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The aim of this work is to derive an accurate model of two-dimensional switched 
control heating system from data generated by a Finite Element solver. The nonintrusive 
approach should be able to capture both temperature fields, dynamics and the underlying 
switching control rule. To achieve this goal, the algorithm proposed in this paper will make 
use of three main ingredients: proper orthogonal decomposition (POD), dynamic mode 
decomposition (DMD) and artificial neural networks (ANN). Some numerical results will 
be presented and compared to the high-fidelity numerical solutions to demonstrate the 
capability of the method to reproduce the dynamics.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Switched control systems are commonly used in engineering applications such as in the automotive ([1], [2]) or network 
management. The discrete control is built from a small set of control modes indexed by some integers, and the state of the 
system evolves according to the heat equation with a particular heat source for each control mode. The system is closed by 
a switching control rule that selects the right mode during time evolution. Generally, the rule is defined in order to provide 
stability of the global system with states lying into an invariant domain. The flexibility in the definition of the switching 
rule makes switched control systems interesting for many applications and in different situations.

Theoretical questions of stability or reachability have been deeply studied in the literature, especially for switched linear 
systems in both discrete form (when differential equations are discretized) or continuous form ([3], [4]). An important aspect 
of these switched linear systems is that they show a global nonlinear behavior (with a local linear behavior for each fixed 
mode).

The accurate learning of nonlinear dynamical systems is still nowadays a difficult task, and there is no definitive way 
to achieve it. Recent works about Dynamic Mode Decomposition (DMD) and Extended DMD (EDMD, [5]) added with Koop-
man theory to approximate nonlinear dynamical systems by transforming them into (quasi)linear dynamical systems are a 
promising research direction. However, the methodology requires the definition of an a priori dictionary of functions such 
that the space spanned by these functions correctly approximates the Koopman eigenfunctions, and so far there is unfortu-
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nately no general rule to construct it in an optimal way. Some authors have proposed the use of artificial neural networks 
(ANN, [6]) or recurrent neural network (RNN, [7]), but generally this requires big data in the training process, which is not 
suitable in our context because of the prohibitive computational time of simulation data. Specific issues of ANN like the phe-
nomenon of vanishing gradient and exploding gradient possibly make the network training phase low or even nonconvergent 
([8]). Another difficulty arises since we are looking for spatial PDE-based problems, and thus once the spatial discretization 
have been done, the state of the semi-discretized system of ODEs lives in a high-dimensional vector space (the size of the 
state is the number of degrees of freedoms, which can be of order one million or more). Some dimensionality reduction 
strategies (POD, EIM, PGD etc.) have to be included into the global methodology.

1.1. Related work

The machine learning of switched systems has been recently addressed in the context of robotics ([9]), and follows some 
works where the action of the robot onto its environment is learned for better performance purposes. In Lee et al. [9], 
the dynamics of the system is nonlinear but the state space is low-dimensional. Learning phase was done by means of 
a Gaussian process. The mode transition is learned by the use of piecewise smooth transition functions. For the present 
work, the temperature field is globally smooth, so it seems hard to directly detect the phase transition since jumps or 
sharp changes do not really occur in the solution. Still in [9] the authors use numerous trajectories to classify the dynamic 
modes and to learn them. In contrast, in our case it is preferable to learn the dynamics with only one spatiotemporal 
full-order simulation (still because of heavy computational costs). From the full order model we have access to the state 
of controller during time (heating is activated or not), but we do not know the heating rule and we want to retrieve the 
correlation between the controller mode and the temperature field. In PDE’s context, Peitz et al. ([10]) accelerate the search 
of an optimal controller, by first transforming the control problem into a switched control problem, and then by using the 
Koopman operator theory of dynamical system and pointwise evaluations of the solution in order to derive a reduce order 
model for each autonomous system. In Proctor et al. [11], the learning of a control system is managed by separating the 
action of the dynamic system onto the state and the action of the control. By this way it is easier to understand how the 
control acts. This work is done in the context of real data, moreover it requires to perform two singular value decompositions 
(SVD) on the measured states. In the present work we use simulation data that include Finite Element temperature fields at 
different sample times and the history of heating states (array of boolean values). For the temperature fields, we will also 
make use of a suitable reduced basis (classical POD-based approach) for dimensionality reduction.

In the next section, the problem of heating control is introduced and formulated. It will be then implemented into a FE 
code used as a data generator. The switching rule of interest is a hysteresis controller (also known as bang-bang controller). 
This kind of controller is commonly used in mechanical and electrical engineering.

1.2. Organization of the paper

As mentioned above the main goal of this article is to achieve a nonintrusive learning of this switching control heating 
system from data generated by a full-order FE solver. For the sake of clarity and for reproducibility purposes, we have 
decided to detail all the steps of the process, i.e. from the FE solver and data generation to the learning process itself. 
Section 1 will present the switched control heat problem and the Finite Element scheme in use for data generation. In 
Section 2 we give some clarification on the simulation results used as data in the learning process. Section 4 is devoted 
the identification of the dynamical system for each control mode; we will make use of DMD for that. The section 5 is 
dedicated to the machine learning of the switching rule. Because it is highly nonlinear, it seems suitable to use ANNs. 
The ANN structure used for this application will be justified. We will finally end up with the section 6 dedicated to the 
numerical experiments. Some numerical results will be presented and compared to the high-fidelity numerical solutions to 
demonstrate the capability of the method to reproduce the complex dynamics. Concluding remarks and perspectives are 
given into Section 7.

2. Problem setting and high-fidelity solver

Let us consider the case of a two-dimensional medium heated by an electrical resistance. A sensor S is used to measure 
the temperature on a particular point of the plate, denoted by xS. The objective is to control the temperature in such a way 
that it stays between the bounds Tmin and Tmax. The heat loss through the domain boundary is expressed by a heat flux 
φout. Both temperatures Tmin and Tmax are calibrated in such a way that they can be attained in the presence or absence of 
heating. This control is composed of two modes, one for an activated mode (heating of the electrical resistance) and one for 
the disable mode. The switching rule will depend on sensor temperature T (xS). We have a boolean heating state denoted 
by H(t) at current time t .

Schematic 1 briefly summarizes the above switching problem. Mathematically, the problem can be formulated as a 
coupled system made of a partial differential heat problem and a heating state rule governed by an algebraic equation. The 
heat problem can be written
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Fig. 1. Schematic of the switching control heat problem.⎧⎪⎪⎨
⎪⎪⎩

∂t u − ∇ · (κ(.)∇u) = f in � × (0, T )

κ∂nu = −φout on ∂� × (0, T )

u(x,0) = Tmin in �

(1)

where � denotes the plate, κ is the thermal conductivity in the plate domain, equal to κR in the resistance zone �R ⊂ �

and κP otherwise, and f is the control term. Usually, in the switched control community, the notation fσ(t) stands for the 
control term, where σ(t) denoted the selected control index at time t . However in our application there is only one control 
term since if the plate is not activated, the source term is switched to zero, so it is simpler to denote it by f = f (·, t) only. 
The source term f is designed as follows:

f (x, t) = q(x)H(t) (2)

with the heat source function

q(x) = qR χ�R (x) (3)

for a given constant qR > 0, the initial heating state H(0) = H0 ∈ {0, 1} and the transition rule

H(t) ← 0 if (u(xS, t) = Tmax) and (H(t) = 1) (4)

H(t) ← 1 if (u(xS, t) = Tmin) and (H(t) = 0) (5)

The function q(x) is the heat flux emitted by the electrical resistance which is constant over �R and is zero otherwise.
It is known that solutions of heat problems have good regularity properties even for weakly regular boundary conditions 

or source terms (at least continuity by Sobolev embedding in R2). So we can expect that the switching rule activates 
transitions only at sparse times.

Remark 1. The switched control system’s study belongs to the class of the repetitive control (RC), where the desired action 
onto the system is the same over time. The learning of an optimal control for repetitive control has been investigated 
intensively, especially in the robotics context (iterative learning control ILC, see [12], [13], [14]).

2.1. High fidelity finite element solver

In this small section we present the high-fidelity Finite Element solver used to discretize the heat equation presented 
in the latter section. The nature of the heat equation (1) is parabolic. For that reason a backward Euler scheme is used in 
order to achieve unconditional stability with a time step δt that does not depend on the spatial mesh size. The semi-discrete 
problem in time thus reads: given a discrete solution un ∈ H1(�) at time tn = nδt , find un+1 ∈ H1(�) at time tn+1 = (n +1)δt
solution to the problem⎧⎪⎨

⎪⎩
un+1

δt
− ∇ · (κ(.)∇un+1

) = un

δt
+ qR χ�RH(un) in �

κ ∂nun+1 = −φout on ∂�

(6)
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At initial time, one can use for example a uniformly constant temperature field u0 = Tmin and assume that the system is in 
heating mode (H0 = 1). Hence, we have to solve a Poisson-type equation for each time step. The finite element method is 
suitable for this kind of problem, and allow us to deal with different geometries, moreover the problem (6) is classical and 
require no special finite element spaces. Therefore we choose the classical P 1 Lagrange finite elements with FE hat basis 
functions φ̂i(x) to achieve spatial discretization, and we denote by un

h the spatial approximation of un . A discrete variational 
formulation of the problem (6) is set in the FE discrete space. We will denote by un the vector containing all the degrees 
of freedom (in our case it is nothing else but the nodal values of un

h(.)), and by Nx its size. Starting from u0, the successive 
fields un will be computed for each n ∈ {1, ..., Nt} with Nt = T

	t . At discrete time tn , for a known vector un , we search for a 
vector un+1 at time tn+1 solution of the system of equations

Mun+1 + δtKun+1 = δtH(un)Q− δt
out +Mun

i.e.

un+1 = (M+ δt K)−1Mun + δt H(un)(M+ δt K)−1Q− δt (M+ δt K)−1
out (7)

where M is the FE mass matrix, K is the regular FE stiffness matrix, the vector Q has components Qi = qR
∫
�R

φ̂i(x) dx, 

and the discrete boundary heat flux vector 
out is such that 
(

out

)
i
= ∫

∂�
φoutφ̂i(x) dx. The second term in the RHS in (7)

depends on the heating state H(un), which makes equation (7) nonlinear. However, since the heating state is constant 
during a time step δt , the mapping that transforms un into un+1 is linear. Actually, since there are only two discrete states 
in this system (H(t) ∈ {0, 1}), the whole dynamics can be described by two independent linear dynamics plus a nonlinear 
controller that switches from a linear dynamics to the other. The equation (7) can be written in a more condensed form

un+1 = Aun + Bν (8)

where A = (M + δt K)−1M and Bν is the source term that includes heats source and boundary heat flux terms, with 
dependency on the heating states H(un) represented by a boolean variable ν ∈ {0, 1}.

To summarize, the Full Order Model (FOM) (8) is used to generate some data (details will be given in the next section). 
The following section will be devoted to the construction of a Reduced Order Model (ROM) from this data.

3. Data generation

Once the time-dependent problem (1) has been solved by the full-order solver, we save the spatio-temporal data and 
store them in a matrix U. The columns of U are the different vectors un , n = 0, ..., Nt . Each vector un has a large size, thus 
it will be necessary to construct a reduced basis (RB) for dimensionality reduction, then project the snapshots and compute 
the reduced order projection coefficients. In order to achieve it, we will apply a Principal Component Analysis (PCA) on 
these data: first we need to compute the correlation matrix S of elements

Sn,m =
∫
�

un
h(x) um

h (x)dx

by the use of full-order model and save this matrix. Next, to learn the switching rule, the heating state of the system has 
to be known during time. Thus, we collect the states Hn = H(tn) at each discrete time tn and store them in a column 
vector H.

The two matrices U, S and the vector H will compose the dataset used for the learning of the ROM.

4. Construction of a low dimensional space for model order reduction

The discrete vector un lives in the high-dimensional finite element space. The need of a reduced basis is motivated by 
the following observations:

1) the identification of the mapping that transforms each un into un+1 would be hard to determine because of too many 
unknowns and because of a limited dataset;

2) usually, Nx is big compared to the number of time steps Nt , this makes the learning problem ill-posed as we will see 
later.

3) a low-dimensional model of (7) is preferable for computational performance reasons.

The standard way to achieve this is to use an offline procedure in order to find a low-dimensional vector space W K of 
dimension K from a snapshot of the solutions un computed by the finite-element solver during the time. For example, 
we can search to minimize the distance between each vectors un and its projection �K un over W K , i.e. by solving the 
least-squares problem
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min
(K ,W K )

1

2

Nt∑
n=0

‖un − �K un‖2

subject to the accuracy criterion

Nt∑
n=0

‖un − �K un‖2

Nt∑
n=0

‖un‖2

≤ ε

for a certain tolerance ε > 0, ε 	 1. In other word, we will look for an orthonormal set 
(
φk

)
1≤k≤K of RNx , with K 	 Nt , 

such that, for each un , there exists a linear combination of φk that approximates the vector un in an accurate way. The 
vector made of the projection coefficients will then be the low-order representation of the initial vector.

A well-known common method is the Proper Orthogonal Decomposition (POD, [15]), also known as Principal Component 
Analysis (PCA, [16]) in Statistics or Karhunen–Loève (KL, [17]) in probability theory. The idea is to consider a set of snapshots 
(here the discrete solutions un at each time step tn), and perform an eigenvalue decomposition onto the correlation matrix 
S , whose elements are

Sn,m =
∫
�

un
h(x)um

h (x)dx = (
un)ᵀMum = 〈un,um〉M

Consider the diagonal decomposition of S , S = V�Vᵀ , where � is a diagonal matrix of some real eigenvalues λk and V the 
orthogonal matrix of eigenvectors vk ∈ RNt . Assuming that the eigenvalues λk of S are arranged in decreasing order, we 
keep only the K first dominating eigenvalues with their eigenvectors by setting

Vr = V·,1···K and �r = �1···K ,1···K
The matrix �r formed by the orthormal set 

(
φk

)
1≤k≤K is then obtained by the formula

�r = UVr�
− 1

2
r

Finally, noting that

�
ᵀ
r MU = �

− 1
2

r Vᵀ
r UᵀMU = �

− 1
2

r Vᵀ
r S = �rVᵀ

r

where �r = �
1
2
r , we found the low-dimensional representations of U[

�1 · · ·�Nt
] = �rVᵀ

r

In the literature, this coefficients vectors are usually called the POD coefficients.
The projection of each vector un onto W K reads

�K un =
K∑

k=1

(
�n)

kφk (9)

The Eckart–Young–Mirsky theorem gives us the following estimate

∑Nt
n=0 ‖un − �K un‖2∑Nt

n=0 ‖un‖2
=

(∑
k>K λk

) 1
2

(∑Nt
k=1 λk

) 1
2

and the optimality criterion

1

2

Nt∑
n=0

‖un − �K un‖2 ≤ min
rank(V)=K

1

2

Nt∑
n=0

‖un − vn‖2

The more redundant information will be contained in U, the smaller will be K . In our case the spatial operator −∇ · (κ∇·)
has a regularizing effect on the solution, thus we could expect that the information in the matrix U is poor. However the 
switching process during time evolution adds some information entropy.
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5. Dynamics identification procedure

This section is devoted to the identification of the dynamics. We would like to find a simple (linear) model of the form

un+1 = Aun ∀n ∈ {1, · · · , Nt}
The Dynamic Mode Decomposition (DMD) method was originally proposed for such kind of problems using Krylov spaces 
([18]), and a new definition of the DMD method was given using the Penrose–Moore pseudo-inverse ([19]). Below we will 
present a slightly different approach of the DMD method that will be more suitable to our problem.

5.1. The standard DMD method

As an introduction, let us search the matrix A as a solution to a least-squares problem. We define the two training sets

X = [u1 · · · uNt−1] and Y = [u2 · · · uNt ]
where X is the input training dataset and Y the output dataset. Since the equivalence

un+1 = Aun, ∀n ∈ {1, · · · , Nt − 1} ⇐⇒ AX = Y

holds, we look for the matrix A∗ defined by

A∗ = arg min
A

J (A) := 1

2

Nt∑
n=1

‖(AX −Y
)n‖2

The functional J is quadratic (w.r.t. A), hence the optimality conditions implicitly define the matrix A∗ as the solution to 
the following matrix equation

A∗ XXᵀ = YXᵀ

If the matrix XX ᵀ were invertible, we would have an explicit expression for A∗ . Actually it is not the case, because X
is a Nx × Nt rectangular matrix, and thus the rank of XX ᵀ is less or equal to Nt . In fact, there is non-uniqueness of the 
solution to this minimization problem. Consequently, we temporarily add a Tykhonov regularization term to the functional 
J , and we define the matrix A∗

α by

A∗
α = arg min

A
Jα(A) := 1

2

Nt∑
n=1

‖(AX −Y
)n‖2 + α

2
‖A‖2

F

This minimization problem has a unique solution, which is given by

A∗
α = YXᵀ(

XXᵀ + αI
)−1

Passing to the limit when α → 0, we recover the Moore–Penrose pseudo-inverse definition, which is

X † := lim
α→0

Xᵀ(
XXᵀ + αI

)−1 = lim
α→0

(
XᵀX + αI

)−1Xᵀ

And finally, since the matrix X ᵀX is invertible we get

A∗ = YX †

Adding a Tykhonov regularization term to the functional J settled the non-uniqueness of the learning problem. However, it 
gives us the matrix with the lowest 2-norm spectrum.

Another convenient way to settle non-uniqueness is to work in a low-dimensional POD space, then to identify the 
dynamics from the POD coefficients. Roughly speaking, we will not look for a mapping that transforms un into un+1, but 
for a mapping that transforms �n into �n+1. Hence, we consider the new training datasets

X = [�1 · · ·�Nt−1] and Y = [�2 · · ·�Nt ]
As soon as K < Nt − 1, the matrix X Xᵀ is invertible, and we get the matrix

A = Y X†

and we refer to this method as the standard DMD method.
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5.2. A more suitable variant DMD approach

The DMD approach could be used to identify the dynamics of the switched control system. However, we can derive a 
more accurate and suitable DMD model according to the following remarks. As shown in section 1 (equation (8)), the FOM 
is of the form

un+1 = Aun + Bν (10)

with a source term Bν that depends on the heating state ν = ν(un). As explained in the previous section, the standard DMD 
method is a linear model of the form

an+1
r = Ar an

r (11)

Hence the surrogate model (11) cannot handle the RHS in an optimal way, and has a poor description of the switching 
feature as well as the non-linearity. In order to derive a more accurate ROM, we proceed as follows:

• the RHS is captured by increasing the dimension of the input training set X (in the same spirit that the one used in 
Extended DMD, EDMD);

• the switch dependency into the RHS is handled by clustering the training datasets according to the values of the vector
H (ν = 0 and ν = 1);

• the non-linearity hidden in the index ν is approximated by using an Artificial Neural Network (ANN).

Thus, we define the two sets of integers:

N1 := {n such that Hn = 1} and N0 := {m such that Hm = 0}
We then build two training data sets

X1 =
[
�n1 · · ·�n#(N1)

1 · · · 1

]
, Y1 = [�n1+1 · · ·�n#(N1)+1]

X0 =
[
�m1 · · ·�m#(N0)

1 · · · 1

]
, Y0 = [�m1+1 · · ·�m#(N0)+1]

Finally, we get the two augmented matrices(
Aν Bν

) = Yν X†
ν with ν = {0,1}

The ROM will be then in the form

an+1
r = (

Aν Bν
) [

an
r

1

]
= Aν an

r + Bν (12)

for each controlled mode ν .

Remark 2. Even if we expect that A0 = A1 (same low-order heating operator), it is not imposed in this method.

The ROM (12) allows us to quickly predict the behavior of the temperature on the plate during time evolution. However 
we still need to identify the switching control rule. This issue will be treated in the next section.

5.3. The DMD method as a neural network

The DMD method presented in section 4 can also be viewed as a feedforward artificial neural network (ANN) with a 
single layer and no rectifier (a linear activation function) for the output. Indeed, the weights correspond to the coefficients 
of the matrices Aν and the biases to the vectors Bν . The Fig. 2 shows the neural network architecture corresponding to the 
DMD method.

6. Learning of the switched control

Neural networks and deep learning method currently know important developments because of their powerfulness and 
capability to learn nonlinear complex systems from data. This section is devoted to the learning of the nonlinear switching 
control rule. Let us first show that the switching rule in use can be reproduced by a simple 3-layer ANN. The control 
selects the states of the electrical resistance according to the temperature sensor and the previous state. Since the output 
is a boolean which corresponds to a switching mode (0 or 1), this kind of problem could be viewed as a supervised 
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Fig. 2. The DMD model as a one-layer ANN.

classification problem ([20]) where the predictor features are the previous state and the temperature sensor, and the label 
the current state of the electrical resistance.

Several classifiers are commonly used, among them we can cite the Decision Tree ([21]), the Support-Vector Machines
(SVM, [22]), the k-Nearest Neighbors (kNN, [23]), or the Artificial Neural Networks (ANN, [24]).

However, since the controller here performs some simple tests to select the switching mode, it seems more natural to 
use ANNs. It is supported by the proposition below.

Proposition 1. The switching control rule H could be written as a feedforward neural network with a 3-2-1 structure.

Proof. We first recall the definition of the function H

H(t) ← 0 if (u(xS, t) > Tmax) and (H(t) = 1)

H(t) ← 1 if (u(xS, t) < Tmin) and (H(t) = 0)

The test u(xS, t) < Tmin could be done by the function below

b = Tmin

H

u(xS, t)

σ
(

Tmin − u(xS, t)
)w1,1 = 0

w1,2 = −1

Input Output

Extending this basic test, the switching control rule H could be written with the following feedforward neural network

H

u(xS, t)

H

Input

Current state

Hidden Layer 1

Boolean tests

Hidden Layer 2

Boolean operator
“AND”

Softmax

Probability
of next switch state

where the operations at each neuron are as follows.
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Input. The input will be the temperature at the sensor (u(xS, t)) and the previous switching rule (H).
First hidden layer. Three tests are done:
• u(xS, t) < Tmin
• u(xS, t) > Tmax.
• Is the electrical resistance activated?
Second hidden layer. Intersection of the hyperplans (boolean operation “AND”).
Output. The probability of switch state at the next discrete time. �

Remark 3. This result ensures that we could write the switching control rule as a “minimal” feedforward neural network. 
Hence, it justifies the use of an ANN, as long as we use sigmoid activation functions for the hidden layers, and a softmax 
function for the output layer. Some comparisons with other Machine Learning classifiers for the switching control rule 
learning are presented in [25].

For the computation, we use a feedforward neural network with only one hidden layer, and with 5 neurons in the 
hidden layer. The output activation function will be still a softmax function. It could be noted that this architecture does 
not require any knowledge about the switching control rule.

7. Numerical results

We now present some numerical results in order to demonstrate both accuracy and stability of the approach, for both 
short-range and long-range time behavior of the model. We will first detail the computational aspects of data generation. 
Then, we will show the identifying each subsystem dynamics, and the learning of the switching rule. Some numerical 
comments will be discussed, especially for the neural network. Finally, a numerical spectral analysis of the ROM structure 
will be achieved.

7.1. Data generation

All this work deals with synthetic data generated by the high-fidelity FE solver. The physical and numerical parameters 
used, and the geometry of the problem are depicted in Fig. 3. The numerical computations will be done thanks to the 
flexible software FreeFem++ ([26]). Once the FE solver has computed the temperature and the correlation matrix S , the 
data will be sent to the ROM software platform (namely Matlab in our experiments).

The numerical solutions from the FE solver are depicted in Fig. 4 (a) for different times. The ON/OFF switching control 
makes this problem highly dynamic. Moreover, it could be noted that the temperature has a periodic behavior, this is 
due to the repetitive aspect of the control. The evolution of the sensor temperature u(xS, ·) is depicted in Fig. 4 (b) with 
corresponding state history. To quantify the accuracy of the ROM prediction, we use the 400 first time steps for the training 
and the 400 last time steps will be used for the validation.

7.2. Training and prediction from the ROM

In this paragraph, we will quantify the quality of the ROM first for the training process and then for the prediction. First, 
we measure the accuracy of the ROM from the training data set using the following error estimate:

E train
L2 :=

√√√√Nt,train∑
n=0

‖
ran
r − un‖2

M

/√√√√Nt,train∑
n=0

‖un‖2
M

Second, the prediction capability of the ROM is evaluated from the validation data set using the second error estimate:

Evalid
L2 :=

√√√√√ Nt,valid∑
n=Nt,train+1

‖
ran
r − un‖2

M

/√√√√√ Nt,valid∑
n=Nt,train+1

‖un‖2
M

where an
r are the POD coefficients provided by the ROM, which is

an+1
r = (

Aν Bν
) [

an
r

1

]
= Aν an

r + Bν

ũn+1 = 
ran
r

ũn+1(xS) =
K∑

k=1

φk(xS)
(

an+1
r

)
k
, ν ← ν(ũn+1(xs), ν

n)
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Parameter Value

Thermal conductivity (κ) 0.2 W·m−1·K−1

Minimal temperature (Tmin) 20 ◦C
Maximal temperature (Tmax) 21 ◦C
Electrical resistance’s flux (q) 4 W·m−2

External flux (
out) 0.5 W·m−1

Number of iterations for the training (Nt,train) 400
Number of iterations for the validation (Nt,valid) 800
Time step (δt) 4
Number of mesh vertices (Nx) 4997

Fig. 3. Geometry and parameters used for data generation.

Fig. 4. High-fidelity FEM solver outputs.

Table 1
Training and prediction errors for the temperature provided by the ROM.

#POD 
modes

E train
L2 Evalid

L2 Relative 
POD error

EDMD

DMD+rule DMD+ANN DMD+rule DMD+ANN

K = 1 0.3422 0.3426 0.3447 0.3442 0.1431 6.7989E−04
K = 5 0.0885 0.0644 0.0719 0.0719 0.0031 1.6289E−04
K = 10 2.5696E−04 2.5696E−04 2.1409E−04 2.1409E−04 2.8840E−04 5.0326E−04
K = 20 2.1581E−04 2.1581E−04 1.7340E−04 1.7341E−04 2.5607E−04 0.0011
K = 30 2.0798E−04 2.0797E−04 1.6542E−04 1.6541E−04 2.4951E−04 0.0014
K = 60 2.1021E−04 2.1021E−04 1.3723E−04 1.3723E−04 2.2921E−04 0.0018

The matrices Aν and Bν are computed by the DMD method (10), whereas the nonlinear function ν is learned by the use 
of the ANN discussed above. Thus we will consider the case where we use the analytic expression of the control (cf H
expression) and the case where we use the ANN in order to analyze independently the performance of these two methods. 
In the table below, will be also depicted the estimator EDMD defined by

EDMD := 1

‖Y ‖F

{
2∑

ν=1

‖ (
Aν Bν

)
Xν − Yν‖2

F

} 1
2

which is the least-squares error, and quantify the correlation learned from the DMD approach. Finally, we will then take 
different values of K .

The results shown in Table 1 confirms the good accuracy of the ROM for a reasonable number of POD modes (K > 10), 
we even obtain the full-order model accuracy. Moreover, the ROM has a same accuracy onto the validation data set, which 
is not obvious since the learning was done without this data and furthermore, the POD coefficients are computed by an 
iterative process, thus if a small error is committed, the temperature obtained by the ROM will explode ad infinitum. When 
the number of POD coefficients is small, the relative POD error is important, which causes a poor quality of the learning 
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Fig. 5. Long-time behavior of the sensor temperature provided by the ROM+ANN (in black) and high-fidelity solver sensor temperature (in red).

Table 2
Computational time.

Model CPU time (s)

FOM 57.077
ROM+rule 0.060
ROM+ANN 0.119

Table 3
ROM accuracy according to the rate of learning data used.

Rate of learning data used 
(learning data set size)

E train
L2 Evalid

L2

DMD+rule DMD+ANN DMD+rule DMD+ANN

6.25% (50) 0.0613 0.0054 0.3056 0.2954
12.5% (100) 3.2058E−04 3.2058E−04 2.3849E−04 0.1174
25% (200) 2.7401E−04 0.0104 1.8157E−04 0.2201
37.5% (300) 2.3770E−04 2.3770E−04 1.7791E−04 1.7790E−04
50% (400) 2.1581E−04 2.1581E−04 1.7340E−04 1.7341E−04
75% (600) 2.0724E−04 2.0724E−04 1.6871E−04 1.6871E−04

data. However, from the DMD formula, we get two matrices that minimize the least-squares error between the input and 
the output training set. And the fact that the estimator EDMD is small means that we learn non-physical correlations.

Since the dimension of the training set is small, we train our neural network using a quasi-Newton method, moreover 
the initialization of the weights and the biases has an important influence on the optimization process. In order to avoid 
some local minima and to increase the score of the neural network on unknown data set, we do cross-validation. Switching 
control rule learning will be done in Python by using the library Scikit-learn ([27]). As depicted in Table 1, the ROM+ANN 
gives temperature with the same accuracy as the one obtained with the knowledge of the rule. We have thus derived a 
high accurate non-intrusive ROM. Moreover the ROM seems to be asymptotically stable, as it is shown in Fig. 5 where we 
plot the sensor temperature given by the ROM+ANN.

A last attention could be given to the computational time since the main goal of this work is to derive an inexpensive 
surrogate model. The table below presents the computational time between the FOM, the ROM with the rule and the ROM 
with the ANN. So we get a speed-up of order 500 between the FOM and the DMD+ANN ROM. (See Table 2.)

7.3. Influence of the training data set size

In all the previous computations, we have used 50% of the data for the training. However we can wonder what happen 
if we use less data. To answer this question, we consider different numbers of time steps for the learning process, and then 
give the results in the table below. All the computations were done with K = 20.

The more data available for the learning stage the more accurate will be our ROM, thus it is natural that the error 
decreases with the increasing rate of data used. Furthermore, Table 3 indicates that the need of data is more important for 
the neural network training than for DMD.

7.4. Spectral properties of the ROM

We finally close this section with a spectral analysis of the ROM. As soon as we have computed a linear mapping from 
the input training data set to the output training data set, we could perform an eigendecomposition of this mapping for 
spectral property analysis. Checking the spectrum property can also inform us about a correct learning of the Physics or not. 
The model (1) is the heat equation which is inherently dissipative. This implies that the temperature profile will converge 
to zero without external excitation or non-homogeneous boundary condition. This property is fundamental, and we expect 
that our ROM can capture it. The figure below show the spectrum of the two mapping A0 (which corresponds to the OFF 
state) and A1 (for the ON state) in the complex plane. From the ROM form (12), we could remark that if the eigenvalues are 
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Fig. 6. Eigenvalues of the matrices A0 (in blue), for the electrical resistance OFF mode, and A1 (in red), for the ON mode, on the unit circle (in black).

in the unit circle it mean that certain quantities are conserved during time evolution, if at least one eigenvalue is outside 
of the unit disk the temperature will explode, and finally if all the eigenvalues are inside of the unit disk the temperature 
goes to zero. In order to be coherent with the model (1), we expect that all the eigenvalues are inside of the unit disk. (See 
Fig. 6.)

This is the case, we have thus correctly captured the physical nature of the problem. It could be noted that the imaginary 
part is not zero for all eigenvalues which denotes a lack of symmetry.

8. Concluding remarks

The identification of a switching control system from data has been made possible by a combination of POD, DMD and 
ANN.

We have been able to achieve an inexpensive, asymptotically stable, and high accurate reduced order model from simu-
lation data. Furthermore, the use of DMD-type method allows for an easy interpretation of the ROM with available spectral 
properties. This method could be applied to a broad range of switching control systems.
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