from the surface to the bottom as if there would be no curvature, or even that u
may vary as in uniform flow, but then we would find η′ − σ ′ = 0.3691, and η′′ − σ ′′ = 0.50568 which would not greatly alter, given 
that 0.333 and 0.500 applies for u = V ; moreover one would not be sure to have gained anything by this procedure for flows with a 
sensitive streamline curvature, which form the basics of analysis leading to the final equation. You could put this into the note.

My 3rd approximation, that I studied painfully and the evaluation of terms involving (dh/dx)(d3h/dx3) and (d3h/dx3)2 would have 
been reduced if I would have given up, to what was on the note I sent you. Your very affectionate dSV.

As in many other instances, dSV asks JB to improve the technical writings by using shorter and clearer sentences. How-
ever, sentences of dSV are also extremely long, so he also could have accepted critiques how to edit technical texts. dSV 
further states that he does not intend to improve the technical contents of JB’s research, only the writing style, so that the 
final document is easier to access. When looking at the final text published in 1877, this has only partly been done. JB’s 
writing style was always complicated, and the excessively long sentences do not detract from this comment. This may be a 
reason why JB never became a popular author in the engineering community.

Note that the idea of writing a ‘book’ came in the year 1872. It took JB five years to have his work published. The final 
result was based on a report of dSV written in 1872, concluding that JB’s work was worthy to be included in the Memoirs
of the Académie (Boussinesq [31]). The ‘book’ is currently considered as the basis of the fundamental ideas of 1D and 2D 
depth-averaged channel flow models.

Letter 35, dated 2 October 1872, was written by JB from his hometown, Saint-André-de-Sangonis, during his summer 
holidays. It reads:

I finished the two parts of my memoir concerning steady water flows, thus accounting for the centrifugal forces (circumstances for 
the establishment and destruction of the uniform regime, torrents of moderate slope, direct and undular hydraulic jumps, effects of 
bottom undulations on the surface profile, curved bottom geometry rendering the free surface of the same forms as a flat bottom), 
and also the unsteady gradually varied flows, thereby excluding streamline curvature effects. Propagation of waves and surges in a 
channel with uniform flow regimes were also accounted for, with consequences that are confirmed by experiments of Bazin (Darcy 
and Bazin [10]), and all questions I have dealt with in the memoir on the theory of waves and surges for the case of water originally 
at rest.

I was unable to account for terms stemming from streamline curvature by replacing in these terms u by its average value V , which 
is acceptable for gradually varied flows (since this is only to replace α′ by 1) and what it really is a fortiori, if this assumption concerns 
only the generally small terms due to streamline curvature. This approach relates only to terms for which u/V = 1 is assumed, 
applying also without the expression of w/u, whose first term is substantially (z/h)(dh/ds) (but having other terms assigned to z2, 
z3, etc., and higher derivatives ∂2h/∂s2, ∂3h/∂s3, etc., i.e., higher powers of ∂h/∂s, as also products of all these quantities), neglecting 
those more complicated terms in comparison to the significant first terms, as long as the square of ∂h/∂s and the higher derivatives 
of h remain negligible, and if the ratio u/V would strongly differ from unity.

For the same reason, if either the ratio u/V hardly differs from 1, or if streamline curvature effects are small, both are linear 
functions of z, as you assumed in your former work on the implementation of the centrifugal forces; otherwise, neither the streamline 
slopes w/u do vary linearly with z, nor, a fortiori, their derivatives in s or x, as soon as the streamline curvature becomes strong. The 
demonstration is in the long Note, which I ask to implement in the Memoir. Upon assuming u/V = 1 for the terms depending on the 
streamline curvature, I found for steady water flow

I = bV2
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Integrating the effect of unsteady gradually varied flow leads to

I = bV2
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Here, η′ = 0.02253, β ′′ = 0.003979, and η is the number 
∫ h

0 (u2/h2)∂z/h ∼= 0.01761. An expression easier to integrate would be, with 
α′′ = (α′ − η′ − β ′′)/(1 + 2η),

h
∂V − α′′V ∂h + gh − α′V 2 ∂h = g(hi − bV2)

.

∂t ∂t 1 + 2η ∂s 1 + 2η
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Fig. 10. Effect of free-surface slope on the flow equations.

When accounting for streamline curvature, it is replaced by
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My formula (109), ∂σ/∂s = l(I0 − I), is not a consequence of the former; it results from the definitions of I , I0, and the assumed 
smallness of the streamline curvature. I call indeed l the cross-sectional width at the surface, I0 the free-surface slope so that section 
σ conserves the same value by passing from s to s + ∂s, and by this definition of I0, one had ∂σ/∂s = 0 for I = I0. Given the small 
difference between I and I0, the angle NMP of the free-surface profile MN relative to MP, if the surface slope would be I0, is below 
MP, I0 − I , and the section σ + ∂σ is above section σ by a small amount of width l and height NP = (I0 − I)∂s. Thus, one has 
∂σ = l(I0 − I)∂s or ∂σ/∂s = l(I0 − I). In eq. (108), you can neither simply set I0 = I , nor ∂σ/∂s = 0, because these equations apply to 
evaluate the values of I0 and ∂σ/∂s, satisfying also ∂σ/∂s = l(I0 − I). Putting I0 = I and ∂σ/∂s = 0 makes it in general incompatible. 
(Fig. 10.)

I now turn to the difficulty I have with my eq. (111) as a necessary condition to make gradually varied flows possible. Please make 
sure from the beginning of §VI that the x-derivatives of v/u, w/u are small compared with their last values at x as functions of y
and z. This allows for the definition of this motion that I start to study, and I think that everyone would have given it after having 
considered this question.

I call a steady flow gradually varied if its streamline curvature and the square of its streamline inclination is negligible. However, 
the equation of steady gradually varied flows that I present is not only approximate (at least in two cases of wide rectangular and 
circular sections), but still considerably accurate (whenever the square of ∂h/∂s and streamline curvature effects are negligible). When 
my equations cease to apply with sufficient accuracy, I am correct to state that the scheme ceases to be gradually varied. You define 
it as gradually varied by the possibility to neglect (dh/dx)2, d2h/dx2.

The remainder of this letter refers to the energy equation, not dealt with here.
In summary, the year 1872 was a highly fruitful period for both dSV and JB, because the gradually varied flow theory 

was established based on the momentum equation. Its physical background was clear at that stage, yet JB had to improve 
his formulation so that it would be evident to the hydraulic community.

In Letter 17, dated 26 May 1880, JB writes:

Since you would like that I publish in the Annales des ponts et chaussées a paper on permanent flows, would it not be better to take 
yours, whose manuscript I have here? It would be sufficient, unless you were to take your time again, to shorten what would take 
too long and then, to correct the proof that you only see, because your name would naturally be the only on the title. As to myself, 
my head and stomach need two years of rest.31 Agree, Sir and dear Master, in the new expression of my unalterable devotion and 
gratitude. JB.

It is also worthwhile to state that the approach of dSV as opposed to that of JB has survived until today. The main 
difference between the two is the large number of coefficients related mainly to the velocity distribution when expressed 
by the 1D approximation. Consider for instance the dynamic term (1/g) d[βV Q ]/dx as expressed by JB. Except for uniform 
flow, β remains unknown, as does the derivative (dβ/dx)[V Q ], so that this correction cannot be retained in the governing 
equations when applied in hydraulic practice. Even though not proved, the effects of α and β are small and currently not 
generally included in hydraulics, because their impact is considered small when compared to those of the friction coefficient 
(difficult to assess mainly for rivers and tunnels), and to the bottom slope, particularly at small values in lowland rivers. 
The approach of JB is physically correct, but it does not provide explicit solutions for practice, so that the fundamental 
free-surface flow equation of dSV is preferred over JB’s complicated approach. Note that if α ≡ β = 1, the energy and 
momentum equations provide the identical statement for the free-surface profile. The merit of JB is in his formulation of 
the equation of the free-surface profile under non-hydrostatic pressure conditions.

3. Theory of unsteady flows

The mathematical formulation of unsteady water flows was achieved in the year 1871. Despite the works of dSV over 
decades on the topic, he had so far never reached this point, and most probably was happy to have in JB an adequate 

31 JB often complained on these health problems in his letters to dSV.
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Fig. 11. Sketch explaining unsteady flow generation in a channel.

colleague who would comment on his approach. However, in a way strangely, this approach preceded that of the steady 
water-flow theory, although the basic governing equations were available to Coriolis [18], and that Bresse [19] had given a 
full review for hydrostatic pressure and uniform velocity distributions.

At the end of Letter 10, dated 30 May 1871, dSV writes to JB:

As to your remarkable Note entitled ‘Theory of the liquid intumescence referred to as solitary wave or translation wave’, I intend 
to send the manuscript to the Comptes rendus, once the communication with Paris will be re-established.32 I have the following 
comments:

(1) I do see neither the sense of the sub-title ‘Computation of the speed of a counter-current’, nor the meaning of this counter-
current.

(2) At the end of your Note, you state that lines 5 and 6 could be dropped if space is not available, starting with: If the still water 
depth H is larger than h0 . . . . I would rather propose to drop all because these are merely citations of Bazin, because our theories 
support essentially that H is much larger than h0.

In a Report entitled ‘On fluvial tides and floods’, I explain that Bazin’s results relating to a large h0 [still water depth] would 
affect the theoretical formula [g(H + h0)]1/2 differently because of its limitation to small h0.33 I attach this effect to ‘accumulated 
intumescences’. This is the core of my theory ‘On the unsteady motion of water’. Do you think that this is correct?

Consider a channel whose still water depth is H ; the water depth increases gradually at section AB, e.g. because of a supply from 
the sea during tidal action or by an increase of discharge. A first perturbation of extremely small height h or dH is propagated with 
celerity (g H)1/2. The water added from the stagnant portion gives rise to a small velocity dV . The sea water would increase at point 
A, generating a second extremely small perturbation, whose celerity would be k = [g(H + h0)]1/2 + V . This water then mixes with 
that of velocity V , increasing its velocity. The question is, during water rise to the height y at the river mouth, what are: (1) The 
channel water velocity V , and (2) the celerity k of a novel small perturbation? One would have for the latter k = (gy)1/2 + V . As to 
the condition of mass conservation after a novel discharge increase and a new depth increase of dy, we have d(V y) = k dy, so that

dV = [
(k − V )/y

]
dy = (g/y)1/2 dy.

Integrating with y = H as the initial condition yields

V = 2(gy)1/2 − 2(g H)1/2, from which k = 3(gy)1/2 − 2(g H)1/2.

This corresponds to the general equations of unsteady flows. I found for these in a water flow a layer ABba of extent ds becoming 
A′B′b′a′ in a short duration θ , because of surface height reduction, the two equations

dξ

ds
= 1

g
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dω
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Here, ξ is the ordinate of the free water surface below the horizontal, and (dV /dt), (dω/dt) are the total partial derivatives of the 
average velocity V , and the cross-sectional area ω with respect to time t . This is to say that the two above variables, ξ and ω, change 
at a certain location relative to their changes of location.34 The second equation expresses conservation of mass. Dupuit [26] presented 
it, yet instead of the first equation, his alternative was dξ = (dH/ds) dt + V (dV /g) + (χ/ω)(F/ρg) dt . The term F originates from the 
frictional force as in the non-uniform but steady flow equation. I obtained this by accounting for the normal bottom force reaction 
Bb, decomposed into the direction of the line GG′ along the gravity center, so that no other terms have to be considered. I assume for 
these computations a rectangular35 channel. (Fig. 11.)

The system of the above two equations is known as the Saint-Venant equations. It relates the two unknowns, the cross-
sectional average velocity V and the flow depth h (along with the cross-sectional area ω and the frictional effect χ ) to the 

32 Due to the Franco-Prussian War 1870–1871, the French State was in disorder, and only reached normality after the end of the ‘Paris Commune.’
33 This formula relates to the celerity of a surge.
34 This statement indicates again that dSV considered mathematically partial derivatives expressed as ‘d’, in contrast to the current notation ∂ .
35 And prismatic.
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variables location s, and time t . Currently, the term S f = (χ/ω)(p/ρg) is referred to as the friction slope. Note the non-
linearity of this system, mainly entering the velocity head and the friction terms of the first equation, and in the discharge 
term (ωV ) of the second equation. These mathematical complications do not allow for an analytic integration of the system, 
except for one case, as presented below.

These two equations simplify by excluding the frictional effect, and for a horizontal rectangular channel, so that −(dχ/ds) replaces 
(dξ/ds), and y stands for ω, with y as the flow depth. Integrating by assuming that the velocity V depends only on y, gives

(dy/dx)
[

g + (V dV /dy)
] + (dV /dy)(dy/dt) = 0,

(dy/dx)
[
V + y(dV /dy)

] + (dy/dt) = 0.

The term dy/dt is eliminated by multiplying the second equation by dV /dy,

(dy/dx)
[

g − y(dV /dy)2] = 0, so that (dV /dy) = (g/y)1/2, from which V = 2(gy)1/2 + constant.

As above, one has k = 3(gy)1/2 −2(g H)1/2. The celerity measured during an experiment, to propagate an extremely small perturbation 
of height h = y − H comparable to depth H , is a mean value including all internal layers which have contributed to its formation. 
Upon letting km be this average celerity, one has
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With k′ = [g H(1 + (3/2)(h/H))]1/2 as celerity observed by Bazin, the ratio of the two is
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.

Note that k′/km = 1 if h/H → 0, k′/km = 0.989 if h/H = 1/3, and 0.970 if h/H = 2/3. It is obvious why Mr. Bazin believed in his 
expression k′ = [g(H + h′)]1/2, with h′ = (3/2)h as the front wave height; it is the height of the wave body following the head, and 
applies if h is no longer small as compared to H . This formula should include km. If you support this anticipation, then our two 
researches will excellently combine.

When your baggage is small for the next presentation, why not taking a rest, having certainly enough work to prepare your 
students for their exams. Does Mrs. Boussinesq not support my proposal? I am always at your disposal. Sincerely yours, dSV.

Letter 20, dated 18 July 1871, was written by dSV at a railway station in Paris:

Dear Sir, I have corrected the last proof of your modified Note, as also your last additions of your work ‘On permanent movement and 
on the intumescence.’ I resubmitted my memoir ‘On the unsteady flow’ to the Comptes rendus of 17 July. I will send you the proof, as 
also the Memoir ‘On river tides’ of M. Partiot.

As to my memoir, I reread your letter dated 4 June, in which you find things simpler than I did in two different ways. I have 
not completely followed your proposal. I think it is excellent to start by presenting the two governing differential equations, then to 
assume the average velocity V exclusively being a function of the flow depth y at the section considered. I first had to account for 
the results of Mr. Partiot, who determined the longitudinal free-surface profile as the geometric location where, at a certain instance, 
the extremes of the perturbations are located, all starting at the same location at different instants and with different velocities given 
by (gy)1/2 + V = 3(gy)1/2 − 2(gh)1/2.

You did well in proposing to exclude the front wave observed by Bazin, given that the equation S =ϕ(y) + [3(gy)1/2 − 2(gh)1/2]t
does not apply once it reaches a position resulting in two flow depths y for each value of the horizontal abscissa s. Your explanation in 
your last article ‘On the wave or propagated intumescence’ is better suited to this topic. The case of double flow depths y is nothing 
else than a bore.36 A breaking wave ABC as that sent by the tide into a canal MN develops into A′B′C′ because higher portions 
take up due to higher speed and pass lower portions. There is no theoretical mistake in this formulation, but as the wave becomes 
multi-valued at B′C′ , there occurs wave breaking.37 (Fig. 12.)

Would you think it possible to extract from my equations of unsteady free-surface flows in a rectangular and horizontal, frictionless 
channel, viz., 

(dy/dt) + d(V y)/ds = 0, g(dy/ds) + (dV /dt) + V (dV /ds) = 0, (a)

other features, if the average velocity V would not directly depend on the flow depth y? More important, what can be done, if the 
second equation in (a) reads 

−g(dξ/ds) + (dV /dt) + V (dV /ds) + g(χ F/ω) = 0, or (b)

36 In French, mascaret.
37 In French, déferlement.
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Fig. 12. Wave breaking associated with multi-valued flow depths.

g(dy/dx) + (dV /dt) + V (dV /dx) − g(i − χ F/ω) = 0, (a)

if the bottom slope i �= 0, and if you include friction effects ρgF, assumed to depend on y and V such as ρgbV 2 y−0.3? Could one 
successively design the advances of a water flow if the initial condition would be specified, and if a lateral discharge addition would 
also be known, for a certain sea water level as a function of time? I am embarrassed to neglect friction if V depends only on y, 
resulting after the elimination of (dy/dt) in 

(dy/dx)
[

g − y(dV /dy)2] − gi = 0. (c)

Set y = y′ + ix to drop the second term, yet I do not see what can be done then.
Equations (a) have a solution if V is only a function of y, namely x = t · d(V y)/dy + f(y). However, this does not furnish a value 

for y(x) inserted in eq. (b), not even for term F , if (dξ/dx) = −(dy/dx) + i instead of only −(dy/dx). My elementary demonstration 
relating to the formula of Lagrange k = (gy)1/2 + V as celerity of an infinitesimally small perturbation, appears to apply also to water 
flows over small bottom slopes. The experiments of Bazin confirm this finding (if the friction slope is about half of the bottom slope). 
I concluded from the above differential equations, that the processes in tidal rivers or floods in a sloping channel are similar. Then, 
x = [3(gy)1/2 − 2(gh)1/2]t +ϕ(y).38

I think that until I find a better result, I will contend myself with the equation resulting by the elimination of (dy/dt), completed 
from (c) to

(dy/dx)
[

g − y(dV /dy)2] − g(i − χ F/ω) = 0.

I will drop the last term, which becomes zero for uniform flow, given that it is defined by ω/χ = F/i, a state that can be regarded as 
oscillating around uniform flow at least for floods. Once the tidal river and the flood problems are dealt with

[
g − y(dV /dy)2] = 0, or V = 2(gy)1/2 − 2(gh)1/2,

one has39

x = [
3(gy)1/2 − 2(gh)1/2]t + ϕ(y).

I have corrected today the proof of my article to be published in the Comptes rendus which I will send you. Your affectionate dSV.

In this letter, dSV includes the effects of bottom and friction slopes for the first time. He realized that his solution was 
related exclusively to a particular case, i.e. provided that the two slopes are identical. In practice, however, mainly over large 
reaches, their individual effects need to be considered, an issue attacked over the next decade, yet this problem was not 
solved, neither by dSV nor JB.

Letter 23 of JB to dSV, dated 6 August 1871, contains additions to the SWEs:

Sir and good Master, I would not have waited until today to thank you for your gracious invitation,40 if I would not have been absorbed 
by corrections of exams for the admission to the École des arts et métiers at Aix. Finally, I am here again, more free, given that I have 
no longer lectures until the return of classes. Vacations start after tomorrow until 9 October, and I would be happy to meet you at 
Vendôme, to finally see you and hear you. I also do not refuse your offer to use your room in Paris. I would only first like to go during 
the second half of August to Saint-André de Sangonis, to take baths in the clear waters of River Hérault which always rendered great 
relaxation, and which would be this year important due to nose bleedings. These are the cause why Madame Boussinesq does not 
want to leave me alone, particularly during the long voyage to Vendôme. I would have her with me, but I hope that this will not cause 
too much work for you. She will be so happy to also meet you and Madame de Saint-Venant, and your daughters! We will depart 
to Saint-André on 9 August, arriving there on Saturday because we will spend two days in Montpellier with my uncle (Mr. Cavalier), 
priest of the Sainte-Eulalie Church. We wish to go in September to Lozère, meeting there the parents of my wife, whom I do not yet 
know.

Thank you for sending the Abstract of the memoir ‘On river tides’ by M. Partiot. He did not sufficiently state that his formula, 
excluding surface curvature, does not apply to regions of large curvature, as, e.g., at the wave front. He also finds that wave breaking 

38 With ϕ as arbitrary function defined by the initial and boundary conditions.
39 From the expression above.
40 To dSV’s castle at Vendôme.
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occurs only in sufficiently long canals. However, the equations of Mr. Bazin and my article published on 24 July prove that this 
phenomenon depends on the perturbation height relative to the still water depth, thus they are only trustworthy in shallow water.

I received what you call the bundle Lahmeyer.41 I think that his formula

RI = [
b1 + K (l/r)1/2)

]
V 3/2

is doubtful in terms of the effect of bottom curvature l/r, given that he finds for the average coefficient K = 0.0002881, a value 
differing almost by a factor of two from the Weser and Saale Rivers to the Elbe and Mulde Rivers, from 0.00023 to 0.00041. However, 
what is of more interest to me would be your results relating to the effect of the centrifugal force on the pressures. By applying 
specifically the method published in my memoir dated 3 and 10 July, yet without considering now h∂2h/∂x2 to be small as compared 
to ∂h/∂x, yields both terms rather small along the curve so that the effects of vorticity causing rapid streamline divergence remain 
also small. Squared terms and products of these are dropped, resulting in an expression involving h, ∂h/∂x, ∂2h/∂x2.

I hope to be able to study the undular hydraulic jump [French: ressaut allongé] produced in rectangular channels whose bottom 
slope is slightly larger than the maximum slope of a river, or around the minimum slope of torrents. I remain, with my deepest 
respect, Mister Count and dear Master, Yours all devoted and grateful JB.

I forgot to tell you that I have been appointed Corresponding Member of Faculté des sciences naturelles, Cherbourg. I have sent to 
the president, along with my letter of thanks, a memoir published in the Journal de mathématiques.

The next letters (a total of 14) written between 13 August and 13 November 1871, deal with sea waves, optics and 
elasticity. Letter 38, dated 4 December 1871, is reproduced in the Supplementary Material. The next letter concludes with 
best wishes for the New Year 1872:

Hello dear Sir, happy new year, patience and courage. I wish you success, because I think that you are not one of those whose successes 
paralyze. I hope that you appreciate these successes, and you have not turned to arrogance. As to myself, I do not know what I would 
have become if I had had no success, perhaps I would have remained there, while constant failures, setbacks, disappointments, the 
humiliations even, gave me the tone, and the courage. Whom would I have become, above all, so early, as was my wish, after having 
been scientifically asked, I had managed to be one of the defenders of religion with science. Maybe my pride would have been at the 
peak, I wouldn’t be as more infallible than the Pope. Oh that God was good to preserve me. Respectful congratulations and my best 
wishes for a happy New Year to Mrs. Boussinesq. Your affectionate dSV.

The year 1871 brought the appearance of the SWEs almost entirely based on the research of dSV. A strong limitation 
next to the assumption of hydrostatic pressure and uniform velocity distributions was the neglect of the bottom and friction 
slopes. dSV thus pursued this task, involving JB and his mathematical talents. The final success was only partial, however, 
as described below.

Letter 44, dated 20 November 1872, states:

I send you, dear Sir, new attempts to account for friction and the velocity distribution in an unsteady motion. My question is to 
ask you whether you will in your final document reach the goal that I have proposed. This is, believe me, (1) the establishment of 
the equations of unsteady flows, because your eqs. (258) seem to fully account for friction and the deviation of the velocities under 
gradually varied motion; (2) the calculation of the propagation speed of small waves, which are given by your eqs. (265), and of better 
approximations by (289), (295), (296), which also account for friction and the cross-sectional variation of the velocity. These formulae 
for the celerity lead to ω = V + [(g H)/(1 + 2η)]1/2, from which follows V = 2[(g H)/(1 + 2η)]1/2 + const. This is what I found in my 
unsteady flow equation,

g(dh/ds) + (dV /dt) − V (dV /ds) = g
(
i − bV 2/h

)
,

when assuming that V is only a function of h, and by dropping the last term, if the second and the third were altered by (1 + 2η). 
Then, the square root of (1 + 2η) enters as denominator the integrand of 

∫ ω
0 (u/V )(du/dV )(dω/ω).42

Expanding the formulas of the propagation speed and flow velocity V to cases of large flow depths, where bottom layers would 
only slowly adapt to increased velocities due to the successive addition of waves, so that there are large velocity differences between 
these at the surface and the bottom, I have resorted to an empirical formula. Your exact analysis cannot give these formulas. However, 
will your analysis give results on the upper curved wave surfaces above their concavity and have as asymptote the non-disturbed 
fluid surface, whose height decreases due to friction when moving away from the point of generation. (You have written to me that 
you would look for this issue). Isn’t this about what you find at the end of your memoir when introducing, below formula (328), the 
gravity centers of waves approaching persistently from the current surface during propagation? It is true that you speak here only 
of isolated fronts and rear waves. Yet, doesn’t this equally apply to continuous waves or surges, which are relevant in the theory of 
unsteady water movement?

This is what I wish to elaborate on the dual problem of river tides and floods. What you say in §XXVII, below eqs. (299) and (300) 
and already at the end of your Note printed in Liouville, would be the problem of a Mediterranean tide, that is of extremely small 
height compared to the canal depth entering the sea, or also the problem of a very small flood. Yet, it is for rivers running into the 
ocean, or for strong floods, natural or artificial; the problem is of vital interest for navigation. How, therefore, can we solve it? If this 

41 Lahmeyer [32].
42 What is likely meant here is that ω in the integrand is replaced by ω = 3{g H/(1 + 2η}1/2.
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Fig. 13. Sketch describing the generation of a small water wave.

is not achieved by successive approximation to integrate the two equations in h, V for non-permanent flows, wouldn’t the approach 
suggested to me by Mr. Partiot be a good method? We know the law of the variation of the flow depth at a given place, by assuming 
that each infinitely small depth increase produces a continuous and infinitely small wave; these waves overlap while spreading first on 
the stillwater elevation and then on a series of surfaces turning above their more pronounced concavity. Can’t we find these surfaces 
by small secants to integrate the equation?

Doesn’t this amount to a graphical integration of two simultaneous equations for h, V , as functions of s and t? These surfaces of 
elementary wave propagation, don’t they play a similar role in the phenomena of unsteady flows. Don’t they have a special relation 
with undular trajectories? And, as trajectories are concerned, couldn’t you limit yourself even to confine to waves or surges of ex-
tremely small height, determine the trajectories of the fluid particles during the generation of a solitary wave or a continuous wave 
on a fluid surface assumed initially as stagnant?

Which streamline ab, or a′b′ , produces the same geometrical shape if a piston acts on section AB, lifting the fluid involved, or 
does the tide at this location simply lift fluid particles? You excellently and completely determined the shape of the solitary wave; 
thus, both straight and elliptic trajectories of various inclinations result at various depths of the wave; moreover, your equations will 
probably also provide trajectories in the wave or the small wave train, thereby elucidating the theory of the unsteady wave movement. 
(Fig. 13.)

Am I correct in judging from your memoir that the centrifugal force has hardly an effect on the non-permanent motion for the 
flood or tidal bore? It is not this, seems to me, but rather the search for the answer to the objection. Partiot observed that it is at full 
sea where the water entrance velocity in the river is smallest, while according to V = 2(gh)1/2 − 2(gh0)

1/2 + V 0, this velocity should 
be the largest possible. Do not leave to our nephews the merit to solve these issues. What is the future of science after a time of back 
steps? Europe will not be in full decadence? Your very affectionate dSV.

This letter 44 contains numerous questions addressed to JB. Even though the SWEs do not look extremely difficult, dSV 
was unable to solve problems related to them. In Letter 46, dated 30 November 1872, dSV returns to this issue, stating:

Dear Sir, I am writing again to Saint-André risking that my letter will be returned to me if you are already on the way back to Lille. 
If you wish to have copies of my report on the Poncelet Award (I have not read the Report, which will perhaps be abbreviated), the 
easiest way will be to ask for prints published by Gauthier-Villars. I do not know whether it is sold apart from the number of the 
minutes containing the session awards.

I wish [in my report] that you:
(1) discuss in §XXIX the effect of the term g(hi − bV 2)/(1 + 2η) instead of simply neglecting its second part,
(2) determine the upward concavity of continuous waves, which I attempted to prove,
(3) try to solve by approximate integration the two simultaneous differential equations for h, V , as functions of s, t for non-

permanent flows or indicate the way to do the integration numerically if data are available. Show the way to solve the dual problem 
of river tides and floods that I addressed in my 1870 paper, following Mr. Partiot.

I do not think that this requires to consider a discontinuous motion, or the passage from one steady state condition to another 
through a mobile projection as you say in your letter dated 26 November, because we can track the spread of the tide in the river up 
to when it has degenerated into a tidal wave. Its rise takes 12 hours. For floods, we only consider those that arrive slowly enough to 
not break, as do all, as I observed.

Any equation(s) of a single (and several) unknown(s) is (are) solved by reasoned groping, whatever the degree, even if it is 
transcendent; similarly, aren’t all differential equations integrable? Doesn’t calculus propose procedures, such as the use of Taylor 
series? Can’t we give a first approximation by dropping some secondary terms, and then substitute in this restored term the results 
from this temporary solution? Can’t we also ask the two unknowns h and V to equal entire series in s and t with undetermined 
coefficients, and can’t we establish from these equations or these coefficients, by restricting these terms to a small number of the 
series? Isn’t your process to obtain u/u0 for permanent flow, in the form of an entire expression in z/h, based on this method of 
undetermined coefficients? You would make a great service in solving this problem, as you did for the permanent motion. This will 
take time, because it will certainly require several opinions before printing your large memoir plus time to make and read the Report. 
Forward to hearing from you. Your very affectionate dSV.

It is here where dSV ‘invites’ JB to think of any feasible way to find solutions to the complete SWEs. So far, JB never 
addressed this issue because he too saw no way of solution. dSV, in turn, was so much involved in this very question that 
he took the last possibility to find it, namely by involving JB and his outstanding mathematical genius. Let us therefore see 
how the story continues.
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In Letter 47, dated 1 December 1872, dSV states:

I gave you yesterday a somewhat absurd question, which I could answer myself, as I shall do to avoid you the penalty. Unable to 
do it analytically, it is imperative to numerically integrate the two nonlinear first order differential equations in s (longitudinal axis), 
t (time), for h (flow depth), V (average velocity) in an open channel whose flow is not permanent, because at a given point, for 
example at s = 0, h, or where the unit discharge hV varies with time as a function of t . So, I was asking if there was a way to 
integrate numerically these two equations by a step-by-step method by putting 
 instead of ‘d’? The answer is easy, as it is easy to 
integrate the equation of Vauthier or Coriolis and yourself,

dζ = I ds = (
bV 2/h

)
ds + α′ d

(
V 2/2g

)
to obtain the ordinates ζ of the water surface below a horizontal reference elevation for permanent flow. Take here for simplicity the 
mean cross-sectional velocity V as

g(dh/ds) + (dV /dt) + V (dV /ds) = g
[
I − (

bV 2/h
)]

,

(dh/dt) + V (dh/ds) + h(dV /ds) = 0.

Take successively

t = 0,60,120,180, . . . (s), and s = 0,10,20,30, . . . (m).

Let dt = 1 minute, and ds = 10 m. For t = 0, s = 0 one knows h, V , dh/dt (if h = f(t) for s = 0), I and V , and also dh/ds for a given 
bottom slope and the initial free-surface slope at these locations. The second equation provides dV /ds. Substituting this into the first 
then gives dV /dt . Because the two derivatives have nearly equal values apart from second order quantities, for t = 60′′ , s = 0, as for 
t = 0, s = 10 m, one deduces the values of V for these new values of t and s. One has already h for these equal systems. The two 
equations give you, still for these systems (t = 60′′ , s = 0), (t = 0, s = 10 m) the values of dV /dt , dV /ds, then dh/dt , dh/ds, thereby 
assuming that they remain nearly equal when further augmenting t and s from t = 60′′ to s = 10 m, furnishing V and h for this new 
system values of t and s. By continuing this procedure, you will succeed in assets, for each value of s, the rest of the water surface, 
providing the surface of Mr. Partiot.

It is understood that we have to try whether substantially the same results follow from 30 s by 30 s to 60 s, and from 5 m by 
5 m instead of 10 m, to shorten the computations; we will also try if the results remain similar by increasing the time to half hour 
by half, and distances of 100 m by 100 m. It is an operation that can be made by the employees of an engineering office, just as the 
Bélanger–Vauthier computations. This applies to an arbitrary bottom shape. It meets the quadratures of curved areas by rectilinear 
trapezoids. It might be possible to proceed similarly with Simpson quadratures by parabolic trapezoids, which would get the same 
approximation by taking many more large intervals of time and space. However, it would be complicated, and it is good only if you 
had to do several sets of similar calculations so that you would have the advantage to develop a method demanding for continuous 
learning.

Make computations only on the two differential equations with the indirect method of Mr. Partiot, amended by a first trial, a 
network of curves, intended to generate continuous, infinitely small disturbances to be superimposed. Yours sincerely, dSV.

Even though dSV mentions the letters received by JB, these are not contained in the Correspondence. Once dSV noted 
the reservation of JB against his proposal, dSV put forward ideas how the SWEs could be integrated using approximate 
methods. He noted that the value of his 1871 Paper could be greatly increased if he were able to deal with more general, 
and significantly more realistic problems concerning unsteady free-surface flows. Let us have a look how this continued.

Letter 2, dated 30 January 1873, and Letter 3, dated 2 February 1873, contain further ideas of dSV, detailed in the 
Supplementary Material.

In Letter 9, dated 1 May 1873, the topic of numerical integration of partial differential equations is reconsidered. JB 
states:

Sir and dear Master, Mr. Puiseux has answered your question of numerical integration from his first impression, the most natural, 
but that would change the reflection. I indeed cannot find anything more difficult than to solve a partial differential equation in 
finite differences, by reducing differences of the partial derivatives to allow for convergence to the limit, because a large number of 
equations with partial finite differences, whose integrals seem to converge in the limit, to similar equations of partial derivatives, of 
which some are likely to converge, whereas the integrals of others tend to nothing determined. I do not claim that it is impossible to 
numerically integrate equations involving partial derivatives by transformation to equations in partial finite differences, but I think we 
have to find an equation of finite differences whose integral tends toward that which one wants to have, as the differences tend to 
zero. I am with deep respect, your devoted and grateful JB.

All through 1874, no problems in free-surface hydraulics were discussed. Questions on simplified flood hydraulics based 
on the approach of Graeff [33], earth pressure, the definition of mechanical energy, the effect of surface tension, molecular 
mechanics, elasticity, thermodynamics, Liouville’s integration method, problems with the publication of JB’s work in the 
Savants étrangers, lecturing at Lille University, and ethics were considered; this is not further discussed here.

The correspondence of 1875 starts with comments on the works of Tait, Thomson (Lord Kelvin) and Airy on composed 
movements, followed by a discussion on the theory of Stokes related to the Navier–Stokes equations, and a consideration 
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Fig. 14. Propagation of wave in still water.

Fig. 15. Sketch of temporal paths of five selected particles.

of uniform flow based on the data of Bazin. It is in this year that dSV starts asking well-defined questions on one side of 
the letter paper, leaving the other side to JB for his answers. In Letter 14, dated 9 May 1875, JB comes back to the SWEs, 
stating:

Dear Master, these days I work on nothing else than my courses and lectures, for I have resolved to take some rest to catch up on 
sleep. That’s why I am eagerly waiting for your letters for which I already have the pen in my hand to respond (it is a distraction 
pleasing me a lot when it comes from you).

JB takes up his comments on questions of dSV relating to the SWEs:

As to the complication, which you find hard, the constancy of velocity along a vertical line with its gradual change when moving from 
a vertical section to another seems to me not difficult, however. In your equations of non-permanent motion of 1871, you assume a 
constant velocity, equal to the average velocity V , which did not prevent its value to vary gradually within very wide limits along
the channel from zero up to any value. It is as in my analysis as you assume in your demonstration, equal to its average velocity 
V , generally quite variable, when relating to very long backwater reaches, where friction is involved (although it does not entail 
but a small error in the equation of gradually varied unsteady flows); the same assumption, u = V , for moderately long backwater 
propagating from a still water zone, has nothing arbitrary: To first approximation, we have indeed u = V at any section (see No. 126bis, 
p. 280, or No. 132, pp. 288–289).43

You ask for the trajectories of a continuous surge. The eqs. (269bis) (p. 295) define them once we specify a free-surface profile. For 
an intumescence having roughly the frontal shape of a half solitary wave, followed by an undefined horizontal profile, the trajectories 
are composed first of parabolic rings, continued upstream by a horizontal indefinite straight line, as shown in the sketch. (Fig. 14.)

Five particles a, a′ , a′′ , a′′′ , a′V, located, respectively, at the free surface, at a quarter, half, three-quarters of the flow depth, and 
at the bottom, will all at once rise proportional to their distance to the arrival of the surge, without ceasing to be all four in the 
same vertical plane. Then soon, and once arrived at the heights which they need to keep, they will continue to move along a straight 
line, until friction has acquired a sensitive effect on them, putting the particles in the back behind those of highest elevation. From 
that moment, my analysis of your 1871 memoir and my current memoir developing your ideas no longer applies; you then have 
to consider the analysis which I give in §XXXVII (not yet printed).” JB then details the differences between the solitary wave and 
periodic waves, not discussed here. He continues: “You ask me whether the problem of solitary waves relates to that of gradually 
varied unsteady flows. It is closely connected to it, so that I only made the first approximation of the solitary wave theory and the 
equation of gradually varied unsteady flows. This theory is the subject of §XXVII, once the equation of gradually varied unsteady flows 
is established, serving as its basis. (Fig. 15.)

I will work on the memoir that you ask me to do (if necessary after the publication of your work, popularizing these beautiful 
theories among us) on simple cases which you consider, especially if you include the solitary wave as a desired problem. However, 
if I had followed in my Essay on flowing waters and had processed questions (which may be found interesting), the analytical way 
you advise me to take, namely to deal with the most important special cases (prior to the general case), and its extent would have 
consented me to consider not only one volume for the Savants étrangers, but three. For the remainder, I am careful not to present 
what I find difficult. One thing surprises me that I find to be straightforward: I am surprised, but unfortunately, I am apparently not 
well understood and unable to express myself more clearly.

43 Note that page numbers, equations, paragraphs relate to Boussinesq [31,34].
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In your letter of 25 April (containing a summary of English works on the swell), you ask me whether my judgment on the analysis 
of the 2nd approximation of Stokes agrees with that of Rankine. From what you tell me, I find that Rankine is correct. In any case, 
it is the opinion I expressed to you. Yet, perhaps (as much as I am able to judge from your letter), one does not have to sufficiently 
emphasize that the effect of friction is canceling and invalidating the findings of Stokes (2nd approximation). Without the effect of 
friction, the laws of Gerstner would never apply, they may apply only to a swell having existed for all time. In contrast, the case of 
a swell that would have started (for which dw/dx − du/dz = 0), the laws of Stokes appear more preferable. However, it is useless to 
question whether there is absolutely no fluid friction, since it is an impossible hypothesis. I am, Sir and dear Master, Yours true and 
respectful disciple, JB.

Letter 25, dated 10 July 1875, written by JB, deals with the velocity correction coefficients, and fluid friction. Letter 1, 
dated 23 January 1876, written by dSV, returns to the flood flows under large wave heights, see the Supplementary Material.

As in similar previous cases, JB does not at all respond to the questions of dSV relating to the SWEs. Instead, he exposes 
on the friendship between the two. Only in Letter 18, dated 9 July 1876, dSV returns to his problem, stating:

Thank you for your explanation demonstrating44 the need for a relation between the heights denoted by a and H1, or between a
and the bottom slope i so that the problem of fluvial tides, even of very small height, is solvable by accounting for this slope and 
friction. That will simplify my task, as I said, in my memoir (which should not only be historical), given that we find this problem 
treated in your Essai for a particular case, which is a useful addition. If I say everything I would fear that engineers and readers 
find most of the comments of Poisson in the works of Cauchy, dear Sir, so that I reduce all this part of your Essai, where things are 
discussed once you have made my recommended improvement. Yet, I am still inclined to believe that the problem of fluvial tides (with 
backwater present instead of only small waves on the river) cannot analytically be solved, not even by successive approximation, and 
not even for a Mediterranean tide. It would be nice to solve numerically or graphically step-by-step several examples of fluvial tides 
and floods based on the general equations. You deserve this because of your sagacity, your dedicated work, your explosive sense to 
earthy realities, concrete and useful things already (and I mean useful in this high sense, as opposed to industrial usage), to overcome 
the degree you have, namely for long purely numerical computations. You also have been creative in constructing numerical solutions 
of equations in partial differentiations, a kind of solution so far available only for simple differential equations. Your very affectionate, 
dSV.

In Letter 19, dated 10 July 1876, dSV returns to his mission, receiving in Letter 31, dated 20 December 1876, a partial 
answer from JB. Both letters are contained in the Supplementary Material. In Letter 33, dated 31 December 1876, JB repeats 
the previous issues on the frictional effect of waves. He also notes that his Essai is still not published, asking dSV to contact 
the printer during his next stay in Paris.

Despite the enormous correspondence in 1877, not a single letter addresses the above problems, and no letter relates to 
the publication of the Essai appearing in that year. The authors of this paper suppose that several letters are not included 
in the Correspondence, because the arrival of JB’s main work in hydraulics would have led to a small comment, at least. The 
correspondence in the years 1878 and 1879 is similar, equally not advancing the problem of the SWEs. Only in Letter 10, 
dated 10 May 1880, JB returns to the SWEs, see Supplementary Material.

From 1881 to 1885, no additions were made to the SWEs. dSV wrote his last letter on Dec. 10, 1885, and passed away 
within less than a month on 6 January 1886. A great mechanical engineer and an outstanding human had closed his eyes. 
At this point, the authors would like to draw the readers’ attention to historical publications dealing with the SWEs. These 
include, among others, Dooge [35], reviewing both dSV’s and JB’s approaches for steady and unsteady flows, including the 
classification of non-uniform flows. As to the SWEs, he incorrectly attributes the system of equations valid for the wide 
rectangular and horizontal channel to Dupuit [26] and Kleitz [36,37], whereas dSV [4] is credited to have presented the 
generalized 1D SWEs. JB’s theories are evidently cited.

4. Further developments of the unsteady flow theory

Despite the strong contribution of both dSV and JB to the SWEs, others have also studied the issue. The following deals 
with a short review of these works, starting in 1871 when dSV published his SWEs, based on Miller and Yevjevich [38].

Partiot [39] describes the celerity of tidal waves based on observations, including a coefficient in the term (g H0)
1/2

accounting for frictional effects. His method was not successful to solve the problem. Partiot [40] summarizes his various 
results in a book, overlooking, however, the fundamental theory of JB.

Based on the SWEs of dSV, and by accounting for streamline curvature effects, Boussinesq [41] finds his formula for 
wave celerity including the curvature term of the free-surface profile. The movement of the center of gravity of gradually 
varied waves is analytically explored, culminating in the description of the solitary wave. Given that JB’s Essai was only 
published in 1877, his 1872 paper was eminently important for his priority in the development of the solitary wave theory. 
Boussinesq [42] enlarges his previous research to continuous flows of arbitrary media, heavy liquids, periodic liquid waves, 
including first- and second-order approximations. Special cases include waves propagating in an infinite reservoir or in a 

44 Not available in the Correspondence.
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rectangular channel. Diffraction processes in liquid waves are also studied. Boussinesq [43] further improves his theory of 
unsteady flows by including the cross-sectional velocity distribution, deriving an improved equation for wave propagation 
based on the momentum equation.

Graeff [44,33] studies unsteady flows by the reservoir storage equation, an early approach of the flood routing procedure, 
thereby neglecting dynamic effects. He applies the method to the Pinay Dam in France.

Herschel [45] investigates waves generated by rapidly opening a gate that controls a reservoir. Based on the test data of 
Darcy and Bazin [10] and own data, both the wave celerity and the free-surface profile versus time are detailed.

Rayleigh [46] presents an alternative to the solitary wave theory previously described by JB. He realized the work of JB 
only at the proof reading stage.

Kleitz [37] discusses the propagation of flood waves, with results similar to those of dSV. Frictional effects are included 
by a coefficient. His paper was an answer to JB [31], thereby mentioning an unpublished work [36]. Based on this paper, 
the credit for the SWEs definitely goes to dSV.

Comoy [47] details the various aspects of tides in rivers, their movement and the bores they create. This work is largely 
descriptive.

Lechalas [48], author of a book on river engineering, discusses flood flows by a modified reservoir storage equation. He 
details the approach of Kleitz [37].

Bazin [49] details the coefficients provided by the theory of JB using his experimental data. He simplifies JB’s method to 
allow for easy access in practice.

Note that until dSV’s death in early 1886, no significant addition to the knowledge of both dSV and JB has been provided. 
In the ensuing survey, only additions pertinent to the topic of the SWEs and their solution are listed.

Basset [50] summarizes the wave theories available at the time, in discussing assumptions and derivations. His results 
relate to wave propagation and the shapes of long waves. The solitary wave and other wave types are also addressed.

Massau [51,52] introduces a novel principle to graphically integrate partial differential equations, such as the SWEs. His 
principle is currently known as the Method of Characteristics. For arbitrary curves along which the derivatives exist, flow 
depths h and velocities V are determined successively. Discontinuities are propagated along the characteristic curves. For 
unsteady flows, the characteristics represent the movement of two infinitesimally small waves, including the waves propa-
gating up- and downstream of the point considered. These waves may become of finite height once bores are developed.

Ritter [5] considers the dam break wave, i.e. the instantaneous and abrupt release of a water body in a rectangular, 
prismatic, horizontal and frictionless channel, thereby determining with the simplified SWEs the velocity and flow depth 
advances in terms of streamwise location and time. He based his analysis on the SWEs derived by dSV, yet neither citing 
this paper, nor the work of JB.

Wheeler [53] presents a book on tidal rivers, including the history, the hydraulics, effects of friction, the disturbances 
and mixing of fresh and salt water, the tidal bars at river mouths, the littoral drift, and examples of tidal rivers. This book 
is mainly descriptive, but counts as one of the first on this topic. The names of dSV and JB are not mentioned.

Lévy [54] verifies the SWEs devised by dSV. Tides in canals are considered, thereby accounting for frictional effects. 
A wave extinction coefficient is defined to include the latter effect. This semi-theoretical approach results in improved 
knowledge as compared with that of dSV or Airy. The results were applied to the Suez Canal, with the computed wave 
celerities much lower than those observed.

Haerens [55] appears to be the first satisfying dSV’s wish to express the SWEs in finite difference form. Two examples 
are considered, namely (i) determination of the wave profiles and the hydrographs for a given discharge hydrograph, and 
(ii) the waves upstream of a river junction for a given tide.

Bourdelles [56], in his PhD thesis, considers the theory of wave propagation of translation waves, to check how closely 
it matches prototype observations.

Flamant [57] successfully summarizes the complicated works of, mainly, JB. This book is still considered an excellent 
source to retrieve facts before reading the original texts of JB.

Gwyther [58] studies long waves analytically, including the first approximation in the most general manner. The steady 
motion of long waves is also considered by finding the differential equation to be satisfied by the velocity potential.

Seddon [59] is the author of a paper relating to river hydraulics; he considers wave propagation in arbitrary river sections, 
and propagation of flood waves. His theory is also known as the Kleitz–Seddon approach in hydraulics.

Cornish [60] describes waves without details to their hydraulics. The book includes the size and celerity of deep-sea 
waves, sediment transport by sea waves, and steady and progressive waves in rivers. This book includes photos of waves.

Cisotti [61] is the first to consider SWEs with a perturbation analysis, thereby restricting himself to small wave heights 
and uniform velocity distribution.

Levi-Cività [62] presents a theoretical study on wave motion developing the concept of absolute and relative discharges 
by introducing complex variables. He generalizes the Stokes–Rayleigh theorem.

Bakhmeteff [63] considers in his book free-surface flows, providing the main formulas for surge propagation and wave 
height.

von Mises [64] outlines a method to generally study the gradual damping of translation waves subjected to the effect of 
roughness. A perturbation analysis yields results that were previously obtained by Boussinesq [31].
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Lord Rayleigh [65] finds that a long wave of finite height is able to propagate in still water only by a change of shape, 
because it is impossible otherwise to satisfy the requirement of a free surface for a steady long wave, if the wave height 
above the original water level is determined, unless its square term is neglected.

Palatini [66] studies analytically the effect of a non-horizontal bottom on wave propagation. The integration of the 
governing wave equation is reduced to a single fourth-order partial differential equation.

Alibrandi [67] offers an analytic treatment of wave propagation, comparing his results with those of JB. By considering 
flood waves both in rivers and in straight channels, the latter are found to be less difficult to integrate.

Johnson [68] compares the surge propagation with the hydraulic jump in a frictionless rectangular and horizontal chan-
nel, finding the corresponding equations.

Schoklitsch [69] provides the first experimental data to the dam break wave, and expands the theory of Ritter [5] by 
accounting for frictional effects. He also demonstrates that the latter have a significant influence on the wave front, whereas 
the remainder of the dam break wave is hardly affected by wall friction.

Maillet [70] neglects the two dynamic terms [∂V /∂t + V ∂V /∂x] and compares the ratio of free-surface slope to the 
bottom slope of many rivers, concluding that all flood peaks attenuate; sharp peaks are found to attenuate even more 
strongly. Additional elements of flood flows are derived based on the simplified model.

From 1920 to the advent of computers, hundreds of papers on the topic were published; these are not reviewed here. 
Miller and Yevjevich [38] list a total number of publications of nearly 500 up to 1955. As a result of this review, the Method 
of Characteristics would have indeed been a general approach to solve the SWEs, whereas most other approaches are limited 
by, e.g., small wave heights, omission of roughness and slope effects, and expansion to typical bathymetries as encountered 
for tidal rivers. The SWEs proposed by dSV and JB thus constitute the important basis for all hydraulic computations in 
which streamline curvature effects are negligible. The SWEs currently constitute the foundation of open channel hydraulics 
if curvature effects and spatial features are ignored.

5. Conclusions

The technical papers of both de Saint-Venant and Boussinesq are well known by experts in technical physics and applied 
mathematics, despite the French language used, and the complicated writing styles of both authors. The correspondence 
between the two is so far not available. The intention here is that this commented translation may be considered a worth-
while addition to their finally published papers. The thoughts expressed in the many letters shed additional light on the 
development of particularly open channel hydraulics, dealing in this work with the formation of the one-dimensional steady 
and unsteady equations based on both the energy and the momentum principles. The great wish of de Saint-Venant to ex-
pand his findings on unsteady flows including the effects of friction and bottom slopes, both important parameters when 
long distances or long times are considered, as, e.g., for flood waves, was not addressed by Boussinesq. The mathematical 
barriers were too high to provide at this era an adequate solution. In turn, the effect of the velocity correction coefficients 
was adequately dealt with by both, based on the energy and the momentum conservation equations.

One astonishing issue is that de Saint-Venant was in almost all relations the demanding person, whereas Boussinesq 
hardly had any questions to his colleague. More astonishingly, de Saint-Venant became never tired of the partly complicated 
answers of his correspondent, he normally accepted the proposals of Boussinesq, but still tried to further consider in depth 
a certain problem. It may even be stated that de Saint-Venant hardly ever was satisfied with an answer, despite he could 
personally also not advance a certain issue. He greatly profited from Boussinesq, who himself was certainly often astonished 
by the depth of problems considered. One may even state that Boussinesq’s success, particularly until he moved in 1872 
from Gap to Lille, largely rested on the shoulders of de Saint-Venant. It is not clear to the authors whether Boussinesq would 
have survived without his mentor, who fatherly cared for his pupil first, and then his colleague, whose genius was gradually 
realized by him. The Correspondence was therefore a great luck not only for the two writers, but also for the scientific world, 
profiting from a combined and thorough attack of the relevant problems in physics and engineering. The submissiveness of 
Boussinesq toward de Saint-Venant was typical in the 19th century in Mid-Europe, posing yet no problems to the collegial 
way the two profited largely from each other. The Correspondence, in addition to this human closeness, evidences how a 
problem may be better attacked by a combined approach, in which either of the two parties contributes to the successful 
solution to, say, here, the formulation of the SWEs.

The texts of the letters evidence the close personal relationship between the two writers. De Saint-Venant, 45 years 
older than Boussinesq, sometimes reacts like a father, but he is the person asking from his younger colleague persistently 
further answers to his questions. Boussinesq, in turn, tries to solve the problems posed by his colleague, but does not 
advance the problem of unsteady flows including the effects of bottom slope and friction, despite the many proposals of 
de Saint-Venant on how this could be achieved. Except for this particular problem, the two advance the theory of open 
channel flows to almost the point of current knowledge, so that both of them may be considered pioneers of open channel 
hydraulics. Additional items covered in the Correspondence include the further development of the unsteady flow theory 
until 1920, and a short review of de Saint-Venant’s posthumously published paper on gradually varied flow. Given the many 
persons mentioned in the Correspondence, the main individuals are shortly introduced below with their life years and their 
professional positions.
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