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The work introduces new advanced numerical tools for data assimilation in structural 
mechanics. Considering the general Bayesian inference context, the proposed approach 
performs real-time and robust sequential updating of selected parameters of a numerical 
model from noisy measurements, so that accurate predictions on outputs of interest can 
be made from the numerical simulator. The approach leans on the joint use of Transport 
Map sampling and PGD model reduction into the Bayesian framework. In addition, a 
procedure for the dynamical and data-based correction of model bias during the sequential 
Bayesian inference is set up, and a procedure based on sensitivity analysis is proposed 
for the selection of the most relevant data among a large set of data, as encountered 
for instance with full-field measurements coming from digital image/volume correlation 
(DIC/DVC) technologies. The performance of the overall numerical strategy is illustrated 
on a specific example addressing structural integrity on damageable concrete structures, 
and dealing with the prediction of crack propagation from a damage model and DIC 
experimental data.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Data assimilation for model updating has become a common practice in structural mechanics activities. It enables to 
produce relevant numerical simulations that are as close as possible to the reality, and consequently that enable to pre-
dict at best the behavior of physical systems of interest. The procedure is usually performed from a set of experimental 
observations which are assimilated in a single shot, as for the identification of material constitutive laws for instance, but 
recent applications also lean on the sequential (in time) assimilation of data obtained on-the-fly. In particular, this latter 
approach is a key concept of Dynamic Data Driven Application Systems (DDDAS) in which a continuous interaction between 
in situ experimental data and simulation tools is implemented for control purposes [1]. In such a context, the numerical 
model constantly needs to precisely describe the evolving physical system, so that a real-time dynamical updating of model 
parameters is required inside the retroactive control loop.

It is well-known that the determination of model parameters from indirect and noisy observations usually leads to ill-
posed inverse problems. In order to address this issue, and directly take the various uncertainty sources (modeling error, 
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measurement noise, . . .) into account, a convenient and powerful stochastic framework based on Bayesian inference can be 
employed [2–4]. It constitutes a natural regularization procedure in which a probability density, obtained from the Bayes 
formula, is assigned to the set of parameters to be identified. These parameters are thus considered as random variables 
and the result of the inference is the associated probability density function (pdf), so that assimilation uncertainties may be 
further propagated through the model. However, a well-known drawback of Bayesian inference is its computational com-
plexity which makes real-time simulations and sequential assimilation some difficult tasks. Indeed, the inverse approach 
requires solving the numerical model usually described by PDEs for many combinations of the parameters, which is a costly 
multi-query process. Furthermore, the posterior pdfs have to be explored to derive useful information such as mean, stan-
dard deviation, maximum, or marginals, which requires the computation of multi-dimensional integrals over the parameter 
space. This is classically performed using Markov Chain Monte-Carlo (MCMC) [2] or Sequential Monte-Carlo [5] methods 
which are also computationally intensive [6]. Consequently, the use of Bayesian inference remains nowadays intractable in 
real-time applications such as those envisioned for DDDAS.

In this work, we first present a new formulation of Bayesian inference which is compatible with real-time sequential 
model updating. It is based on the joint use of two advanced numerical techniques inside the Bayesian framework. First, 
and as an alternative to Monte-Carlo techniques, Transport Map sampling [7] is introduced to simplify the post-processing 
of posterior pdfs. It defines a deterministic application between a posterior probability measure to be sampled and a simple 
reference probability measure (e.g., standard normal distribution) [8,9], so that all computations (sampling, numerical inte-
gration, . . . ) can be performed in a straightforward manner from this latter measure. The construction of the application is 
based on a mapping with polynomial structure and results in the solution of a minimization problem. Transport Map sam-
pling goes with convenient sampling error estimates and clear convergence criteria. Furthermore, the natural composition 
of Transport Maps is particularly suited to sequential data assimilation.

Second, we resort to model reduction by means of the Proper Generalized Decomposition (PGD) technique [10] to highly 
lower the computation time. This technique describes the multi-parametric model solution by means of a modal represen-
tation with separated variables and explicit dependency on model parameters. Constructed in an offline phase, the PGD 
solution is then used at two levels in the online phase of the Bayesian data assimilation procedure. On the one hand, due 
to a straightforward model evaluation for any parameter set, it is employed to compute likelihood functions associated with 
posterior pdfs [11,12] and propagate uncertainties on outputs of interest at low cost. On the other hand, the PGD repre-
sentation yields explicit gradient and Hessian information, which leads to a large speed-up in the computation of Transport 
Maps [13].

In order to further increase robustness, we also propose here a procedure to correct model bias during the sequential 
Bayesian inference. This procedure is based on the introduction of a data-based enrichment term, constructed from a com-
parison between the predicted model outputs and the actual data along the assimilation process. The model enrichment 
is defined dynamically and in a stochastic setting; it is propagated in time by means of specific extrapolation procedures. 
We mention that the proposed approach can be viewed as a stochastic version of some preliminary works conducted in a 
deterministic context [14,15].

Eventually, and in order to circumvent technical issues when a large amount of experimental data is available (as in 
the case of full-field measurements coming from digital image/volume correlation (DIC/DVC) technologies), we address the 
topic of data selection. A selection of the most relevant data for the model updating purpose is here performed by means 
of sensitivity analysis, using information directly available in the offline phase.

The overall numerical strategy which is proposed leads to an attractive and very efficient approach to address real-
time, robust, and sequential data assimilation. Its performance is here illustrated on a specific application in the context 
of structural integrity for large-scale structures. The objective in this application is the real-time prediction of crack prop-
agation (e.g., final crack length, or failure probability) in concrete beams by means of a PGD-reduced damage model and 
experimental data sequentially provided by DIC measurements.

The paper is structured as follows: Bayesian data assimilation and posterior sampling using the Transport Map framework 
are presented in Section 2; PGD model order reduction and its benefits in the present context are explained in Section 3; 
the procedure for model bias correction is detailed in Section 4; data selection is addressed in Section 5; numerical results 
are reported in Section 6; eventually, conclusions and prospects are drawn in Section 7.

2. Transport Map sampling in Bayesian data assimilation

2.1. Basics on Bayesian inference

The purpose of Bayesian inference is to characterize the posterior pdf π(p|dobs) of a d-dimensional vector of model 
parameters p ∈ P by means of indirect noisy measurements dobs. In this context, the Bayesian formulation of the inverse 
problem reads [2]:

π(p|dobs) = 1

C
π(dobs|p)·π0(p) (1)

where C = ∫
π(dobs|p)·π0(p)dp is a normalization constant, π0(p) is the prior pdf that is related to the a priori knowledge 

on the parameters (i.e. before the assimilation of data dobs), and π(dobs|p) is the so-called likelihood function. This latter 
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Fig. 1. Illustration of the Transport Map principle for sampling a target pdf.

function corresponds to the probability for the model M to predict observations dobs given a value of the parameter set p. 
Using the classical assumption of additive measurement noise, with pdf πmeas , the likelihood function reads:

π(dobs|p) = πmeas(dobs −M(p)) (2)

and requires multiple runs of the model in order to get M(p).
In the case of sequential assimilation of measurements dobs

i at time points ti , i ∈ {1, ..., Nt}, the Bayesian formulation is 
given by considering the prior at time ti as the posterior at time ti−1:

π(p|dobs
1 , ...,dobs

i ) ∝
⎛
⎝ i∏

j=1

πt j (dobs
j |p)

⎞
⎠ ·π0(p) (3)

with πt j (dobs
j |p) = πmeas

(
dobs

j −M
(
p, t j

))
for a given set of measurements dobs

j , and with the same assumption on mea-

surement noise as before. We highlight that in the previous formulations, no assumption is made on the pdfs or on the 
model.

From the implicit expression of π(p|dobs) (or π(p|dobs
1 , ..., dobs

i )), additional exploration with quantities of interest such 
as means, variances, or first-order marginals, is in practice operated and exploited. These quantities, which are based on 
posterior pdf sampling and large-dimension integrals, are classically computed using Monte-Carlo integration-based tech-
niques such as Markov Chain Monte-Carlo (MCMC). However, such multi-query procedures are much time consuming and 
incompatible with real-time computations; we thus propose an alternative approach in the following section.

2.2. Transport Map sampling

2.2.1. Principle
Transport Map sampling originates from pioneering works dealing with optimal transport [16] which were later adapted 

to Bayesian inference with effective computation tools [9]. The general idea is to build a deterministic mapping M between 
a reference probability measure νρ (associated with pdf ρ) and a target measure νπ (associated with pdf π ), the purpose 
being then to perform a change of variables such that:∫

gdνπ =
∫

g ◦ Mdνρ (4)

In this framework, samples drawn according to the reference pdf ρ can be thus transported by means of the mapping M
in order to become samples drawn according to the target pdf π (Fig. 1). In the same way, a quadrature rule for ρ can be 
transported to a quadrature rule for π . For the considered Bayesian inference context, the target pdf π corresponds to the 
posterior pdf π(p|dobs), while a standard normal Gaussian pdf is chosen as the reference pdf ρ .

From the reference pdf ρ , the purpose is therefore to build the map M :Rd →Rd such that:

νπ ≈ M�νρ = ρ ◦ M−1|det∇M−1| (5)
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where � denotes the push forward operator. To quantify the difference between νπ and M�νρ , the Kullback-Leibler (K-L) 
divergence DK L is introduced:

DK L(M�νρ ||νπ ) = Eρ

[
ln

νρ

M−1
� νπ

]
=

∫
P

[log(ρ(p)) − log([π ◦ M](p)) − log(|det ∇M(p)|)]ρ(p)dp (6)

2.2.2. Computation of the map
The map M is searched among Knothe-Rosenblatt rearrangements (i.e. lower triangular and monotonic maps). This par-

ticular choice of structure is motivated by the properties of unique minimizer of (6), optimality with weighted quadratic 
cost, and computational feasibility [8,9]. The map M is thus parameterized as:

M(p) =

⎡
⎢⎢⎢⎢⎣

M1(a1
c ,a1

e , p1)

M2(a2
c ,a2

e , p1, p2)

...

Md(ad
c ,ad

e , p1, p2, ..., pd)

⎤
⎥⎥⎥⎥⎦ (7)

with Mk(ak
c , ak

e, p) = �c(p)ak
c +∫ pk

0 (�e(p1, ..., pk−1, θ)ak
e)

2dθ . Functions �c and �e are Hermite polynomials associated with 
coefficients ac and ae to be set. With such a parameterization, the optimal map M is obtained by minimizing the K-L 
divergence (6). Using a specific quadrature rule (ωi, pi)

N
i=1 for the pdf ρ (Gaussian quadrature usually), the associated 

minimization problem reads:

min
a1,...,d

c ,a1,...,d
e

N∑
i=1

ωi

[
−log(π̄ ◦ M(a1,...,d

c ,a1,...,d
e ,pi) − log(|det ∇M(a1,...,d

c ,a1,...,d
e ,pi))|)

]
(8)

where π̄ is the non-normalized version of the target pdf. This problem is fully deterministic and can be solved using 
classical algorithms (such as BFGS) with the computation of derivatives (gradient, Hessian) of π̄ (p).

Once the map M is obtained, the quality of the approximation M�νρ of the measure νπ can be assessed through the 
convergence criterion εσ (variance diagnostic, see [9]) defined as:

εσ = 1

2
V arρ

[
ln

νρ

M−1
� νπ

]
(9)

Therefore, an adaptive strategy regarding the order of the map can be derived from the criterion εσ in order to reach a 
prescribed error tolerance. It is fruitful to notice that the numerical cost associated with the computation of εσ is very low 
as integration is performed on the reference pdf ρ and with the same quadrature rule as the one used in the computation 
of the K-L divergence.

2.2.3. Sequential data assimilation with Transport Maps
In the case of sequential inference (assimilation of new data dobs

i at each time point ti ), Transport Map sampling benefi-
cially exploits the Markov structure of the posterior pdf (3) to yield a computation time which is almost constant for each 
assimilation procedure. Indeed, instead of being fully computed, the map between the reference pdf ρ and the posterior pdf 
at time ti is obtained by composition of low-order maps:

(M1 ◦ .... ◦ Mi)� ρ(p) = (
Mc

i

)
�
ρ(p) ≈ π(p|dobs

1 , ...,dobs
i ) (10)

The map M1 represents the coupling between the pdf ρ(p) and the first posterior pdf π(p|dobs
1 ) ∝ πt1 (dobs

1 |p)·π(p). Then, 
each map Mi , i ∈ {2, ..., Nt}, is computed between ρ and the pdf π∗

i defined as:

π∗
i (p) = πti (dobs

i |Mc
i−1(p)).ρ(p) (11)

and corresponding to a posterior pdf affected by an inverse transformation using maps already computed for all previous 
assimilation steps.

The schematic principle of the sequential computation of transport maps is given in Fig. 2. We mention that for the 
assimilation of the first data set dobs

1 , an additional linear map L is computed (Laplace approximation). This linear transfor-
mation step, which acts as a normalization of the parameter space, enables to build an intermediate pdf that is closer to the 
standard normal reference pdf (in the sense that it has approximatively zero mean and identity covariance matrix) which 
improves convergence in the computation of transport maps Mi .
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Fig. 2. Schematic principle of sequential inference with transport maps.

3. Use of PGD model order reduction

3.1. Basics on PGD

Due to the increasing number of high-dimensional approximation problems in engineering activities, model reduction 
techniques have been the object of a growing interest in research and industry to keep such problems tractable. Here we 
deal with model reduction techniques that use low-rank tensor formats, and which are prominent tools for the effective 
computation and representation of high-dimensional solutions. We focus on an appealing technique based on low-rank 
canonical format and referred to as Proper Generalized Decomposition (PGD), which was introduced and successfully used 
in many applications of computational mechanics [10]. Contrary to POD, the PGD approximation does not require any 
knowledge on the solution. It operates in an iterative strategy in which basis functions (or modes) are computed on-the-fly, 
by solving eigenvalue problems.

In the classical PGD framework, the reduced model is directly built in an offline phase from the global weak formulation 
of the problem of interest. It leads to an approximate solution um (PGD representation at order m) of the exact model 
solution u, with a separated form [10]:

um(x, t,p) =
m∑

k=1

�k(x)λk(t)
d∏

i=1

αi
k(pi) (12)

where x, t , and p are space, time, and parameter coordinates, respectively. This solution can then be easily evaluated online, 
computing products and sums of mono-parameter functions.
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3.2. PGD in Bayesian inference

In the formulation (3), the posterior pdf can be explicitly expressed as a function of parameters p only when the model 
is also explicit with respect to p. However, in most engineering applications, the model is derived from some Partial Differ-
ential Equations (PDEs) with implicit dependency on parameters p. This usually requires the full computation of the model 
solution for many values of the parameter set p, which is a costly procedure not compatible with real-time constraints.

In order to circumvent this issue, the PGD technique can be advantageously employed. Indeed, once the PGD approxima-
tion um(x, t, p) is built, an explicit formulation of the non-normalized posterior pdf can be derived. Owing to the observation 
operator O, the set of observables d(p, t) = O (um(x, t,p)) is extracted from the PGD field um(x, t, p), with explicit depen-
dency on p. Therefore, the non-normalized posterior pdf π̄ reads (considering sequential data assimilation here):

π̄
(

p|dobs
1 , ...,dobs

i

)
=

i∏
j=1

πmeas

(
dobs

j − d
(
p, t j

)) ·π0(p) (13)

which leads to cost-effective evaluations of this latter pdf from sampling methods [11,12].
On the other hand, having available a PGD solution is an interesting asset to perform uncertainty quantification and 

propagation. Considering a quantity of interest (QoI) q defined from the operator Q applied on the model solution u, an 
approximation of q with explicit dependency on p can be obtained by applying the operator Q to the PGD solution:

q(p) ≈ Q (um(x, t,p)) (14)

Once measurements have been assimilated with Bayesian inference, parameter samples pk (k ∈ {1, ..., K }) can be drawn from 
the posterior pdf, and associated QoI samples qk (k ∈ {1, ..., K }) can be computed in a straightforward manner as qk = q(pk). 
Therefore, the pdf of q can be easily obtained (using for instance a kernel density estimation (KDE) from samples qk ) and 
post-processed for design or control purposes.

3.3. Transport Map sampling with PGD models

An additional benefit of PGD model reduction can be found in the sampling procedure using transport maps and de-
scribed in Section 2. We remind (see Section 2.2) that the computation of transport maps leans on the minimization of the 
functional defined in (8). With the PGD formulation, partial derivatives of the model solution with respect to parameters p
can be directly and explicitly recovered as:

∂num

∂ pn
j

(x, t,p) =
m∑

k=1

�k(x)λk(t)
∂nα

j
k

∂ pn
j

(p j)

d∏
i=1
i 	= j

αi
k(pi) (15)

then stored in the offline phase. Parameter modes αi
k being usually described by means of finite element functions, the 

derivations are thus performed on one-dimensional shape functions. Furthermore, owing to the PGD representation with 
separated variables, cross-derivatives can be computed from combinations of univariate mode derivatives.

As a result, first- and second-order derivatives of the pdf π̄ are easily accessible which enables the effective (fast con-
vergence), and at low cost, solution of the minimization problem (8) by means of dedicated algorithms using gradient or 
Hessian information (BFGS, trust-region. . . ). This represents a much better option for the computation of transport maps 
compared to concurrent approaches that use function information alone to solve (8) (as in the simplex method).

4. Correction of model bias

4.1. General idea

In the classical Bayesian inference formulation, the forward model M that is evaluated in the likelihood function is 
supposed to be exact in the sense that, once model parameters are updated, numerical outputs should be consistent (no 
bias) with experimental observations. However, engineering applications are very often associated with modeling bias due 
to the difficulty in representing the complexity of physical phenomena of interest. In the present context of stochastic data 
assimilation, the inaccuracy of the model can have a major impact on the quality of the posterior pdf (e.g., the posterior 
mean may diverge in the case of sequential data assimilation). In order to keep a robust approach, it is thus of prime 
importance to address this issue. Some recent works proposed first model correction strategies, as in [17] where modeling 
error computed between low- and high-fidelity models (and thus known a priori) is introduced to improve the Bayesian 
formulation. Nevertheless, quantifying modeling error or assessing it by means of error estimates requires the definition of 
a high-fidelity model, which is often unreachable or unknown.
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Here, we propose an alternative strategy in which the corrective modeling error term that is integrated in the Bayesian 
formulation is directly defined from the data. This data-based strategy shares similarities with those developed in the PBDW 
method [14] or in the definition of hybrid twins [15], even though it is here implemented in a stochastic framework.

We introduce the stochastic estimation residual B, defined at the assimilation time point ti as:

B(xobs, ti) = dobs
i − emeas −M(xobs, ti,p) (16)

xobs represents the vector of spatial coordinates of the measurement points, and emeas is the additive measurement noise. 
This residual, which represents the discrepancy between data and model, is fully computable after data assimilation at 
time ti . Its pdf is obtained from a straightforward propagation of uncertainties on emeas and p.

In the context of sequential Bayesian inference, we decide to take into account at time ti+1 information obtained at time 
ti on the discrepancy between model and data, by considering the corrected model output Mcorr defined as:

Mcorr(xobs,p, ti+1) = M(xobs,p, ti+1) + B̂i→i+1(xobs) (17)

The model bias term B̂i→i+1(xobs) is taken as the extrapolation at time ti+1 of the estimation residual B(xobs, ti) computed 
at time ti . Therefore, the likelihood function at time ti+1 reads:

π(dobs
i+1|p) = πB̂(dobs

i+1 −M(xobs,p, ti+1)) (18)

where πB̂ is the pdf associated with the extrapolated model bias B̂i→i+1.

4.2. Extrapolation procedure

Several techniques may be used to extrapolate the model bias over an assimilation time step. A simple one would be 
to linearly extrapolate the mean and standard deviation of the residual vector B(xobs, ti), independently at each observation 
point of xobs, and approximate the pdf πB̂ by a set of individual Gaussian pdfs. However, a drawback of this procedure 
is that it relies on data alone without any consideration on physics, so that it may lead to inconsistent results. We prefer 
here using a more global extrapolation technique that also involves the model being supposed to provide an informative 
representation of the studied physics, with limited model bias. This way, physics is taken into account and measurement 
noise is filtered by the model.

We first introduce the matrices of mean and standard deviation of the model bias, defined at assimilation time ti as:

Bmean =
[

mean
(

B(xobs, t1)
)

, ...,mean
(

B(xobs, ti)
)]

Bstd =
[

std
(

B(xobs, t1)
)

, ..., std
(

B(xobs, ti)
)] (19)

with mean(.) and std(.) the operators that compute the mean and standard deviation of a random variable using a quadra-
ture rule. These matrices are thus constructed from the collection of mean and standard deviation vectors of B(xobs, t j), 
defined in (16) and which have the size of xobs (potentially large, as for full-field measurements obtained with DIC/DVC). 
The extrapolation is then performed from space and time SVD modes of Bmean and Bstd. In other terms, the SVD decompo-
sitions such that:

Bmean = UmeanDmeanV
ᵀ
mean ; Bstd = UstdDstdV

ᵀ
std (20)

are computed. Vectors Umean and Ustd (resp. Vmean and Vstd) that compose Umean and Ustd (resp. Vmean and Vstd) rep-
resent the space (resp. time) dependency of the model bias. Then, the mean and standard deviation of the extrapolated 
vector B̂i→i+1(xobs) at time ti+1 are computed using linear extrapolations V̂mean and V̂std of SVD vectors Vmean and Vstd, 
respectively. Eventually, the pdf of B̂i→i+1(xobs) is recovered as a multidimensional Gaussian distribution.

We mention that truncation is usually applied in this extrapolation procedure, so that only the first SVD modes are in 
practice used. Furthermore, in order to avoid the increase of computation and storage costs along the sequential data assimi-
lation, and thus keep a numerical strategy which remains compatible with the real-time simulation constraint, the so-called 
Sequential Karhunen-Loeve (SKL) algorithm [18] is used. It enables the fast SVD decomposition of a matrix [M[1,i−1] Mi]
obtained from the horizontal concatenation of matrices M[1,i−1] and Mi , knowing the SVD decomposition of M[1,i−1] . The 
algorithm is based on a QR decomposition in order to retrieve the span of the SVD modes already computed. In the present 
case, M[1,i−1] corresponds to the collection of means or standard deviations of the model bias computed until time ti−1 , 
while Mi corresponds to the mean or standard deviation of the model bias computed at time ti .

4.3. Detection of a model bias with model evidence

The normalization constant C = ∫
π(dobs|p)·π0(p)dp = π(dobs) involved in (1) is also an indicator, denoted model evi-

dence, on the quality of the model. It can be used in practice for model selection in order to determine which model among 
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a class of models is the most likely to have generated the data. Indeed, considering N models {M1, ..., MN } with each 
model Mk depending on the parameter set pk , the posterior pdf that Mk generated the data dobs is:

π(Mk|dobs) = π(dobs|Mk)·π(Mk)∑N
k=1 π(dobs|Mk)·π(Mk)

(21)

where π(Mk) is the prior pdf on the model and π(dobs|Mk) is the integrated likelihood function of Mk . This latter pdf is 
computed by marginalization:

π(dobs|Mk) =
∫

π(dobs,pk|Mk)dpk =
∫

π(dobs|pk,Mk)·π(pk|Mk)dpk = Ck (22)

where Ck is the model evidence associated to the Bayesian inference performed with the model Mk .
Therefore, in the case where the prior pdfs π(Mk), k ∈ {1, ..., N}, are equal, the Bayes factor Fij between two models 

Mi and M j reads:

Fij = π(Mi |dobs)

π(M j|dobs)
= Ci

C j
(23)

and indicates, when Fij > 1 (resp. Fij < 1), that the model Mi is more (resp. less) likely than the model M j to produce 
the considered data dobs. An empirical interpretation of the Bayes factor is given by the Jeffreys scale of evidence [19].

In the present context, the evolution of model evidence C can be monitored along the sequential data assimilation pro-
cess in order to identify when the model M becomes less reliable. In the case where the model evidence drops drastically 
(within a prescribed range), the correction of model bias proposed in Section 4.1 is implemented. Consequently, the model 
correction procedure is used only when necessary.

The computation of the model evidence is not straightforward in practice. In classical sampling methods that aim at 
characterizing the posterior pdf, this quantity is indeed not directly available. However, when using Transport Map sampling, 
the model evidence can be interpreted as the distance between the reference pdf ρ and the posterior pdf pulled-back by 
the Transport Map M (see [7]):

C = exp
(
Eρ

[
log

(
M−1

� π
)

− log(ρ)
])

(24)

This quantity is easy to compute as a quadrature rule with respect to ρ is supposed to be known.
Another advantage of Transport Map sampling in sequential data assimilation, as detailed in Section 2.2.3, is that if the 

model is found to be inaccurate in a given time range, the corresponding maps can be removed in order to retrieve the 
error committed in the estimation of model parameters. Missed measurements can then be re-assimilated once the model 
bias is corrected.

5. Data selection for effective data assimilation

We consider here the framework of full-field measurements obtained from the Digital Image Correlation (DIC) tech-
nique [20]. In such a framework, rich experimental information is available but it may be difficult to handle and post-process 
in the context of real-time Bayesian data assimilation. Indeed, as measurements are compared with model outputs, large 
data sets require more complex computations in the inference procedure. We propose here a numerical strategy that cir-
cumvents this difficulty by filtering the large amount of data and keeping the most relevant ones alone.

5.1. DIC principles

The purpose of DIC is to identify a displacement field u(x) that links two gray level pictures, a reference picture f (x)

and a deformed picture g(x), x representing here the pixel coordinates. Invoking the local gray-level conservation between 
f and g , and considering a global DIC approach applied over the whole measurement zone (Region Of Interest or ROI) made 
of a large number Np of pixels, the field u(x) is determined by minimizing the following nonlinear correlation residual:

1

Np

∑
x∈R O I

( f (x) − g(x + u(x)))2 (25)

For mechanical regularization purposes, the displacement field is expressed in a given FE basis {ψn}, i.e. u(x) =∑
n unψn(x) = �ᵀ(x)U.
To solve (25), the first-order Taylor expansion g(x + u(x)) ≈ g(x) + u(x).∇ f (x) is employed, and an iterative construction 

of u(x) is performed by minimizing:∑ (
f (x) − g̃(x) − ∇ f · δu(k)(x)

)2
(26)
x∈R O I
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where g̃(x) = g(x + u(k)(x)) is the updated deformed image, and δu(k) = u(k+1) − u(k) is the correction at iteration k. The 
minimization of (25) thus comes down to the successive solution of linear systems of the form MD IC δU(k) = b(k)

D IC with:

(MD IC )mn =
∑

x∈R O I

∇ f (x)ψm(x) · ∇ f (x)ψn(x) ; (b(k)
D IC )m =

∑
x∈R O I

( f (x) − g̃(x))∇ f (x)ψm(x) (27)

The vector b(k)
D IC is the residual vector updated at each iteration k, while MD IC is a symmetric positive matrix which is 

computed once for all as it only depends on the reference picture f and the chosen basis {ψn}.
Measurement uncertainty is a crucial aspect when dealing with data assimilation, and Bayesian inference assumes that 

the pdf on measurement error is known. In connection with this point, the previously described global DIC method provides 
a clear estimation of the measurement noise. Indeed, assuming a white noise e f with zero mean and variance γ 2

f affecting 
both pictures f and g , and noticing that the resulting noise e on the measured dofs U reads e =M−1

D IC

∑
x∈R O I 2e f �

ᵀ{∇ f }, 
it is straightforward that mean(e) = 0 and that the covariance matrix on measurement noise is Ce = mean(e ⊗ e) =
2γ 2

f M
−1
D IC . As M−1

D IC is not diagonal, the DIC measurement noise is spatially correlated; the DIC matrix MD IC thus high-
lights spatial correlations in the measurement noise due to the picture texture and the chosen FE basis.

5.2. Selection of DIC data from sensitivity fields

In the context of model updating, the relevance of data is indicated by their sensitivity with respect to parameters of 
interest. Considering a model M(p), the sensitivity of the model output to a given parameter p j in p reads S j(x, p) =
∂u(x, p)/∂ p j (for time-dependent problems, the mean time value t� may be chosen to compute sensitivity quantities). We 
notice that S j can be easily approximated from the computed PGD representation (12), as:

S j(x,p) ≈ ∂um(x, t�,p)

∂ p j
=

m∑
k=1

�k(x)λk(t
�)

∂α
j

k(p j)

∂ p j

d∏
i=1
i 	= j

αi
k(pi) (28)

Cross-sensitivities Si j(x, p) = ∂2u(x, p)/∂ pi∂ p j are calculated the same way.
The sensitivity quantities can thus be computed a priori, in the offline phase of data assimilation and once for all, before 

being used to select the location of the most sensitive measurements for parameter identification. In order to achieve this 
latter target in the context of DIC, and to take DIC measurement noise into account, it is chosen to weight the sensitiv-
ity fields S j by the measurement sensitivity (given by the matrix MD IC ) which represents the signal-to-noise ratio. We 
thus define new sensitivity fields SD IC

j as SDIC
j = MD IC S j ; this way, the measurement uncertainties are propagated to the 

sensitivity fields. Fields SD IC
j are in practice computed by projecting fields S j on the DIC mesh.

Once fields SD IC
j are obtained, they are evaluated for a reference value of p, and the selection of most sensitive data 

is merely performed by considering the nodes on which the field magnitude is the higher. In the case of multi-parameter 
identification, several options can be chosen such as considering the products of individual sensitivity fields, or the mini-
mal/maximal sensitivity among those obtained with dimensionless parameters.

6. Illustrative application: real-time prediction of structural integrity for concrete structures

In this section, we illustrate the overall data assimilation methodology which was set up in the previous sections. The 
target application is a real test-case that involves a large-scale concrete beam with initial crack submitted to a bending 
loading. It is instrumented with DIC measurement devices in order to predict crack propagation, and possibly the collapse 
of the structure, using real-time Bayesian data assimilation associated with a damage model.

6.1. Experimental campaign

The considered experimental test is a three-point bending test on a concrete specimen (Fig. 3). The specimen is a 
prismatic 840 mm × 100 mm × 100 mm beam notched at mid-span on 20% of its height. It is supported on the bottom 
side by two steel cylinders, steel plates being inserted between the cylinders and the beam to prevent indentation due to 
stress concentration. A controlled displacement uimp is prescribed on the top side of the specimen by a tensile test machine 
equipped with an hydraulic actuator. The upper support of the test machine is fixed, and a load cell measures the reaction 
force on this support.

After three adjustment cycles which are carried out in order to fill all gaps related to positioning, a monotonic increasing 
displacement is imposed at the rate of 3 × 10−3 mm/s until the total fracture of the specimen is observed. The associated 
load/displacement curve, measured by the load cell and a LVTD sensor, is shown in Fig. 3.

The test is instrumented with DIC technology, full-fields measurements being performed on the central part of the 
specimen (Fig. 3). For this purpose, a painted speckle pattern is sprayed on the considered surface of the concrete beam, 
and LED panels are added in order to adjust the exposition and contrast of the picture. Furthermore, a prism including a 45 
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Fig. 3. Front view of the experimental setting (left), registered load/displacement curve (center), and measured DIC displacement field in the central part of 
the beam (right).

Fig. 4. Geometry and boundary conditions for the model problem (top), and mesh and boundary conditions used for the computation of the PGD solution 
(bottom).

degree-oriented mirror is placed under the notch in order to be able to use DIC on the bottom side with the same camera. 
That way, the reflection of the bottom of the beam is in the camera axis and the crack opening is visible. DIC pictures are 
taken every 5 s. The Corelli software [21] is then used to post-process the pictures by building a FE mesh with linear triangle 
elements in the zone of interest. We notice that the in situ DIC measurements are used here for sequential data assimilation, 
even though the experimental test is not performed with real-time post-processing due to practical constraints.

Fig. 3 shows an illustration of the displacement field (x coordinate) measured from DIC at an advanced damage state of 
the specimen during the test. The crack inside the specimen is clearly visible owing to the observed discontinuity in the 
experimental displacement field.

6.2. Mathematical model and PGD numerical approximation

In agreement with the experimental setting, a mathematical model is defined on a 3D domain and with boundary 
conditions detailed in Fig. 4. The material behavior is based on an isotropic damage elastic model adapted from [22] (the 
crack closing behavior is not considered here). It is described by means of the following constitutive relations:

σ = (1 − d)Cε ; d(Y , Ad, Y0) = 1 − 1

1 + Ad(Y − Y0)
(29)

in which:
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Fig. 5. Influence of the damage law parameters Y0 (left, for fixed Ad) and Ad (right, for fixed Y0).

• σ (resp. ε) is the Cauchy stress tensor (resp. linearized strain tensor)
• C is the Hooke tensor
• d is the scalar damage variable
• Y = 1

2 〈ε〉+ : C : 〈ε〉+ is the released energy rate, 〈ε〉+ denoting the positive part of ε
• Y0 is the initial threshold on energy rate for damage initiation
• Ad is a scalar brittleness parameter that drives the post-peak behavior.

Consequently, the damage law depends on parameters Y0 and Ad which will be later inferred in real-time from DIC mea-
surements during the sequential data assimilation process. The influence of these two parameters is shown in Fig. 5 by 
considering the response σt = f (εt) to a unidirectional traction test, with σt the traction stress component and εt the 
longitudinal strain component.

Following the works on the formulation of multi-parametric nonlinear PGD models (see [23]), an approximate PGD 
solution to the previous mathematical model is computed in the offline phase. Its expression at order m reads:

um(x, t, Y0, Ad) =
m∑

k=1

�k(x)λk(t)α
1
k (Y0)α

2
k (Ad) (30)

The computation is performed using the LATIN-PGD algorithm [24]. In this context, the geometry is discretized with linear 
cubic (Q8) elements. The displacement uimp is prescribed as a linearly increasing loading from 0 to 4 ×10−4 m; it is applied 
through 100 loading steps. The reference values for material parameters are set to E = 30 GPa (Young modulus), ν = 0.23
(Poisson ratio), Y ref

0 = 216 J m−3, and Aref
d = 2.25 × 10−3 J−1 m3; they stem from an educated guess using experimental 

campaigns on similar materials. The variability of damage parameters is chosen to be centered on the reference values 
(Y ref

0 , Aref
d ) with a 50% variation magnitude. The dimensionless quantities Ȳ0 = Y0/Y ref

0 and Ād = Ad/Aref
d are introduced for 

comparison purposes.
An accurate PGD approximation is obtained with m = 6 modes. The corresponding space modes �k(x), time modes λk(t), 

and parameter modes α1
k (Ȳ0) and α2

k ( Ād) are shown in Figs. 6 and 7. All modes except time modes are normalized, which 
explains the decrease in the magnitude of time modes when m increases (the contribution of each PGD then becomes 
smaller and smaller). We also notice that the first PGD mode corresponds to a full elasticity mode as the corresponding 
parameter modes (α1

1 , α2
1) are unit functions.

6.3. Data assimilation with synthetic measurements

6.3.1. Sequential updating of damage law parameters
From the PGD model detailed above, we now implement the data assimilation strategy based on Transport Map sampling 

and PGD model reduction described in Sections 2 and 3. Dimensionless parameters Ȳ0 and Ād are thus sequentially updated 
within the Bayesian framework. Consequently, at each assimilation time ti and from data dobs

j , 1 ≤ j ≤ i, the following 
posterior pdf is estimated:

π(Ȳ0, Ād|dobs
1 , . . . ,dobs

i ) ∝
i∏

j=1

π(dobs
j |Ȳ0, Ād)·π0(Ȳ0, Ād) (31)

Data should in practice correspond to some mesh dofs computed from DIC. However, for validation purposes, they are here 
simulated from the PGD model. 30 nodes are randomly chosen as measurement points in the central part of the beam (see 
Fig. 8), and displacement data at these nodes are obtained with parameter values Y0 = Y ref and Ad = Aref (i.e. Ȳ0 = Ād = 1). 
0 d



P.-B. Rubio et al. / C. R. Mecanique 347 (2019) 762–779 773
Fig. 6. Representation of the first spatial modes.

Fig. 7. Representation of the first time modes (left), parameter Ȳ0 modes (center), and parameter Ād modes (right).

Fig. 8. Location of the nodes considered as measurement points.

A Gaussian white noise with a standard deviation of 10−6 m is then added to those displacements in order to simulate the 
DIC measurement noise.

The results in terms of sequentially obtained marginals along the assimilation process are shown in Fig. 9. The prior 
pdf π(Ȳ0, Ād) is chosen as a Gaussian distribution with mean (0.9, 1.1) and covariance matrix 0.2 I. We observe that the 
obtained marginals have a large width during the first assimilation time steps, due to the fact that the structure is then 
in its undamaged elastic regime so that displacement data give very poor information on damage parameters. However, 
maxima of the marginals at the final time give the estimation (Ȳ0, Ād) = (1.04, 1.00) of the parameters, which is very close 
to the reference values. We also observe that the convergence in the estimation of Ȳ0 is slower than that for Ād , due to 
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Fig. 9. Successive posterior marginals on Ȳ0 (left) and Ād (center), and cost for Transport Map computation (right), along the data assimilation process.

Fig. 10. Elastic solution in terms of x-component of the displacement field for crack lengths l = 0 mm (left), l = 25 mm (center), and l = 75 mm (right).

different parameter sensitivities. At the final time, the standard deviation of the marginal on Ȳ0 is 0.041 while it is 0.022
for the marginal on Ād .

The associated computation costs are also given in Fig. 9. On the one hand, the dashed line corresponds to the CPU time 
required to compute each transport map using the explicit formulation of the functional alone (zero-order derivative) in 
the solution of the minimization problem (8). On the other hand, the solid line refers to computations using the explicit 
formulation of both functional and its gradient (first-order derivative) computed thanks to the PGD representation (30). In 
addition, the bar chart indicates the final map order which is required at each assimilation step in order to achieve the given 
tolerance on the variance diagnostic (εσ = 10−3). Results clearly show that using the functional gradient highly speeds up 
the computation of the transport maps, especially when the map order becomes large.

We can also explain the changes of map order occurring at time points 32, 36, 38 and 39. During the first time steps, 
the structure is in its undamaged elastic regime (data thus do not provide any knowledge on the parameters) so that the 
posterior pdfs remain very close to the prior Gaussian pdf and first-order transport maps are sufficient to represent the 
mapping with the reference standard normal pdf. Between time points 30 and 40, the change in the posterior pdf is large 
as the structure is subjected to a nonlinear damage behavior. Therefore, higher-order maps are necessary to represent the 
mapping between consecutive posterior pdfs. After this critical stage, and due to short time steps, the evolution of the 
posterior pdf is smooth and first-order transport maps can be reused.

6.3.2. On-the-fly prediction of the crack length
Once the posterior pdfs on parameters are updated at each assimilation time point, uncertainties can be propagated 

through the PGD model in order to predict the behavior of the system, in terms of some model outputs, for future times. 
The output which is considered here is the crack length lT at final time T .

In order to do the link between the PGD damage model and fracture mechanics, a kinematic bridge is built. It involves 
the elastic solution of a beam, with similar geometry and boundary conditions as previously, but in which a vertical crack 
with variable length l is inserted. We assume that the crack is initiated in the right corner of the notch. Different FE meshes 
with ndof dofs are created (their topology depends on the value of l) and the corresponding elastic solutions with prescribed 
unitary displacement are computed in the offline phase. In the present study, the crack length range varies from l = 0 mm 
to l = 79 mm; it is discretized in 80 points so that 80 elastic computations are performed. Fig. 10 shows some of the 
obtained solutions for the particular crack lengths l = 0 mm, l = 25 mm, and l = 75 mm.

A meta-model is then constructed, still in the offline phase, from the 80 available snapshots. For this purpose, snapshots 
are stored in a matrix Y = {Y1, ..., Y80} with Y j ∈ Rndof the displacement vector for the elastic solution j, and the SVD of 
Y is computed as Y =UDVᵀ . U = {U1, ..., Undof } is a ndof × ndof matrix, V = {V1, ..., V80} is a 80 × 80 matrix, and D is a 
ndof × 80 diagonal matrix containing singular values σ j , j ∈ {1, ..., 80}. By truncating the SVD decomposition to NSVD modes, 
the displacement field uSVD(x, l) in the structure with respect to the crack length l can be approximated as:

uSVD(x, l) =
NSVD∑

σkuk(x)vk(l) (32)

k=1
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Fig. 11. Spatial SVD modes in terms of x-component of the displacement field.

Fig. 12. Weighted parameter SVD modes associated to the parameter l.

where functions uk(x) and vk(l) are interpolations obtained from vectors Uk and Vk , respectively. The first six spatial SVD 
modes uk(x) are shown in Fig. 11, and the corresponding parameter SVD modes vk(l) (weighted by the mode magnitude 
σk) are shown in Fig. 12. We observe that a SVD truncation is relevant after a few modes (as singular values σk rapidly 
decrease to zero), that the first two SVD modes correspond to the kinematics with a full-length crack, and that the other 
SVD modes can be seen as localized stitching patches acting along the crack.

From the previous SVD meta-model, the PGD approximation (30), and the continuously updated pdfs on Y0 and Ad , the 
final crack length lT can be estimated in a stochastic sense. The associated pdf reads:

π(lT ) = πu(uSVD(lT ))·π0(lT ) (33)

where π0(lT ) is the prior pdf (based on a priori knowledge on lT ), and πu(uSVD(l)) is the likelihood function obtained by the 
propagation of uncertainties on parameters Y0 and Ad through the PGD model evaluated at time T and at the considered 
measurement points (i.e. um(xobs, T , Y0, Ad)). Such a propagation is in practice performed efficiently using the additional 
use of inverse transport maps [25].

Choosing the prior pdf π0(lT ) as a Gaussian pdf with mean 0.04 and standard deviation 0.013, results on the sequential 
estimation of lT by means of successive posterior pdfs π(lT ) are reported in Fig. 13. We observe that during the first time 
steps, the estimation of the final crack length lT is very coarse, with a large variance, then it improves and converges to a 
mean estimation lT = 0.0372 and a maximum a posteriori estimation lT = 0.0376. In addition, the cumulative computation 
time required to perform both parameter inference and output prediction is given in Fig. 13. The blue part corresponds 
to the CPU time associated with the updating of parameters (Y0, Ad), while the red part corresponds to the CPU time 
associated with the estimation of lT . We notice that all iterations can be performed in less than 5 s (on a standard laptop) 
which is the duration between two successive picture acquisitions. Therefore, the approach can be considered as real-time 
in the present context.
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Fig. 13. Successive posterior pdfs on the output lT (left), and total computation cost at each time step (right).

Fig. 14. Posterior marginals on dimensionless parameters Ȳ0 (left) and Ād (right). The color map indicates the correspondence with assimilation time points.

6.4. Correction of model bias

Keeping the same data assimilation process as in the previous section, a model bias is now introduced by means of a 
non-negligible truncation error in the PGD representation um used to perform Bayesian inference. We choose m = 3, keeping 
synthetic data computed from an accurate PGD model with m = 6. The obtained results in terms of successive marginals 
for parameters Ȳ0 and Ād are given in Fig. 14. We observe that the influence of the model bias remains limited during the 
first time steps, due to the fact that only the first PGD mode has a contribution in the undamaged elastic regime, but it 
later becomes important, leading to shifted marginals and wrong estimation of the model parameters (means are not even 
converging).

To correct the model bias, we implement the procedure proposed in Section 4. The bias is estimated at the 30 mea-
surement points (i.e. 60 dofs) and the stochastic correction is computed by the extrapolation of the SVD modes for residual 
mean and variance. Here, only two SVD modes are kept to represent the model correction. The results obtained with this 
correction of the model bias are given in Fig. 15. We observe that the proposed model correction procedure highly im-
proves the quality of the sequential model updating, eliminating the effect of model bias in the posterior pdfs. Information 
on model evidence is also displayed in Fig. 15, comparing evolutions for the reference data assimilation (performed with 
m = 6) and for the biased data assimilation (performed with m = 3) with or without model bias correction. All evolutions 
are smoothed with a moving average filter. We observe that the model evidence slowly drops off from the reference value 
when using a 3-mode PGD model without any correction. Adding the correction improves the model evidence except in the 
first time steps when the model bias is the lowest (as mostly measurement noise is then extrapolated).

6.5. Selection of most relevant DIC measurements

In this section, we investigate the procedure proposed in Section 5 in order to select the most relevant data among all 
full-field DIC measurements available. For convenience reasons and to keep notations clear, we denote p1 = Ȳ0 and p2 = Ād . 
The first step is to compute sensitivity fields Si = ∂u/∂ pi (i ∈ {1, 2}); this is performed in the offline phase and from the 
PGD model as:

S1(x) =
∣∣∣∣∣

m∑
�k(x)λk(t

�)
∂α1

k

∂ Ȳ0
(Ȳ �

0 )α2
k ( Ā�

d)

∣∣∣∣∣ ; S2(x) =
∣∣∣∣∣

m∑
�k(x)λk(t

�)α1
k (Ȳ �

0 )
∂α2

k

∂ Ād
( Ā�

d)

∣∣∣∣∣ (34)

k=1 k=1
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Fig. 15. New posterior marginals on dimensionless parameters Ȳ0 (left) and Ād (center) obtained after model bias correction, and evolution of the smoothed 
model evidences (right).

Fig. 16. Visualization of the sensitivity fields.

Fig. 17. Sensitivity SDIC
12 along the x-direction (left) and the y-direction (center), and selected 30 most sensitive dofs (right).

where t� , Ȳ �
0 , and Ā�

d are mean values of time t and parameters Ȳ0 and Ād , respectively. In addition, the cross-sensitivity 
field S12 = S1 × S2 is defined in order to get an average sensitivity of the model with respect to both parameters. Indeed, 
when identifying strictly independent parameters, the data selected with respect to the sensitivity of one parameter may 
be insensitive to the other parameters. Fig. 16 shows the sensitivity fields in both directions x (horizontal) and y (vertical).

From the computation of sensitivity fields, the most relevant DIC data are selected from weighted fields SDIC
i = MD IC Si

(i ∈ {1, 2, 12}). Fig. 17 shows the map of the field SDIC
12 . The brighter nodes correspond to measurements points with the 

higher sensitivity for the objective of parameter updating under measurement uncertainties. The 30 most sensitive dofs 
among all the DIC dofs are then selected and represented in Fig. 17. These are all located on the right-hand side of the 
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Fig. 18. Successive posterior marginals on Ȳ0 (top) and Ād (bottom), using either the selected most relevant DIC data (left) or randomly distributed 
measurement points (right).

structure which is the area with the larger horizontal displacement. This set of locations is highly non-symmetric due to 
the boundary conditions applied in the mathematical model (the x-component of the displacement field being imposed to 
zero on the left boundary of the structure).

Eventually, we show in Fig. 18 the new marginals on Ȳ0 and Ād obtained along the assimilation process with the selected 
most relevant DIC data. The marginals are compared with those obtained in Section 6.3.1 that were using the same number 
of measurement data (30 displacement dofs) but with random point locations. We observe that the procedure used to select 
the most relevant data leads to a faster convergence of information obtained on the two damage parameters with time.

7. Conclusions

We presented a new numerical strategy for real-time Bayesian data assimilation, mixing Transport Map sampling and 
reduced-order modeling (PGD) tools. It was complemented with procedures for data selection, correction of model bias, and 
uncertainty propagation. The overall strategy, resorting to computations performed in an offline phase, leads to an effective 
approach in engineering activities. It was here implemented and illustrated on a real-life test dealing with crack propagation 
in a concrete beam equipped with in-situ DIC measurements. Based on its innovative and attractive aspects, the proposed 
strategy should pave the way for future research works on the topic.
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