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The aim of this paper is to present a new classification and regression algorithm based on 
Artificial Intelligence. The main feature of this algorithm, which will be called Code2Vect, 
is the nature of the data to treat: qualitative or quantitative and continuous or discrete. 
Contrary to other artificial intelligence techniques based on the “Big-Data,” this new 
approach will enable working with a reduced amount of data, within the so-called 
“Smart Data” paradigm. Moreover, the main purpose of this algorithm is to enable the 
representation of high-dimensional data and more specifically grouping and visualizing 
this data according to a given target. For that purpose, the data will be projected into 
a vectorial space equipped with an appropriate metric, able to group data according to 
their affinity (with respect to a given output of interest). Furthermore, another application 
of this algorithm lies on its prediction capability. As it occurs with most common 
data-mining techniques such as regression trees, by giving an input the output will be 
inferred, in this case considering the nature of the data formerly described. In order to 
illustrate its potentialities, two different applications will be addressed, one concerning 
the representation of high-dimensional and categorical data and another featuring the 
prediction capabilities of the algorithm.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The use of artificial intelligence to work with data in order to classify, represent or analyze it is a field that is attracting 
the more and more interest from both the scientific and technological viewpoints. Many techniques for this purpose have 
been developed during the last years, such as the Locally Linear Embedding, presented in [1] and largely used for diverse 
applications [2]. The tSNE (t-distributed Stochastic Neighbor Embedding) presented in [3], is widely used for visualizing 
high-dimensional data and discover the latent manifold in which data is embedded, whose dimensionality informs on the 
number of explicative uncorrelated parameters. Other algorithms were designed for extracting hidden regressions from data, 
and then being able to infer a response (output) for a given input. Linear and nonlinear regressions were widely considered 
in a variety of works and diverse applications, decision trees and random forest were proposed for operating in highly 
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Fig. 1. Input space (left) and target vector space (right).

dimensional spaces. In [4] authors perform a review of these techniques and some applications addressed in [5] using 
random forests. Regression techniques operate quite well even in the low-data limit, in particular the ones based on sparse 
sensing combined with the use of separated representation formats. When data is abundant, the most powerful learning 
techniques are the ones based on the use of neural networks, given place to the so-called deep-learning (see [6] and [7] for 
general knowledge on deep learning).

One of the most used applications of deep Learning is visual recognition and image classification [8,9]. Deep learning 
techniques are also used for probabilistic language [10]. Interested readers can refer to [11] and the numerous references 
therein.

One of the most recent algorithms developed for heterogeneous data classification is the so-called Word2Vec, developed 
by Google inc. This algorithm presented in [12] is based on the use of neural networks [13] and the representation of 
each word as a vector representing the probability of having a given neighboring word. This approach tried to circumvent 
the difficulty of defining distances between qualitative data, that is, one could consider that yellow and red are quite 
close because both are representing colors, however, from the spelling of both words such a proximity becomes difficult to 
quantify.

In fields like manufacturing engineering such an approach is particularly relevant because the performances of for exam-
ple a manufactured plastic part depends on the resin used (defined by its commercial appellation or the chemical nature 
also codified but differently), the oven temperature (in a particular unit system), the curing time and the name of the 
employe (e.g., Peter, Paul...).

Now, a process could be characterized from these four parameters: (i) resin, (ii) temperature, (iii) process time and (iv) 
employe surname; and with each one we could associate a label associated with a particular output of interest, a value 
quantifying a particular performance of the formed part.

Thus, each process could be described by a point in a four-dimensional space, each point having a color depending 
on the value associated with the output of interest. The four axes represent the heterogeneous parameters appropriately 
codified. For example, a numeric code must be associated with each resin or operator name (e.g., polyester = 1, vinylester 
= 2,... Peter = 1, Paul = 2,...) in order to represent qualitative data on the resin or operator axes...

However, these choices are totally arbitrary, as well as units in the different quantitative data (temperature and process 
time in our example). Thus, it is evident that calculating distances between processes in such a space has not sense. In 
other words, two points representing two processes could be very close in the four-dimensional space but have outputs of 
interest very different and, oppositely, remote points could imply very similar performances.

This issue is not new, and many authors when considering heterogeneous but quantitative data, normalized them for 
minimizing the impact of units in the computation of distances (for example usual stresses and strain in solid mechanics 
differ in about 12 orders of magnitude, the former being of order 106 and the last 10−6). However, normalization hides the 
issue without really solving it.

In what follows, we propose a technique, sketched in Fig. 1, for mapping points from a representation space to a target 
space equipped of an Euclidean metric allowing the quantification of distances and then applying all the numerical artillery 
using distances, as considered later.

2. Classification and regression strategies

In this section, the methodology sketched in Section 1 is described. We assume that the points in the original space 
(space of representation) consist of P arrays composed on N entries (four in the example considered above). They are 
assumed arrays because they cannot be considered vectors, and are noted by yi . Their images in the vector space are noted 
by xi ∈ Rd , with d � N , this time real vectors subjected to the rules of coordinate transformation. That vector space is 
equipped with the standard scalar product and the associated Euclidean distance. The mapping is described by the d × N
matrix W,
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Table 1
Codification of categorial parameters.

Param. 1 Code
A 10
B 11
C 12
D 13
E 14
F 15
G 16

Material Code
A 1
B 2
C 3
D 4
E 5
F 6

Supplier Code
A 1.5
B 2.5
C 3.5
D 4.5

Param. 2 Code
A 7
B 8

Stable Code
Y E S 1
N O 0.1

x = Wy, (1)

where both the components of W and the images xi ∈ Rd , i = 1, · · · , P must be calculated. Each point xi keeps the label, 
denoted by Oi (value of the output of interest, here assumed scalar), associated with its origin point yi .

We would like placing points xi , such that the Euclidean distance with each other point x j scales with their outputs 
difference, i.e.

(W(yi − y j)) · (W(yi − y j)) = ‖xi − x j‖2 = |Oi −O j|, (2)

where the coordinates of one of the points can be arbitrarily chosen. Thus, there are P
2

2 − P relations for determining the 
d × N (the components of W because the coordinates xi are obtained from W by applying relation (1)).

Linear mappings are limited and do not allow operating in nonlinear settings. Thus, a better choice consists of the 
nonlinear mapping W(y), expressible from the general polynomial form

W(y) =
K∑

k=1

WkPk(y), (3)

where matrices Wk have the same dimensions as W and must ensure the y j → x j mapping.
On the other hand, the interpolation functions Pk(y) can be continuous or discontinuous. In the numerical applications 

described later, standard polynomial or radial functions are considered.
The associated nonlinear problem can be efficiently solved by using an adequate linearization strategy, e.g., Newton’s 

method as presented in Appendix A. Because of the increase in the number of unknowns to be determined, a rich enough 
sampling is required.

The choice of d deserves some comments. The lower d is, the stronger becomes the mapping nonlinearity, however the 
visualization becomes simpler.

When the dimensionality N increases approximations suffer the so-called curse of dimensionality. A very efficient way 
of alleviating it consists in using separated representations [14] from which the mapping reads

W(y) =
K∑

k=1

Wk

N∏
i=1

P i
k(yi). (4)

In the previous expression yi refers to the i-component of y.
The use of these separated representations constitutes a work in progress.

3. Numerical examples

This section addresses two case studies, the first devoted to classification of heterogenous data and the second aiming at 
emphasizing the classification and nonlinear regression capabilities of the technique just introduced.

3.1. Representation of high-dimensional categorical data from manufacturing processes

In this section an application with real and highly non-linear data is presented. We consider a database provided by an 
industry related to a real manufacturing process. The input space concerns six manufacturing parameters collected during 
53 realizations of the process. Parameters concern four categorical parameters: material, supplier, two process parameters 
whose quantification is shown in Table 1 and two other quantitative process parameters. The output is the stability of the 
process itself, also quantitively codified as shown in Table 1. Words are codified by using numbers into the [−1, 1] interval.

In this particular case the input data, yi , ∀i, is grouped in a 6 × 53 matrix (53 realizations of the process defined by 6 
input parameters), with a single scalar target. The vector space xi consists of a 2 × 53 matrix (53 realizations mapped into 
the low-dimensional space d = 2).
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Fig. 2. Residue and tolerance related to the computation of mapping W.

Fig. 3. Vector space representations: output, material, and supplier.

Once the input data and the output is quantitatively codified, we run the algorithm described in the previous section, in 
particular its nonlinear counterpart, that reaches convergence in few iterations (indicated by index i) as Fig. 2 proves, where 
the tolerance, defined by

Tolerance = log
‖Wi − Wi−1‖

‖Wi−1‖ (5)

is depicted at each iteration, with the residue of the Newton iteration (8).
Fig. 3(a) depicts the mapped samples in the vector space, that is xi , where the 53 points representing each realization of 

the manufacturing process have been colored according to its output. As the reader can appreciate, two well differentiated 
clusters are obtained, one concerning all the stable processes and the other grouping non-stable conditions, with only two 
points out of the clusters. It is important to note that better results can be obtained by increasing both the sampling and 
the approximation of the nonlinear mapping, that is K in the approximation (3).

Other than clustering with respect to the output, or using the computing mapping for inferring stability for new process 
conditions, one could also try to extract the relevance of the different parameters on the output. For that it suffices coloring 
the mapped points according to the value of the considered parameter. Figs. 3(b) and 3(c) report this analysis for both 
material and supplied respectively. From these images it can be concluded that materials F and D and supplier D exhibit 
stability. On the contrary, supplier C compromises process stability.

The same analysis was performed by using NN (neural network) with a hidden layer composed of two neurons whose 
training was ensured by data yi and the associated stability outputs. The NN is shown in Fig. 4, with 53 data consisting of 
6 inputs, with a single output. The dimension is reduced from 6 to 2 by using 2 neurons in the hidden layer, for emulating 
the low-dimensional space generated by Code2Vect, which is depicted in Fig. 5 where points associated with stable process 
conditions are colored in blue. It can be concluded that clustering is not achieved. Even if we cannot conclude on the 
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Fig. 4. Neural network.

Fig. 5. NN-based model.

Fig. 6. Acoustic absorbers.

superiority of one procedure with respect to the other (because the large number of NN variants), we can conclude on the 
simplicity and efficiency of the Code2Vect proposal.

3.2. Model and regression construction

We consider acoustic systems composed by acoustic resonators, whose simplest structure, the Helmholtz resonator – HR 
– is depicted in Fig. 6a, and involves three main geometric parameters, length (L), section (A) and volume (V ). HR can be 
combined to create more complex acoustic structures as illustrated in Fig. 6b, whose behavior is governed by the dynamic 
system Mξ̈ + Cξ̇ + Kξ = f (where ξ defines the air motion amplitude at every bottleneck) and was deeply analyzed in [15], 
from which the resonance frequencies can be extracted.

Without loss of generality, the acoustic system consider: L1 = L2 = L3, A1 = A2 = A3 and V 1 = V 2, reducing the number 
of input parameters to three, like in the case of the simple Helmholtz resonator. Now 64 different geometrical combinations 
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Fig. 7. Vector space colored with respect to the parameter values (top) and output of interest (bottom).

were considered and the two resonance frequencies computed, both constituting the output to be predicted by the searched 
data-based model.

Results obtained when applying the Code2Vect technique are depicted in Fig. 7, where the two images at the bottom 
represent the vector space with samples colored according to the associated outputs. In the present case, the scalar output 
considered in the mapping construction (Eq. (8)) consists of the norm of the vectors containing both frequencies, i.e. with 
tᵀi = (ω1

i , ω2
i ), |Oi −O j | = ‖ti − t j‖.

From Fig. 7, we can conclude that section and volume (V and L) are inversely correlated with the output, because 
for example yellow color concentrates on the bottom when representing the output whereas it localizes on the top when 
referring to these parameters. The opposite occurs when considering the cross-section area (A). These findings are in perfect 
agreement with the known physics of a Helmholtz Resonator, whose resonance frequency ωr is given by

ωr = c

2π

√
A

V L
(6)

Now, with the model W(y) relating geometrical parameters and resonance frequencies extracted, its predictive capabili-
ties are being tested. For that purpose the model is extracted by using only 60% of the 64 geometrical variants and the rest 
of the samples (the remaining 40% y j) used for validating the predictions, that is, for comparing the predictions, the output 
ti at x j = W(y j)y j interpolated from the output ti at the neighboring samples xi .

The predictions are depicted in Fig. 8; in yellow the samples used as training and in blue the predicted. The deviation 
with respect to the diagonal represents the prediction error that results, as expected, very low for the samples used in the 
training and a bit larger, but lower than 4% for the others.

From the discussion above, one expects that the best model is the one relating the combined parameter A/V L with 
the resonance frequencies, instead of the one that we considered above that considered the geometrical parameters indi-
vidually, that is, L, A, and V . In order to prove the superiority of modeling by considering the best parametrization, Fig. 9
compares the previous prediction with the one obtained by using the combined parameter A/V L that produced almost 
perfect predictions.

However, the physics behind data is not always known to inform the best choice of parameters. A procedure for access-
ing to those most relevant combined parameters constitutes one of our main research activities still in progress. For the 
moment, and in absence of “a priori” information, parameters will be selected and incorporated individually in the model.

4. Conclusions

The classification algorithm presented here enables the representation of high-dimensional heterogeneous data, including 
continuous and discrete, quantitative and categorial. It establishes a mapping between a representation space and a vector 
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Fig. 8. Prediction of the target.

Fig. 9. Predicting the output.

space that is kept low dimensional for facilitating visualization. It allows supervised classification but also making prediction 
from its nonlinear regression nature. Moreover, it enables a very simple representation emphasizing the relevance of the 
parameters involved in the model. Its performances in the low-data limit have been proved.
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Appendix A. Nonlinear modeling

By denoting Wi = W(yi), the Newton proceeds at iteration n

Wn+1,i = Wn,i + �Wi, (7)

that replaced in the nonlinear counterpart of Eq. (2)

(Wiyi − W jy j) · (Wiyi − W jy j) = ‖xi − x j‖2 = |Oi −O j|, (8)

the left hand member reads

(yᵀi (Wᵀ
n,i + �Wᵀ

i ) − yᵀj (Wᵀ
n, j + �Wᵀ

j ))((Wn,i + �Wi)yi − (Wn, j + �W j)y j) =
yᵀi (Wᵀ

n,i + �Wᵀ
i )(Wn,i + �Wi)yi + yᵀj (Wᵀ

n, j + �Wᵀ
j )(Wn, j + �W j)y j−

2yᵀj (Wᵀ
n, j + �Wᵀ

j )(Wn,i + �Wi)yi . (9)

Since each term appearing in Eq. (9) presents the same structure, we develop the linearization for one of these terms:

yᵀ(Wᵀ + �Wᵀ
)(Wn,i + �Wi)yi ≈ yᵀWᵀ Wn,iyi + yᵀWᵀ

�Wiyi + yᵀWᵀ
�W jy j, (10)
j n, j j j n, j j n, j i n,i
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and similarly for the other terms in Eq. (9).
The nonlinear model is approximated according to

�Wi =
K∑

k=1

�WkPk(yi). (11)

Eq. (8) concerns data yi and y j . Hence, by applying the same procedure for any data pair, an algebraic system of equations 
results involving the N × d × K unknowns. Thus, the safe construction of the non-linear mapping requires a rich enough 
sampling, i.e.

N × d × K <
P 2

2
− P (12)

The nonlinear approximation (11) was accomplished by using radial basis based on either the gaussian or the inverse-
quadratic radial kernels, both making use of the distance r

rk = ||y − yk||, (13)

from which both interpolants read

Pk(r) = e−(εrk)
2
, (14)

and

Pk(r) = 1√
1 + e−(εrk)

2
, (15)

with ε affecting the shape of the radial kernel.
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