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This paper is concerned with the selection of the geometries of test specimens for bulk 
metal characterization tests. Simulations of characterization tests on cylindrical, notched, 
and shear specimens were conducted to allow for the analysis of stress state evolution 
during the tests and to evidence the impact of geometry on stress state. Both stress 
triaxiality and Lode parameter were considered for selecting representative specimens. 
Three choice criterions were regarded: the diversification of stress states as well as the 
constancy and the nearness of stress state indicators to the theoretical values along the 
deformation.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In recent years, many researches have been dedicated to material models in order to predict correctly the material 
behavior under different stress states. The accuracy of these models is crucial for the success of the simulation of bulk 
metalworking processes. Numerical analysis of these processes help reduce the duration and the cost of development phase. 
Metals behavior consist in elastic-plastic modelling and damage modelling. The calibration of elastic-plastic models is gener-
ally based on simple tension or compression tests. The calibration of damage models is based on failure characteristic tests. 
Aside from the choice of the damage model, the selection of the characterization tests is very important and should repro-
duce the stress states involved in the studied metalworking processes. Hereby, the geometry of the tests specimens plays a 
determining role in the resulting stress state in the fracture zone. While numerous researches focused on the determination 
of the fracture limit in sheet metalworking processes such as [1–3], only few publications were found on the fracture limit 
in bulk metalworking processes. Fracture is considered as a defect in some processes like external and internal cracking in 
extrusion or open die forging. In this case, fracture modeling serves as a tool to numerically regulate the process and to 
avoid defects. In other processes like shearing and sawing, fracture is desired and has to be appropriately modeled in order 
to ameliorate the quality of the final product. A number of experimental works have found that ductility in plain strain 
specimens is less than in axisymmetric specimens [4]. Furthermore, failure mechanisms in bulk metal forming are different 
from the ones in sheet metal forming [5]. Consequently, the characterization of bulk metal behavior should be based on 
tests with bulk metal specimens.
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The interaction between stress state and ductile failure mechanisms was proven in the early 1960s in the experimental 
work of Bridgman [6]. Material characteristics such as microstructure, inclusion content, morphology, and grain size, in 
addition to conditions between tool and die, have also an influence on ductility [7].

Bulk metalworking processes are characterized by a dominant compressive stress state with manifestation of tensile 
stresses in specific locations [7]. The dominating stress state in bulk metal forming processes like rolling, extrusion, and 
forging is compression [8]. In wire drawing process, a uniaxial tension is additionally established in the deformation zone. 
Moreover, shear strains induce internal shear cracking [9]. Thus, the characterization tests should be representative of a 
wide range of stress states to allow an accurate prediction of failure during bulk metalworking processes.

The question then arises of how to represent the stress states with measurable variables. The most known stress state 
indicator is stress triaxiality. It is calculated from the first and second stress invariants. Its central role in the ductile fracture 
mechanism was firstly demonstrated by Rice and Tracy [10]. The Bao–Wierzbicki damage model is based on the computation 
of the integral of triaxiality over plastic deformation to predict material failure [11]. This model has found a good application 
in the simulation of tensile tests on notched and unnotched specimens [12]. Oyane’s damage model relates the volume of 
pores during deformation to an integral function of triaxiality [13]. The suitability of this model in predicting ductile damage 
in bulk metal processes was proven by many authors [14,15]. The Johnson–Cook damage model calculates fracture strains 
as a function of triaxiality, strain rate, and temperature [16]. This model is commonly used in the simulation of machining 
processes, ballistic perforation and other metal-forming processes involving high strains, strain rates, and temperatures 
[17–20].

Nevertheless, recent studies demonstrated that the third deviatoric invariant is worth to be considered in failure mod-
eling, especially when a low level of triaxiality is encountered [4,21]. As a result, they suggested combining the triaxiality 
and the Lode parameter as an adequate stress state evaluation in the prediction of failure. The fracture locus is thus rep-
resented as a three-dimensional function in the space of equivalent strain to fracture, triaxiality, and Lode parameter (or 
Lode angle parameter). This method was adopted by many studies, since it helps better illustrate three-dimensional fracture 
mechanisms [22].

Characterization tests allow us to analyze the failure mechanisms and to eventually provide a fracture locus for a specific 
material. The classical bulk tests are tensile tests on round bars like in [23]. In order to cover a wide range of stress states, 
Bao and Wierzbickie [11] have considered compression, tension, and shear tests on axisymmetric and plate specimens. 
Erice and Gálvez [24] have combined quasi-static tensile tests on axisymmetric and plane specimens with dynamic tests on 
axisymmetric specimens. The fracture mechanisms in bulk metal forming result from two crack separation modes: tensile 
stresses and out-of-plane shear stresses [25]. An appropriate fracture locus for bulk metal is based on bulk specimens like 
cylindrical, tapered, flanged, and ring specimens [5]. Furthermore, shear failure properties should be characterized with 
shear and shear dominant test specimens. Meyer and Halle [26] have investigated typical shear tests to measure flow and 
failure behavior at shear and shear-dominated stress states.

Plasticity modeling is also of great interest in the numerical analysis of metalworking processes. It describes material 
behavior in the elastic-plastic zone. One of the most known models is the Johnson–Cook constitutive model [27], which 
allows one to include the effect of work hardening, strain rate hardening, and thermal softening in the calculation of the 
flow stress. This model was used in the simulation of many processes like machining, forging, and ballistic perforation 
[28–30].

The material studied in this work is A1045 steel. The dependency of its flow stress on temperature, plastic strain, and 
strain has been proven [31]. Many authors have calibrated the Johnson–Cook model appropriately for A1045. For this 
purpose, Jaspers and Dautzenberg [32], among others, have used split Hopkinson pressure bar tests (SHPB) at elevated 
temperatures and high strain rates. In the current study, the already calibrated Johnson–Cook plasticity equation is utilized 
in the numerical simulations.

This study was designed to evaluate stress state evolution in bulk metal characterization tests. Only bulk specimens were 
considered. In order to analyze the influence of the specimens’ geometries on the stress state, four types of characterization 
tests were modeled with ABAQUS/Explicit: upsetting tests, smooth round bars for traction, notched round bars for traction, 
and shear tests. In every test type, many specimen variants were compared. The choice of the best specimen geometry was 
based on the observation of triaxiality and the Lode parameter during deformation. The specimens having the most stable 
and accurate stress state variables were retained.

2. Stress state variables

2.1. Stress triaxiality

Stress triaxiality, or triaxiality (η), is a dimensionless ratio expressed with the following equation:

η = σm

σeq
(1)

where σm is the hydrostatic stress:

σm = I1 = σ1 + σ2 + σ3 (2)

3 3
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Fig. 1. Shearing model and selected elements for stress state analysis.

In addition, σ eq is the von Mises equivalent stress:

σeq =
√

1

2
[(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2 = √

3 J2 (3)

σ1, σ2, and σ3 are the principal stresses with the assumption: σ1 ≥ σ2 ≥ σ3.
From Eqs. (1)–(3), triaxiality can be expressed as a function of the first and second stress invariants I1 and J2, as follows:

η = I1

3
√

3 J2
= σ1 + σ2 + σ3

3
√

1
2 [(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2

(4)

2.2. Lode parameter

Lode [33] had the idea to characterize the stress state in thin wall metal tubes with the variable μ, which is calculated 
in terms of the principal stresses as follows:

μ = 2σ2 − σ1 − σ3

σ1 − σ3
; −1 ≤ μ ≤ 1 (5)

This parameter μ is closely related to the Lode angle, which has an influence on the shape of the yield surface [34]. The 
Lode angle (θ ) is related to the second and third deviatoric invariants ( J2 and J3) according to the following equation [35]:

cos 3θ = 3
√

3

2

J3

J 1.5
2

; 0 ≤ θ ≤ π

3
(6)

where J3 is the determinant of the deviatoric stress tensor. While all of the three stress invariants are employed to calculate 
the triaxiality and the Lode angle, any stress state can be mathematically written in terms of these two variables, as follows 
[36]:

3

2σeq

⎛
⎝ σ1

σ2

σ3

⎞
⎠ = 3

2
η

⎛
⎝ 1

1
1

⎞
⎠ + 2√

3

√
J2

⎛
⎝ − cos(θ + 60)

− cos(θ − 60)

cos θ

⎞
⎠ (7)

2.3. Examination of stress state variables in shearing simulation

Moakhar et al. [37] have constructed a three-dimensional finite element model of bar shearing. They proved the existence 
of different stress states in the sheared bar during the deformation before the total rupture. Shearing tool consists of a 
moving section blade, a bar blade, and a bar holder. These are modeled as rigid bodies (Fig. 1). The material constituting 
the bar was aluminum alloy AW6082, and has been modeled using an elastic-plastic formulation and damage prediction 
calibrated with Hooputra’s damage model. The observation of the authors was limited to the evolution of stress triaxiality. 
In this work, a general examination of the evolution of the stress state during the bar shearing process was conducted. 
For this purpose, the triaxialities and Lode parameters of three representative elements in the shear zone were examined. 
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Fig. 2. Evolution of triaxiality and of the Lode parameter in E1, E2, and E3.

Element E1 was located in the contact surface between the bar and the section blade, element E2 was picked from the 
middle of the shear zone, and element E3 was situated at the contact surface between the bar and the bar holder.

Fig. 2 shows the evolution of triaxiality and of the Lode parameter along the deformation at every selected element. 
Element E1 has a positive triaxiality and a negative Lode parameter, which evidences a dominating tension stress state. 
In the case of element E2, triaxiality is negative and the Lode parameter is close to zero, indicating a dominance of the 
shear stress state. The third element E3 has a positive triaxiality and a Lode parameter close to zero, as well as a com-
bined positive–negative peak at a deformation comprised between 0.15 and 0.2. Thanks to this preliminary simulation, the 
existence of various stress states in the deformed metal was proven.

3. Numerical procedure

The aim of this numerical study is to choose representative specimens covering a large range of triaxiality and Lode 
parameters under the restraints of stability of these measures through the deformation and the closeness to the analytical 
values. For this reason, four types of characterization tests were simulated with ABAQUS/Explicit: compression of cylindrical 
specimens, traction of smooth round bars, traction of notched round bars, and shear tests. The geometries of the specimens 
are presented in the next section.

3.1. Global mechanical formulation

The modeled test specimens are considered as three-dimensional bodies subjected to surface and body forces [38]. De-
pending on the geometry of the body, the applied loads, the boundary conditions, and the behavior law of the material, the 
FEM calculation determines the displacement vector u(X, t) of all elements and at every time. X is the vector representing 
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the initial space coordinates. A static problem is described by the momentum conservation equation (Eq. (8)), the material 
constitutive law, the friction conditions on Sσ (Eq. (9)) and the boundary conditions on ST (Eq. (10)).

∇σ + Fv = 0 (8)

where σ is Cauchy stress tensor, ∇ is the gradient operator, Fv is the body force vector applied on the surface SF.

τf = Min

(
μCσN,m

σy√
3

)
(9)

where τ f is the friction shear stress, μC is the Coulomb friction coefficient, σN is the contact normal stress, m is Tresca’s 
friction factor and σy is the yield stress; F f is the he contact force applied on the surface Sσ .

The traction boundary conditions on ST are defined by the following equation:

σ · n = T (10)

where n is an outward unit vector, T is the surface traction applied on the surface S T . The body is assumed to have the 
volume V bounded with the surface S:

S = S F ∪ Sσ ∪ ST (11)

The variational equation is obtained from the principle of virtual work, which claims that for all virtual displacement δu, 
the sum of all mechanical works of a system vanishes. After applying the Gauss divergence theorem, the weak form of the 
equilibrium can be written as follows:

−
∫
V

∇σδu̇ dV +
∫
S F

F vδu dV +
∫
Sσ

F f δu dS +
∫
ST

T δu dS = 0 (12)

3.2. Finite-element discretization

Three-dimensional models were constructed so as to benefit from symmetry conditions. In compression and traction 
tests, eighth models were designed. In the axisymmetric shear tests, quarter models were used. The shear specimen S4 has 
only one symmetry plane and its depth is 10 mm. In all tests, the top side is subjected to a simple tension or compression 
with a constant velocity of 10 mm/s. The dies were modeled with rigid contact elements in compression and shear tests.

From the outputs of the simulations, the stress state is observed along the deformation. The Lode parameter and triax-
iality are calculated based on the central elements of the rupture zone to evaluate the stress state at the point where the 
rupture starts. The analytical values of these parameters can be calculated after understanding the respective Mohr circles 
to the main stress states.

3.3. Sensitivity study and meshing

The utilized element is the quadrilateral element with linear interpolation functions and reduced integration (C3D8R). 
The reduced integration technique permits to avoid locking problems due to plastic incompressibility [39]. A study on the 
sensibility to the mesh size was established for every test in order to distinguish the maximal mesh size that allows the 
stability of the studied triaxiality curve. Three mesh sizes were applied in the rupture zone: 0.3, 0.4, and 0.5 mm. From the 
comparison of the obtained triaxiality evolution (Fig. 3), it was obvious that, from 0.4 mm, the computed results are not 
affected by changing the mesh size.

In order to reduce the computational cost, a fine meshing is applied only in the rupture zone, with a mesh edge size set 
to 0.4 mm. In the rest of the geometry, a coarse meshing is utilized, whose edge size is 2 mm.

3.4. Material plasticity model

The tested material is AISI 1045. It is a medium carbon steel containing around 0.45% carbon, known for its good 
strength, wear resistance, and toughness. The material plasticity is described by the Johnson–Cook model as shown in 
Eq. (13). The present work is a part from a global study on damage modeling of AISI 1045 for the use in metal forming 
processes. Johnson–Cook material modeling for both plasticity and damage is adopted in the general study because of its 
effectiveness in the simulation of forging and machining processes [40]. The equivalent stress is expressed in Eq. (8) as the 
product of three functions, from left to right: strain hardening, strain rate strengthening, and temperature effect:

σeq = (
A + Bεn

p

)(
1 + C ln

(
ε̇

))(
1 −

(
T − T0

)m)
(13)
ε̇0 Tm − T0
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Fig. 3. Evolution of the simulated triaxiality using the mesh sizes 0.3, 0.4, and 0.5 mm in the rupture zone of the specimens: CC1, CT2, NT3, S1, S2, and S3.

Table 1
Constants of the Johnson–Cook plasticity model of AISI 1045 [41].

A [MPa] B [MPa] n C ε̇0 [s−1] m Tm [C◦] T0 [C◦]

553 600 0.234 0.0134 1 1 1480 20

where εp is the equivalent plastic strain, ε̇ is the strain rate; ε̇0 is the reference strain rate (1 s−1), T is the temperature, T0
is the reference temperature, and Tm is the melting temperature. The material constants A, B , n, C , and m are respectively 
the yield stress, the strain-hardening coefficient, the strain-hardening exponent, the strain-rate-dependence coefficient, and 
the temperature-dependence coefficient. These constants were obtained from [41] and are presented in Table 1. Many 
authors have utilized this set of constants in finite-element simulations of cutting [42–44].

In this paper, the effects of strain rate and temperature are not studied. Therefore, the respective parenthesis terms in 
Eq. (8) are set to one, taking a constant strain rate ε̇ = ε̇0 = 1 s−1 and a temperature dependence coefficient m = 0. Eq. (8)
is modified as follows:

σeq = 553 + 600(εp)0.234 (14)
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Fig. 4. Friction models for the contact between the die and the specimen.

3.5. Friction model

The modeling of the friction condition is an important factor in compression tests, which influences the computed 
geometry and loads. In the realistic characterization tests, friction between specimen and die should be reduced with special 
techniques, and then experimentally determined with ring tests [45]. The most common friction model is Coulomb friction 
(Eq. (9)) that assumes the proportionality of the friction shear stress τf to the normal contact stress σN with the constant 
coefficient μC.

τf = μC · σN (15)

In metal forming processes where high contact pressure is induced between the tool and the work piece, the Coulomb 
friction is physically limited by the material shear stress τ max [46]. The combined Coulomb–Orowan friction model takes 
into account both of the above-described contact phenomena and is very popular in bulk metal forming modeling because 
of its simplicity and convenience.

τf = Min(μCσN, τmax) (16)

The maximal shear stress τ max is calculated from the tensile yield stress σy , as the von Mises theory predicts,

τmax = σy√
3

(17)

Another known model is Tresca’s or constant shear friction model. It is utilized when contact pressure is very high and the 
sliding friction is neglected. In this case, the friction shear is proportional to the maximal shear stress with the coefficient 
m, which ranges between zero and one:

τf = m
σy√

3
(18)

Shaw has developed the combined friction with a continuous transition between sliding and sticking friction [47],

τf = ατmax (19)

where α is the ratio between the effective contact surface and the whole contact surface. Many studies have proposed 
a mathematical formulation of this ratio [48]. The friction coefficient and friction factor have to satisfy the relationship 
μC < 0.577 m when von Mises’ yield criterion is adopted [49].

The combination of Coulomb–Tresca friction (Eq. (9)) has been proven to be effective for bulk metal forming simulations 
[49]. Fig. 4 illustrates the most known friction models.

τf = Min

(
μCσN,m

σy√
3

)
(20)

This combined Coulomb–Tresca friction model was applied in the current work, assuming a Coulomb factor μC = 0.1
and Tresca friction factor m = 0.45. the choice of the coefficients is based on previous studies on AISI 1045 in dry friction 
condition [50,51]. Equation (20) can be rewritten as follows:

τf =
{

0.1σN if 0.1σN < 143.67 MPa
0.45√

3
553 if 0.1σN ≥ 143.67 MPa

(21)

Fig. 5 shows the zones where friction was modeled between the tool and the specimen. For the compression test (a), 
the friction was applied on the upper and lower surfaces (S1) of the cylindrical piece. Two geometries were used in the 
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Fig. 5. Friction zones in the different specimens.

Fig. 6. Illustration of the state of uniaxial compression stress.

Fig. 7. Geometries of the compression test specimens: CC1, CC2, and CC3.

traction test (b): smooth and notched cylindrical specimens. Friction was neglected in traction tests since the ends (S2 ) 
were assumed to be fixed with two jaws. In the last test (c), the friction was applied on the upper and lower surfaces (S3) 
of the specimen.

4. Characterization tests modeling

4.1. Cylinder compression tests

Upsetting test corresponds to loading condition with σ1 = σ2 = 0 and σ3 < 0 in the center of the specimen (Fig. 6). This 
leads to η = −1/3 and μ = 1 (Eqs. (4)–(5)) under a frictionless state. According to [52], these values are nearly met when 
the ratio D/H is very small (where D is the initial diameter and H is the initial height). However, in this case, a risk of 
buckling of the specimen is encountered.

Three cylinder geometries having the same initial diameter are considered (Fig. 7). The initial diameter-to-height ratio 
takes the following values: 1, 0.6667, and 0.5, respectively, for specimens CC1, CC2, and CC3.
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Fig. 8. Illustration of the uniaxial tension stress state.

Fig. 9. Geometries of smooth bar specimens: CT1 and CT2.

4.2. Traction tests on smooth round bars

In the general case of uniaxial tension, the principal stresses in the center of the specimen are as follows: σ2 = σ3 = 0
and σ1 > 0 (Fig. 8). Consequently, η = 1/3 and μ = −1 (Eqs. (4)–(5)).

Two geometries are modeled with the same initial diameter of the reduced section (D0) and different initial distances 
between shoulders (L0) (Fig. 9).

The selected L0/D0 ratios are 2 and 4, respectively, for CT1 and CT2.

4.3. Tests on notched round bars

The notch has to increase the triaxiality in the minimal cross-section zone of the specimen [53]. The initial triaxiality in 
the center of the geometry can be written as a function of the radius of the minimal cross section (a) and the notch radius 
in the notched round bar (R) [6,54].

η = 1

3
+ ln

(
1 + a

2R

)
(22)

In this section, four cylindrical notched specimens having the same minimal cross-section diameter (D0) and maximal 
diameter (D1) are compared (Fig. 10).
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Fig. 10. Geometries of the notched bar specimens: NT1, NT2, NT3, and NT4.

Table 2
Theoretical values of triaxiality in the notched round specimens.

Specimen NT1 NT2 NT3 NT4

R 2.5 5 10 12.5
η 1.017 0.732 0.552 0.512

Fig. 11. Geometries of the shear specimens: S1, S2, and S3.

The theoretical values of triaxiality according to Eq. (22) are listed in Table 2. The Lode parameter takes the value 
μ = −1, since the stress state is an axisymmetric tension [55].

4.4. Shear tests

Pure shear loading is characterized by σ3 = −σ1 and σ2 = 0 in the critical zone where rupture occurs. Consequently, 
η = μ = 0 (Eqs. (4), (5)). Three geometries are compared (Fig. 11).

In these specimens, the shearing condition in bulk metal is reproduced in a small area whose height is 1.25 mm and 
width s = 0.5 mm in all types of specimen. Specimens S1 and S2 are axisymmetric, unlike specimen S3. A combined friction 
model is applied between the specimens and the dies.
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Fig. 12. Comparison of the evolution of triaxiality and the Lode parameter in simulated: a) upsetting tests, b) traction on smooth round bars, c) traction on 
notched bars, d) shear tests.

5. Results and discussion

The simulated stress state variables in the critical element are represented and analyzed in Fig. 12. In all tests, the stress 
state observation is carried out until a strain of 0.2. This choice is based on the study of Moćko [56]. He has calculated the 
true stress–true strain curve from tensile tests on cylindrical specimens. The material failure occurred at a true strain of 0.2.
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Table 3
Theoretical and computed values of triaxiality in the notched round specimens.

Specimen NT1 NT2 NT3 NT4

Theoretical triaxiality 1.017 0.732 0.552 0.512
Computed triaxiality 1.080 0.790 0.623 0.583
Deviation 6% 8% 13% 14%

Fig. 13. Positioning of the selected bulk characterization of test specimens in the triaxiality–Lode parameter space.

In the upsetting tests, the triaxiality of specimen CC3 is relatively more stable during loading and converges to −0.287, 
which approaches the analytical value −1/3. The Lode parameter converges to the theoretical value 1 for all specimens. In 
general, the deviation from the theoretical values of η and μ decreases with decreasing the D/H ratio of the upsetting 
specimens. Furthermore, specimen CC3 has the most stable stress state through the deformation.

We can see that the triaxiality of the central element of smooth traction specimen CT2 converges to the theoretical 
value 0.33 from a strain of 0.055. The Lode parameter calculated in the central element of this specimen converges to 
the theoretical value −1 at the strain 0.055 too. We conclude that the values of η and μ are closer to the theoretical 
values when the ratio L0/D0 is larger. Consequently, specimen CT2 is more appropriate for characterization tests. In Table 3, 
theoretical and simulated convergence triaxiality values in the critical elements of notched specimens are compared. The 
deviation in percentage is relatively small for specimens NT1 and NT2.

In the case of specimen NT2, the curve of triaxiality is relatively stable compared to the case of specimens NT3 and NT4. 
It attains the theoretical value −1 before specimen NT1.

The evolutions of the Lode parameter of specimens S1 and S2 are very close to the theoretical value 0. Otherwise, the 
evolution of triaxiality along the deformation in shear tests shows that the most stable curve that approaches the theoretical 
value 0 is to see in the case of specimen S1. Consequently, specimen S1 will be retained.

To recapitulate, four specimens were selected for the characterization of AISI 1045 steel: CC3, CT2, NT2 and S1. To have 
an idea of the diversification of stress states, the convergence values of η and μ of each specimen were plotted in the 
triaxiality–Lode parameter space (Fig. 13).

The simulated characterization tests cover a large range of triaxiality and Lode parameter thanks to the various ge-
ometries. Compression, pure shear and tension stress states were obtained with the typical Lode parameter values 1, 0, 
and −1, respectively. For tension stress state, two variants were realized, having low and high triaxiality. The first and the 
third quadrant in Fig. 13, which represent the domains of equibiaxial tension and equibiaxial compression, respectively, are 
empty because both of these stress states are not considered in this research. Stress states with low Lode parameter values 
(−0.5 < μ < 0.5) apart from pure shear are not achieved. In the characterization of metal sheets, these stress states are 
attained thanks to butterfly specimens [57]. In characterization tests of bulk metal, a Lode parameter of 0.5 can be realized 
with the combination of tension–torsion stresses on cylindrical specimens [58]. Plane-strain tension and compression cases, 
which are realizable with flat specimens, have not been studied here either because this study focuses on bulk specimens.
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6. Conclusion

Ductility modeling is important to predict workability and failure in many bulk metalworking processes. Precise bulk 
material damage modeling requires characterization tests on bulk specimens. Compared to the abundant studies on the 
characterization of metal sheets, characteristic tests of bulk metals have to be developed to reproduce all of the possible 
stress states in bulk metalworking processes. The different stress states are attainable with varying the geometry and the 
loading in the characterization tests.

In this article, the influence of geometry on the stress state has been proven and numerically analyzed. Simulations of 
four characterization test types were carried out: upsetting tests, traction on smooth round bars, traction on notched round 
bars and shear tests. Since damage mechanisms are dependent on all three stress invariants, the analysis of the stress state 
is based on the observation of the evolution of the computed stress triaxiality and the Lode parameter. The consideration of 
both of these variables is necessary to envelop various stress states. In every test category, the most representative specimen 
of the respective stress state was depicted based on the stability through the deformation and closeness to the analytical 
values of both triaxiality and Lode parameter.
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