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Abstract. This paper is not a review, but narrates the personal experiences (nearly fifty years) of the author
concerning unstructured mesh, a well debated theme during these years.
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1. Introduction

In an unstructured mesh, the number N (i ) of nodes neighboring a node i is not regularly defined
from one node to the other one. Computing structures has led rapidly to consider unstructured
meshes. Try to mesh the Eiffel tower (in fact Sidney opera was one of the first famous success of
unstructured meshes). The static computations allowed to introduce variational formulation and
then the finite element method.

2. In the earlier times

When I started studying CFD/CSM, the two main enemies were finite differences/volumes on
my right and finite elements on my left. FD/FV were applied on structured meshes, and FE
on unstructured meshes.1 Advised by Jean Céa and then recruited by Roland Glowinski, I was
necessarily in the FE party. The preferred flow model in aeronautics was the full potential model, a
mainly elliptic model and Roland’s team and friends (involving Olivier Pironneau) in association
with the Dassault team (around Jacques Périaux) had succeeded to compute the flow around a
complete aircraft with a finite-element method and an unstructured mesh [1].

1FD = Finite Difference, FV = Finite Volume, FE = Finite Element.
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3. Euler flows

However, in the eigthies, the challenge was to compute with the Euler model, a first step be-
fore (compressible) Navier–Stokes. The mathematical model is hyperbolic and its discretization
requires the derivation of a sophisticated stabilization. Indeed, for the convection of a scalar field,
finite element computations were limited by Peclet effects (unstability when the diffusion term
does not exists or is too small). The answer proposed by the FD/FV camp was “upwinding”, that
is managing in such a way that the concerned derivatives are not computed in a central man-
ner around the node but upward with respect to the convection velocity. An important activity in
finite elements developed in order to upwind this method.

A second debate in compressible CFD was related to the building of explicit time advanc-
ing having a sufficient stability domain. One-step and two-step advancing were initially pre-
ferred, like the two-step method of MacCormack [2], with a predictor step with upwinding in
one mesh direction, a corrector step upwinded in the opposite direction. Two main advantages
were identified. Firstly, such schemes need only one or two flux assemblies for a stable time
step, which was interpreted as a chance for best efficiency, secondly, the schemes were vari-
ant of the Lax–Wendroff scheme [3] and enjoyed a built-in dissipation, satisfying the dissipa-
tive Kreiss criterion [4]. The Lax–Wendroff FD method was then extended to P1 FE indepen-
dantly by three teams [5–7]. Lax–Wendroff type time-advancing took a backseat with the rise of
Jameson–Schmidt–Turkel scheme [8], derived first for structured meshes, then for unstructured
ones [9].

A third debate concerned the satisfaction of a so-called entropy condition, which is sufficient
for ensuring the uniqueness of solution of many nonlinear hyperbolic models. Conversely,
the discretization of an hyperbolic model can produce parasitic non-entropic (non-unique)
numerical solutions. The entropy issue was observed for full potential models, but it was soon
clear that a simple upwinding of the density permitted to ensure that entropic solutions were
obtained. For the Euler equations, most time advancing methods were sufficiently dissipative to
ensure entropic solutions.

The above events did not close the debate concerning upwinding. In the late fifties, Godunov
pointed the interest of using Riemann problems solution for upwinding the approximation of
nonlinear hyperbolic problems (he recounts the story of this in [10]). The option was a little
complex for routine computing and Roe proposed his approximate Riemann solver [11] and
Osher with Chakravarthy, a more sophisticated and robust one [12].

First-order accurate upwind schemes were not sufficiently accurate, and second-order
schemes not sufficiently stable for shock capturing (although artificial viscosity methods were not
so bad). Significant progress was carried by the introduction of limiters by Boris and Book [13].
van Leer [14] brought a clever synthesis between Godunov upwinding and limiters, introducing
the idea of local reconstruction. An illuminating TVD theory was then proposed by Harten [15].

Alongside, the stabilization of finite element for hyperbolic CFD models was addressed by
Hughes and Mallet [16].

Many of these ideas (together with implicit time advancing) were integrated in an unstruc-
tured method developed for hypersonic flows around the shapes considered in the European
project Hermes—Figure 1—[17], project under the direction of Pierre Perrier which gave a
favourable impulse to CFD researches in Europe.

4. Supercomputer is coming

Few remarks must be made concerning the computational time. An interesting question is: in
the 80’s–90’s, did computational aerodynamics reduce “wall clock calculation times”, thanks to
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Figure 1. High Mach number high angle of attack Euler computations around the geometry
of the spatial shuttle and the geometry of European space aircraft Hermes project. Meshes
(skin) and Mach number, from [17].

progress in algorithms progress rather than computer progress. It is clear that in the 80’s, we
enjoyed the rise of supercomputers like Cray 1 which was more expensive than mainframes and
more powerful. The rise of “micro killers” (IBM RS6000, etc) set the price of flop/s to a much
lower level. The answer to the above question (probably in favor to computers) is difficult to
establish, as many algorithms were designed for a better use of the pipelined number-crunchers.
Meanwhile this evolution was in some manner favourable to structured (“my pipeline prefers
structured”).

Meanwhile the scientific community was debating on the physical limits to computer speed.
Grand priests invoked the light velocity, atom size, . . . In short we were pushed towards the
unique issue, parallelism.

Indeed first parallel computers appeared, taking so many forms (network, hypercubes,
farms, . . . ), but not so powerful at the beginning as vector computers continuing their progress
and preferred by non academic institutions. Extra noise were brought by the expectation, starting
already before pipelines, of the fifth generation of computers, specialized in Artificial Intelligence.
A typical example was the development by the Thinking Machine Corporation of the Connection
Machine which became unexpectedly a much studied and appreciated number-cruncher.

5. But algorithms?

Let us examine the progress of algorithms, the focus on solution algorithms, in particular. Two
communities were particularly active.

The practitioners of multigrid had a yearly office, the Copper Mountain MG conference, also
good for skiers. A variant, full multigrid was the graal, since O(N ) complexity was attainable,
superior to other methods, as far as the problem size N is sufficiently large, going by the advice
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Figure 2. HL-CRM 16° high lift calculation (Courtesy of F. Alauzet). The Mach number
values demonstrate the accurate capture of the wake, with a first vortex from wing tip, a
second one from the gap between flaps, a third one starting where the wing is cracked, and
a fourth one from wing root [23].

of grand priest Achi Brandt. Extension to unstructured meshes was not a piece of cake and could
not show the miraculous speed up of certain structured demonstrations.

The practitioners of Domain Decomposition Methods (DDM) were also very active, they
produced popular algorithms like Additive-Schwarz (e.g. [18]) or FETI [19], both being definitively
adapted to systems coming from unstructured meshes.

Both methodologies give parallel algorithms. A common paradox is the problem posed by the
coarse grid. In MG, the coarse grid is too small to be efficiently solved on the many processors
reserved by the user for the fine grid problem. In DDM, the use of deflation to accelerate the
global coupling also sets the question of an efficient solution of the coarse grid with one degree
of freedom by processor [20].

6. Towards high order

In earlier days, there were first-order methods and higher order ones, i.e. second order. High
order methods (order >2) are also fascinating. A graal also was identified in Spectral methods
with a convergence to continuous, better than polynomial. However, the increasing interest to
industrial issues led to concentrated investigations on unstructured high order methods. The
Discontinuous Galerkin (DG) for CFD was popularized by Cockburn [21], Bassi and Rebay [22].
It should be noted that for many higher-order approximations, “unstructured” assumes a regular
substructure inside each element.

7. Mesh generation and adaptation

The issue of easy mesh generation was the main motivation for choosing the unstructured option.
Indeed, after many works, the unstructured mesh generation became fast and robust (at least
for tetrahedra). The unstructured option eventually won the competition on preprocessing, in
terms of engineer time. But the important capabilities of unstructured mesh adaptation was
early identified. An active competition in unstructured mesh adaptation started no later than in
1986 at the Reading Conference. Unstructured mesh adaptation took a strong acceleration with
the use of mesh metrics, and goal oriented strategies. A recent impressive accomplishment [23]
is the use of goal oriented metrics for computing high-lift flows around an aircraft geometry,
Figures 2 and 3.
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Figure 3. HL-CRM 16° high lift calculation (Courtesy of F. Alauzet). A zoom at flaps gap
shows the initial capture of the second vortex [23].

8. Concluding remarks

The debate between unstructured and structured for compressible Navier–Stokes is at least
40 years old. It has been more or less a debate about when unstructured would be definitively
better than structured. However, examining High-lift or drag reduction workshops, we observe
that block-structured codes enjoy still higher performances for the same number of cells, and
can be used with higher numbers of cells. Regarding engineering efficiency, however, almost all
main software vendors in CFD have migrated towards unstructured.
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