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Abstract. The aim of this paper is to propose a theoretical meso-model describing the nonlinear behaviour
of filament wound glass–polyester composite structures based on a progressive damage and failure analysis.
This model has been implemented in the finite element modelling software Abaqus through the user material
subroutine and then validated by experimental investigations. Numerical results have been compared with
experimental data obtained from a set of tests on representative specimens using the strain measurement
technique.
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1. Introduction

Glass reinforced plastic pipes are highly competitive in fluid transport applications owing to their
good mechanical and chemical properties with the added advantage of lightness compared to
other conventional materials [1–3].

Prior to designing or optimizing such structures, numerical modelling is usually required to
test their load-bearing capacity without resorting to experimental tests that could involve huge
costs in terms of time, money and effort. In addition, this method is useful for identifying the
mechanical properties of pipes with the same material constituents rather than expending effort
in experimental characterization.
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Nevertheless, modelling these structures has always remained an important aim from the en-
gineering point of view because of their various complex damage mechanisms, which are hard
to predict numerically, especially when subjected to biaxial loadings such as internal and exter-
nal hydrostatic pressure. In fact, although researchers have become increasingly interested in the
modelling of filament wound composite structures, most of their studies have been limited on
the use of failure criteria [4–8] by referring to mathematical equations in stress or strain space
to separate “failed” from “unfailed” states. In these equations, the damage initiation and evolu-
tion have not been taken into account, and different damage phenomena have been overlooked.
However, the prediction of the load-bearing capacity of composite cylindrical structures func-
tioning under complex loadings consists certainly in the investigation of their stiffness degra-
dation, which should involve the damage initiation and evolution phenomenon [9]. Therefore,
“continuous damage mechanics” is an alternative approach, which consists in the modelling of
damage mechanism effects on material stiffness degradation using state variables. Various re-
search studies aimed at numerical modelling as well as the optimal design of composite pres-
sure vessels have been collected in the review by Liu et al. [10]. In fact, failure in filament wound
composite structures has been well emphasized. However, modelling that deals with progressive
damage has not been deeply studied. In addition, different failure phenomena are not always
taken into account, in particular, the delamination between plies, which is often overlooked.
Moreover, the composite is considered as a shell laminate. Therefore, attempts to develop the
most complete and efficient numerical model of these structures continue to be the object of our
study.

To achieve this aim, an experimental characterization study is essential, which was the pur-
pose of my previous work [11]. Experimental monitoring by acoustic emission of different dam-
age phenomena occurring in the loaded material was carried out. Based on this experimental
study, a mathematical formulation of the model describing the behaviour of the material has
been developed. The mesoscopic scale has been adopted. This choice was based on experimen-
tal observations showing two scales of initiation and evolution of degradation, which are the ply
where the matrix cracks, the fibres break as well as the decohesions between fibres and the matrix
arise and develop; and the interface where the delaminations are located. These delaminations
have been modelled on the basis of fracture mechanics by the development of a cohesive zone
model.

During the development of the ply model, a set of parameters is involved whose identification
has required the use of special experimental devices. A numerical tool has been also deployed
to identify the interface model parameters. As the reliability of the numerical model depends
strongly on the extent of accuracy of its parameters, great attention has been given to this phase
of study.

The analytical ply model has been implemented in Abaqus by the finite element method via
the user material (UMAT) subroutine.

The simulation of the interface behaviour has been performed directly on the CAE interface of
the software. In parallel with the development of the whole model, a set of experimental tensile
tests has been carried out on representative specimens to validate the reliability of the numerical
model.

2. Materials and specimens

The glass fibre used is E6-CR type, Direct Roving 386; it is compatible with polyester resin.
Providing this type of reinforcement to the polyester resin leads to a composite material that is
widely used and is a common component in the manufacture of pipes and pressure vessels, as
well as chemical storage tanks, thanks to its good physical and chemical mechanical properties.
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Figure 1. Longitudinal test specimen.

Figure 2. Cylindrical test specimen.

Regarding the resin, it is an unsaturated polyester of type PolyPol-1023, which is a medium-
viscosity resin with excellent resilience.

The specimens were manufactured by filament winding. First, a tube is obtained by winding
a mandrel with the required draping. The tube is then cut along the longitudinal axis (Figure 1)
according to the standard ISO 8513:2016 [12] to obtain filament wound test specimens having a
small curvature.

Cylindrical specimens (rings) obtained according to the standard ASTM D2290 [13] were also
used in this study (Figure 2).

All the results of this study are based on monotonic tensile and compressive testing performed
using an Instron machine, whose grips were moved at a constant speed of 1 mm/min.

C. R. Mécanique — 2020, 348, no 5, 315-333
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Figure 3. Correlation between the evolution of acoustic activity and the behaviour law [11].

Figure 4. Distinction among the signal waveforms according to each damage mechanism [11].

3. Overview of material behaviour

In a previous work [11], the behaviour of the material under study was deeply characterized
through an acoustic emission investigation. Relevant tensile tests, together with in situ acoustic
emission monitoring, were conducted on ±55◦ longitudinal test specimens.

The evolution of acoustic activity has been correlated to the axial loads as a function of the
apparent deformation within the specimen (Figure 3). Therefore, it is possible to deduce that the
total life of the material under study is divided into three phases:

• Phase 1: The material is linear elastic, where it does not undergo any damage or plasticity.
• Phase 2: The curve begins to lose its linearity slightly because micro-cracking of the resin

begins.
• Phase 3: The material is subjected to significant damage followed by its total ruin.

Then, an unsupervised pattern recognition analysis was conducted on the acoustic emission
signals to distinguish the different types of damage that can occur in this kind of material being
constrained (Figure 4).

Based on these experimental observations, the numerical model describing the material
behaviour has been developed.

C. R. Mécanique — 2020, 348, no 5, 315-333
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The progressive damage noticed experimentally has been considered. In addition, the differ-
ent failure phenomena observed have been considered through the involvement of internal state
variables, related to stiffness degradation, in the constitutive law.

4. Numerical modelling

4.1. Ply model

4.1.1. Mathematical formulation

By relying on continuous damage mechanisms, Barbero [14] developed a damage model for
composite laminates. Based on this model, the behaviour of each ply of the material under study
has been simulated.

According to the experimental knowledge acquired about ply degradation, three damage
variables d1, d2 and d3 are defined and associated with the stiffness decrease in each direction of
the material.

The concept of effective stress introduced by Kasanov [15] and Rabotnov [16] has been
adopted. This concept implies that it is convenient to write the constitutive law for a damaged
material by introducing effective stress σ instead of nominal stress σ.

The mathematical formulation of the model is based on the irreversible thermodynamic
process according to the irreversible behaviour of plasticity coupled with damage progression.
A set of internal variables is then used to define the state of the material throughout time.
Therefore, the Helmholtz free energy ψ=ψ(ε,εp ,D, p,δ) is postulated to describe the dissipative
phenomenon involved and record the history of the solid.

Table 2 lists the state internal variables describing each mechanism as well as its correspond-
ing thermodynamic forces derived from the Helmholtz free energy.

✔ The activation of the plastic dissipation phenomenon is governed by the yield surface
g p = 0, which is a function of thermodynamic potentials (σ,R) in the effective configuration
associated with the internal state variables ε and p, respectively:

g p = g p (σ)−R(p)−R0 = ( fi jσiσ j + fiσi −R(p)−R0)
1
2 = 0. (1)

This formulation is deduced from the Tsai–Wu criterion [17]. Here, fi j and fi are coefficients of
the yield surface depending on the effective stresses at break Fi (i = 1,2. . .6), p is the hardening
variable, R0 is the initial unrecoverable-strain threshold and R(p) is the hardening function.

✔ The energy dissipation caused by damage progression is governed by the surface g d = 0,
a function of thermodynamic potentials Y and γ associated with the internal state variables D
and δ, respectively. This surface delimits a region in the space of thermodynamic forces Y , where
damage does not occur:

g d (Y (D),γ(δ)) =
√

Y N JY N +
√

Y S HY S − (γ(δ)+γ0) = 0. (2)

Here, D is the second-order damage tensor, δ is a hardening variable, γ0 is the initial damage
threshold, J and H are two diagonal tensors controlling the shape of the damage surface whose
terms (J1, J2, J3) and (H1, H2, H3), respectively, can be determined based on the elastic properties
and the ultimate strengths estimated from uniaxial loading tests.

✔ Another consistency condition must be proven to admit the existence of both damage
progression and plasticity: (d g d = 0) and (d g p = 0), respectively.

To solve the nonlinear finite element problem, it is necessary to integrate the constitutive
equation governing the material behaviour. Thus, the tangent constitutive equation is presented.
It is given by

σ̇=C epd : ε̇, (3)

C. R. Mécanique — 2020, 348, no 5, 315-333
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Table 1. Ply model parameters

Properties Values
E11 (Gpa): Longitudinal modulus of the virgin material 55.3

E∗
11 (Gpa): Longitudinal modulus of the damaged material 55.3

E22 (Gpa): Transverse modulus of the virgin material 11.23
E∗

22 (Gpa): Transverse modulus of the damaged material 10.5
G12 (Gpa): In-plane shear modulus of the virgin material 4.5

G∗
12 (Gpa): In-plane shear modulus of the damaged material 1.87

E33 (Gpa): Out-of-plane transverse elasticity 11.23
G13 (Gpa): Out-of-plane axial shear modulus 4.58

G23 (Gpa): Transverse shear modulus 3.25
υ12: In-plane axial Poisson’s ratio 0.322

υ21: In-plane transverse Poisson’s ratio 0.051
υ13: Out-of-plane axial Poisson’s ratio 0.306

υ23: Transverse Poisson’s ratio 0.66
Ft11 (Mpa): Longitudinal tensile strength 505

Ft22 (Mpa): Transverse tensile strength 18
Ft6 (Mpa): In-plane shear strength 34

Fc11 (Mpa): Longitudinal compressive strength 388
Fc22 (Mpa): Transverse compressive strength 18

Table 2. State variables and its corresponding thermodynamic forces

Mechanism State variable Thermodynamic force
Elasticity ε σ=C (D)(ε−εp ) (1)
Plasticity εp σ=C (D)(ε−εp ) (2)

Yield hardening p R = cp
1

(
exp

(
p

cp
2

)
−1

)
(3)

Damage D Y =−1

2
(ε−εp )

dC

dD
(ε−εp ) (4)

Damage hardening δ γ= cd
1

(
exp

(
δ

cd
2

)
−1

)
γ(δ) (5)

C (D) is the damage stiffness tensor; cp
1 , cd

1 and cd
2 are the material parameters.

where C epd is the damage tangent constitutive tensor, which depends on the strain tensor
evolution and the material state.

4.1.2. Identification of parameters

The theoretical model developed in the previous section includes a set of parameters listed
in Tables 1 and 3. These parameters depend on specific material properties whose identification
has been carried out experimentally by following the approach described below.

✔ Normal coefficients of the damage surface
The coefficients J1, J2 and J3 represent the damage effect caused by axial loading on the shape

of the damage surface. Therefore, they are related to the mechanical properties obtained by
tensile testing conducted in the material directions, which are the elasticity moduli E1, E2 and
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E3; Poisson’s ratios ϑ12, ϑ23 and ϑ13; and the ultimate tensile and compressive strengths F1t , F1c ,
F2t , F2c , F3t and F3c .

• J1 represents the fibre breaking effect on the damage surface during longitudinal loading.
To determine this coefficient, the case of longitudinal uniaxial loading is considered:
(σ1 ̸= 0,σ2 = 0,σ3 = 0,σ4 = 0,σ5 = 0,σ6 = 0).
g d = 0 is written as follows:

F 2
t1

S11

(1−d1)3

√
J1 = γ∗+γ0 = 1. (4)

Here, γ∗ represents damage hardening at the imminent break; 1−d1 =C∗
11/C11; C 11 and

C∗
11 are the longitudinal stiffness moduli of the material in the virgin and damaged states,

respectively.
• J2 denotes the effect of matrix failure on the damage surface throughout transverse load-

ing. To determine this coefficient, we consider the case of transverse uniaxial loading:
(σ2 ̸= 0,σ1 = 0,σ3 = 0,σ4 = 0,σ5 = 0,σ6 = 0).
g d = 0 is written as follows:

F 2
2t

S22

(1−d2)3

√
J2 = γ∗+γ0 = 1. (5)

Here, 1−d2 =C∗
22/C22; C 22 and C∗

22 are the transverse stiffness moduli of the material in
the virgin and damaged states, respectively.

• J3 is assumed equal to J2 since it also denotes the effect of matrix failure on the damage
surface.

✔ Shear coefficients of the damage surface
The coefficients H1, H2 and H3 represent the effect of the damage caused by the shear loads

on the shape of the damage surface g d . Therefore, they are related to the mechanical properties
obtained by shear tests. These are the in-plane and out-of-plane shear moduli of the material in
the virgin state (G12, G13) and the damaged state just before the break (G∗

12, G∗
13). The ultimate

shear strengths in the plane and out of the plane (F6, F5) are also required.

• H1 represents the fibre breaking effect on the damage surface during shear loading.
Nevertheless, according to the experiments, during pure shear loading, the damage in
the direction of the fibres is negligible (d1 = 0); so we estimate that H1 = 0.

• H2 and H3 characterize the matrix degradation effect on the damage surface during shear
loading; therefore, they are assumed to be equal.

The in-plane shear loading is considered: (σ6 ̸= 0,σ1 = 0,σ2 = 0,σ3 = 0,σ4 = 0,σ5 = 0).
At the imminent break, g d = 0 is written as follows:

F 2
6

2S66

(1−d2)3

√
H2 = γ∗+γ0 = 1. (6)

Here, 1−d2 =G∗
12/G12; F6, S66, G∗

12 and G12 are determined from the stress versus strain curve of a
shear test obtained by carrying out a tensile test on a longitudinal specimen whose fibre direction
is ±45◦ while assuming that

2ε12 = εxx −εy y , (7)

σ12 = σxx

2
, (8)

where σxx and εxx are the stress and the strain measured in the loading direction, and εy y

represents the strain measured in the transverse direction.
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✔ Coefficients of the yield surface
The coefficients f1, f2, f3, f12, f13, f23, f11, f66 and f22 are directly related to the effective

strengths Fi obtained from uniaxial tensile and compressive tests.

f1 = 1

F 1t
− 1

F 1c
; f2 = 1

F 2t
− 1

F 2c
; f3 = 1

F 3t
− 1

F 3c
(9)

f11 = 1

F 1t F 1c
; f22 = 1

F 2t F 2c
; f66 = 1

F 6
2 (10)

f12
∼=−0.5

√
f11 f22; f13

∼=−0.5
√

f11 f33; f23
∼=−0.5

√
f33 f22. (11)

✔ Hardening coefficients

• δ and p:
As this is a case of in-plane shear stress, g d and g p are written as follows:

g d =
√

H2Y s
22 − (γ(δ)+γ0) =

√
H2σ

2
6

2S66

(1−d2)2 − cd
1

(
exp

(
δ

cd
2

)
−1

)
−γ0, (12)

g p = σ6

F 6
− (R(p)+R0) = σ6

F 6
− cp

1

(
exp

(
p

cp
2

)
−1

)
−R0. (13)

The evolution of the damage variable as well as that of the associated hardening variable is
governed by the kinetic equations

Ḋ = λ̇d dg d

dY
, (14)

δ̇= λ̇d dg d

dγ
. (15)

Furthermore, for plasticity, the evolution of the variables relating to this phenomenon is
governed by the following kinetic equations:

ε̇
p = λ̇p dg p

dσ
, (16)

ṗ = λ̇p dg p

dR
. (17)

Based on the preceding equations, we obtain

Ḋ

δ̇
= λ̇d dg d

dY

λ̇d dg d

dγ

=−
√

H2, (18)

ε̇
p

ṗ
= λ̇p dg p

dσ

λ̇p dg p

dR

=− 1

F 6
, (19)

where λ̇p and λ̇d are the plastic and damage multipliers, respectively.
Therefore, the integration of g d and g p with initial conditions for in-plane shear stress allows

us to write the hardening variables p and δ as functions of other observable measurable variables
ε

p
6 and d2:

δ=− 1p
H2

d2, (20)

p =−F 6ε6
p . (21)
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• R0 and γ0:
To identify R0 and γ0, it is necessary to determine experimentally the yield stress F p

6 , which
is the highest shear stress without significant plastic strain, and the initial damage threshold F d

6 ,
which is the highest shear stress without significant damage.

As it is under in-plane shear loading lower than the threshold value F d
6 , the material is consid-

ered undamaged (d2 = 0;δ = 0) and γ0 can be deduced from the damage surface expression g d :
γ0 =

p
H22S66(F d

6 )2.
Similarly, when the material is subjected to pure shear loading approaching the threshold F p

6 ,
the plasticity is considered absent (εp

6 = 0; p = 0) and R0 can be deduced from the yield surface
expression g p :

R0 =
F

P
6

F 6
. (22)

• cd
1 , cd

2 and cp
1 , cp

2 :
To identify cd

1 , cd
2 and cp

1 , cp
2 , the stress–strain response of a typical in-plane shear test with

several loading–unloading cycles was used.
By integrating the expression of δ (25) into the expression g d = 0 (17), we obtain the expression

of the shear stress σ6 as a function of the damage variable d2:

σ6 = cd
1

(
exp

(
− d2p

H2cd
2

)
−1

)(
(1−d2)2

2S66
p

H2

)
+ (F d

6 )2. (23)

Given H2 and S66, we are able to determine cd
1 and cd

2 using the curve represented by σ6 =
f (

√
1−d2) (Figure 11).

Likewise, by integrating the expression of p into the expression g p = 0 (18), the expression of
the effective shear stress σ6 can be obtained as a function of the effective plastic strain εp

6 :

σ6 = F
P
6

(
cp

1

(
exp

(
−F

P
6 ε6

p

cp
2

)
−1

)
+R0

)
. (24)

Given F
P
6 and R0, cp

1 and cp
2 can be determined using the measurable values of σ6 versus ε6

p

(Figure 10) obtained from the cyclic shear test.

Results:

✔ Properties in the longitudinal direction
The determination of longitudinal properties has necessitated tensile and compressive load-

ings on 0◦ longitudinal specimens. However, obtaining these specimens requires a special de-
vice (flat specimens formed by filament winding around a flat-faced mandrel). Indeed, winding
fibres around a cylindrical mandrel within a degree of 0◦ is impossible. Thus, the test has been
conducted on ±90◦ cylindrical specimens.

The experimental devices used to perform tensile and compressive tests on cylindrical speci-
mens are presented in Figures 5 and 6.

The stress–strain response results of each test are also illustrated throughout these figures. The
measured circumferential stress is equal to half of the applied load F divided by the area of the
section (A = 25 mm) where the gauge is located: σ= F /2A.

To determine Poisson’s ratio, the measurement of the strain in both directions 1 and 2 is
required.

✔ Properties in the transverse direction
In-plane transverse properties have been obtained by testing ±90◦ longitudinal specimens in

tension and compression. In-plane and out-of-plane transverse properties are considered to be
equal: E3 = E2, F3t = F2t and F3c = F2c .

C. R. Mécanique — 2020, 348, no 5, 315-333
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Figure 5. ±90◦ cylindrical specimen under tensile test: (a) set-up; (b) response.

Figure 6. (a) Rings under compressive test; (b) compressive test response of 90◦ ring.

The experimental set-up used to perform tensile and compressive tests on longitudinal speci-
mens is presented in Figures 7 and 8. The stress–strain responses of these tests are well illustrated.

✔ In-plane shear properties
In addition to the shear modulus G12 and the ultimate stress F6, other properties involved in

the damage model developed in the previous section are determined.
These properties are related to the stiffness reduction of the material, which is a result of its

failure, as well as to work hardening, which is a consequence of plastic deformation. Therefore, a
cyclic loading test (Figure 9) has been performed on ±45◦ longitudinal specimens to enable the
investigation of these two phenomena after each cycle. Indeed, by measuring the in-plane shear
stress σ6, the plastic in-plane shear strain ε6 and the integrity variableΩ12 =

√
1−d2 at different

C. R. Mécanique — 2020, 348, no 5, 315-333
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Figure 7. ±90◦ longitudinal specimen under tensile test: (a) set-up; (b) response.

Figure 8. ±90◦ longitudinal specimen under compressive test: (a) set-up; (b) response.

points and by following the approach detailed above, the parameters (cd
1 ;cd

2 ;γ0;cp
1 ;cp

2 ;R0) can be
identified.

✔ Transverse shear properties
The measurement of shear properties in composites is a challenging task [18]. Indeed, it is

very difficult to measure the transverse shear modulus G23 and its corresponding shear strength
as well as the transverse Poisson’s ratio ϑ23. Thus, the theoretical approach “rule of mixtures”
has been used to identify these properties based on the composite constituents’ mechanical
properties specified by the manufacturer.

All results measured experimentally or calculated theoretically above are illustrated in
Tables 1, 4 and 5.

C. R. Mécanique — 2020, 348, no 5, 315-333
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Figure 9. Response of cyclic tensile test on ±45◦ longitudinal specimen.

Figure 10. In-plane shear stress σ6 (Mpa) versus plastic in-plane shear strain εp
6 (%).

Table 3. Specific mechanical properties of the material

Shear damage constitutive vectors H1, H2, H3

Normal damage constitutive vectors J1, J2 ,J3

Damage hardening coefficients cd
1 ,cd

2 , γ0

Yield hardening coefficients cp
1 , R0

Coefficients of the yield surface fi , fi j (i = 1,2. . .6)

4.2. Interface model

4.2.1. Mathematical formulation

Based on the principles of fracture mechanics, several numerical tools can be used to model
delamination in composite structures [19]. The most widely used are those including the “virtual

C. R. Mécanique — 2020, 348, no 5, 315-333
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Figure 11. In-plane shear stress σ6 (Mpa) versus integrity variableΩ12 =
√

1−d2.

Table 4. Values of specific mechanical properties of the material

Shear damage constitutive vectors H1 = 0, H2 = H3 = 0.113
Normal damage constitutive vectors J1 = 3.4×10−3, J2 = J3 = 0.301

Damage hardening coefficients
cd

1 = 0.024,cd
2 =−0.48,

γ0 = 14.41×10−3

Yield hardening coefficients cp
1 =−0.568,cp

2 = 0.075, R0 = 0.187

Table 5. Release energy rates and stress intensity factor values

KIC (Mpa
p

m) 7.57
KIIC (Mpa

p
m) 1.18

KIIIC (Mpa
p

m) 0.31
GIC (kJ/m2) 4.95
GIIC (kJ/m2) 0.12
GIIIC (kJ/m2) 0.012

η 1.45

crack closure technique” (VCCT) or the “cohesive zone models”. However, the use of cohesive
zone models is more reliable because of their ability to take into account both the “initiation”
and the “progression” of failure.

As a result, the “cohesive zone models” is the technique used in this study to model the
interface.

This technique includes interface elements that lead to the opening of a crack according
to a cohesive law based on the use of either the internal damage variable notion or the trac-
tion/separation notion.

The cohesive traction/separation law, which is available in Abaqus/standard, has been used
in the present study.

This law hypothesizes that at the point of any crack, cohesive forces appear and evolve in
parallel with the progression of crack opening [20].

C. R. Mécanique — 2020, 348, no 5, 315-333
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Various forms define this law in the literature: trapezoidal, exponential and polynomial.
However, regardless of the form chosen, two parameters are usually included for different failure
modes (modes 1–3), which are the energy release rate GC and the maximum cohesive force σC .

This kind of law initially adopts a linear elastic behaviour followed by the initiation and the
evolution of the damage. The elastic behaviour is written in terms of the constitutive matrix K ,
which links the normal and shear stresses to the normal and shear strains, respectively, over the
entire interface:

t =

σn

σs

σt

=
knn kns knt

kns kss kst

knt kst kt t

=

δn

δs

δt

= Kδ, (25)

whereσn is the normal stress;σs andσt are the shear stresses;δn ,δs andδt are the corresponding
separations.

Therefore, interface modelling by the method of cohesive zone models goes through three
steps: the definition of the elastic behaviour of the interface throughout the identification of the
constitutive matrix K ; the definition of the damage initiation criterion; and then the definition of
the damage evolution law.

✔ Damage initiation criterion
The damage initiation represents the initial crack at a point of cohesive contact. This phenom-

enon occurs when stresses and/or displacements obey one of these criteria: maximum or qua-
dratic stress criterion and maximum or quadratic separation criterion [21].

The criterion used in this study is the quadratic stress criterion defined as{
σn

σn
0

}2

+
{
σs

σs
0

}2

+
{
σt

σt
0

}2

= 1. (26)

✔ Damage evolution law
The fracture mechanics define three different modes of failure: the pure traction mode (mode

1), the pure shear mode (mode 2) and the pure torsion mode (mode 3). However, most real load
cases are combinations of these three different modes. Thus, it is necessary to take into account
the interaction between these modes in the modelling of the interface. Two types of criteria can
be used on Abaqus to define the mixed mode of delamination: one based on tensile separations
and the other based on energies [21].

In the present work, an energy criterion developed by Benzeggagh and Kenane [22] has been
adopted. The damage progression is defined by the energy released when the crack propagates.
In fact, it is considered that there is a break only if the energy release rate is greater than the
cohesive energy GC

T :

Gc
T =Gc

I +
(
(Gc

II −Gc
I )

GII

GT
+ (Gc

III −Gc
I )

GIII

GT

)(
GII +GIII

GT

)η
. (27)

Critical energies Gc
I , Gc

II and Gc
III are characteristic parameters to be determined. η is also a

parameter of the interface model called cohesive property, which could be determined from the
previous equation by identifying Gc

I , Gc
II and Gc

III and GC .

4.2.2. Identification of parameters

Energy release rates have been determined by using several experimental, analytical and
numerical methods such as the VCCT (Irwin [8], Rybicki and Kanninen [9], Raju [10], Zou
et al. [11], Krueger [14]), the method of the integral J (Rice [15]), the virtual crack extension
technique (Hellen [16]) and the stiffness-derived method (Park [17]).

The integral J is the technique used to identify the parameters of the interface model defined
above.
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The integral J or the Rice method [23] is postulated through the equation

J =
∮ (

We (ε)ni −σi j n j
∂ui

∂x

)
ds, (28)

where We is the strain energy density and u represents the separation vector at a point M(s)
belonging to the contour that defines the crack.

It could be noted throughout the expression postulated above that the integral J represents
the decay rate of the potential energy Wp per unit area, which corresponds to the energy release
rate:

J =−∂Wp

∂A
=G . (29)

The Rice hypothesis [23] integrates the behaviour of elasto-plastic materials in monotonic ten-
sion with that of nonlinear elastic materials. Therefore, in the case of our material, the energy
release rate can be written as an integral J , which can be determined numerically by the finite
element method.

However, it should be noted that the integral J only allows the total energy release rate GC
T and

does not provide those of each failure mode, GC
I , GC

II and GC
III.

On the other hand, this method aids in the computation of the stress intensity factors KI, KII

and KIII of the three failure modes. Irwin G. R. [24] took up the work of Griffith A. A. [25], where
the energy approach has been reformulated in terms of stresses. Therefore, it is a question of
monitoring the propagation of failure by the investigation of both stresses and displacements at
the crack tip.

The relationship between the energy release rate and the stress intensity factors established
by Irwin is defined as

G = KI
2 +KII

2

E ′ + KIII
2

2µ
, (30)

where µ= E ′/2(1+ϑ) and E ′ = E in the in-plane stress case under study.
Therefore, the relationships between the critical energy release rate and the stress intensity

factor according to each failure mode are postulated by the following expressions:

GC
I = K 2

IC

E ′ ; GC
II =

K 2
IIC

E ′ ; GC
III =

K 2
III

2µ
. (31)

Results:
In the following section, the finite element model developed to determine the stress intensity

factors as well as the integral J is presented. A cracked ±55◦ longitudinal specimen has been
modelled (Figure 12(a)). The linear brick element “C3D8R” has been used. The mesh has been
refined at the crack tip (Figure 12(b)). Regarding the boundary conditions, one extremity has been
fixed and the other has been loaded at a constant displacement of 5 mm. Only the area between
the jaws has been considered.

A static stress analysis has been performed via Abaqus with the option of calculating the
integral J of the defined crack. Table 5 provides the release energy rate values deduced from the
stress intensity factors by using the relationships presented above.

4.3. Finite element model

The theoretical model presented and identified above has been implemented in the Abaqus finite
element software. In fact, the tensile behaviour of ±55◦ longitudinal representative specimens
has been simulated and observed with the aim of evaluating the performance of the model.

These tests have been accompanied by strain measurements using classical methods that pro-
vide information, allowing a comparison with numerical analysis. The choice of semi-structures
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Figure 12. Crack modelling: (a) crack location; (b) mesh view.

(specimens cut from tubes) for the validation of the numerical model has been based on the fact
that carrying out experimental tests on a whole tube is difficult, laborious and expensive. Thus, it
appeared appropriate to use representative specimens able to capture the phenomena appearing
in the tubes during their loading.

Therefore, the same experimental set-up in the model identification has been used in its
validation.

The numerical model developed to simulate inter-laminar and intra-laminar damages ap-
pearing in the representative specimen loaded is a 3D meso-scale finite element model. The
whole laminate has been divided into 10 sections (plies) of 0.5 mm thickness each, separated
by cohesive layers of zero thickness. The plies have been discretized using an eight-node integra-
tion element (SC8R) called the “continuum shell”.

Regarding the cohesive layers, they have been modelled using an eight-node cohesive element
called COH3D8 [26].

Two different types of materials have been included according to the two constituents of
the structure. The material of the cohesive layers has been defined directly on the CAE Abaqus
interface thanks to the material definition module already integrated in its library. However,
the definition of the ply material has required the “user definition” module. The computational
algorithm describing the ply behaviour has been written and implemented in the Abaqus code
through the UMAT subroutine.

An assembly of 10 plies and 9 cohesive layers across the thickness defines the complete model.
This assembly has been constructed in such a way so as to maintain continuity between plies
before the damage occurs. In fact, a connection has been made between the cohesive layers and
the plies using the boundary condition “tie”.

To evaluate the performance of the model, tensile behaviours of ±55◦ longitudinal specimens
have been simulated (Figure 13) and observed.

It should be noted that in the simulation of the longitudinal specimens, the curvature has
been neglected and only the area between the jaws has been modelled. Regarding the boundary
conditions, one side has been fixed to represent the grip of the jaws and a displacement has been
imposed on the opposite side.
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Figure 13. Numerical simulation of ±55◦ longitudinal specimen loaded in tension:
(a) boundary conditions; (b) view of mesh.

5. Experimental validation of the model

5.1. Methodology

Experimental validation of the numerical model has been carried out for longitudinal specimens.
The strain measurement technique has been employed using strain gauges, and only one type of
test has been performed, which is the tensile test.

5.2. Results and discussions

Figure 14 illustrates a comparison between the experimental tensile behaviour of a longitudinal
specimen and its corresponding simulation. A good agreement between the experimental and
numerical results can be noted. This confirms the good level of efficiency of the numerical
model developed to simulate the tension behaviour of longitudinal specimens cut from ±55◦

glass/polyester tubes.

6. Conclusions and perspectives

The ultimate goal of the work presented in this paper is to develop a simple yet effective
numerical model allowing the simulation of complex behaviour of filament wound composite
structures.

Based on a detailed theoretical study of the material behaviour developed in a previous work,
a numerical model has been established.

The identification of this model was of major interest to this study. Several experimental tests
have been carried out to identify the different parameters of the damage model.

However, the experimental determination of transverse shear properties was impossible. To
estimate their values, a theoretical method has been used, which could affect the reliability of
the model developed. Overcoming this limitation by finding the most exact model parameters is
therefore one of the aims of this work, which is always considered a major challenge because of
its difficulty.
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Figure 14. Experimental tensile behaviour of ±55◦ longitudinal specimen and its corre-
sponding simulation.

In this study, through the development of a 3D meso-scale numerical model and based
on “continuum damage mechanics”, it was possible to simulate the initiation as well as the
progression of all damage phenomena that may occur under loading in the material under study.

The efficiency of the model developed in this study has been assessed by a set of experimental
tests.

Numerical simulations of representative specimens loaded with tension have been developed
and then compared with the corresponding experimental observations.

Results close to the experimental values have been obtained, which ensures a good level of
reliability of the numerical model developed in this study. This might pave the way for the use
of this model in industrial applications. In addition, a simulation of more complex structures
obtained by filament winding will be the subject of upcoming work.
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