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Abstract. Machine component design has become a prominent topic for researchers in recent years. The
analysis of bearing systems has received considerable attention in order to avoid detrimental contact.
Among the most important studies in this area are the transient problems of journal bearings, which
are usually performed by coupling the Reynolds equation with the motion equations. Many techniques
have been presented in the literature and are still being explored to ensure the accurate findings and
efficient solution prediction of unsteady state Reynolds equation. In this paper, the Proper Generalized
Decomposition (PGD) approach is expanded for the analysis of the lubricant behavior of dynamically loaded
journal bearing considering Swift-Stieber boundary conditions. The PGD model is applied in this problem,
seeking the approximate solution in its separated form of the partial differential Reynolds equation at each
time step during the load applied cycle employing the alternating direction strategy. Compared to the
classical resolution, the PGD solution has a considerably low computational cost. To verify the accuracy
and efficiency of this approach, three cases have been considered, infinitely short, infinitely long and finite
journal bearings under the dynamic load. The results of the suggested methodology when compared to the
full discretized model (FDM) show that, the new scheme is more efficient, converges quickly, and gives the
accurate solutions with a very low CPU time consumption.

Résumé. La conception des composants de machines est devenue un sujet de premier plan pour les cher-
cheurs ces dernières années. L’analyse des palier a fait l’objet d’une attention considérable afin d’éviter tout
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contact préjudiciable. Parmi les études les plus importantes dans ce domaine figurent les problèmes transi-
toires des paliers lisses, qui sont généralement réalisés en couplant les équations de Reynolds avec les équa-
tions de mouvement. De nombreuses techniques ont été présentées dans la littérature et sont encore en
cours d’exploration pour garantir des résultats précis et une prédiction efficace de la solution de l’équation
de Reynolds à l’état instable. Dans cet article, l’approche PGD (Proper Generalized Decomposition) est éten-
due pour l’analyse du comportement du lubrifiant d’un palier lisse dynamiquement chargé en considérant
les conditions limites de Swift-Stieber. Le modèle PGD est appliqué à ce problème, en recherchant la solu-
tion approximative sous sa forme séparée de l’équation aux dérivées partielles de Reynolds à chaque pas de
temps pendant le cycle d’application de la charge en utilisant la stratégie de direction alternée. Par rapport
à la résolution classique, la solution PGD a un coût de calcul considérablement faible. Pour vérifier l’exacti-
tude et l’efficacité de cette approche, trois cas ont été considérés, palier infiniment court, infiniment long et
de longueur finie soumis à une charge dynamique. Les résultats de la méthodologie suggérée comparés au
modèle discrétisé complet (FDM) montrent que le nouveau schéma est plus efficace, converge rapidement,
et donne des solutions précises avec une très faible consommation du temps CPU.

Keywords. Hydrodynamic lubrication, Journal bearings, Dynamical behavior, Reynolds equation, Proper
generalized decomposition, Full discretized model.

Mots-clés. Lubrification hydrodynamique, Palier lisse, Comportement dynamique, Équation de Reynolds,
Décomposition propre généralisée, Modèle discrétisé complet.
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1. Introduction

Hydrodynamic bearings are critical components of rotating machines, and are widely regarded
as the best technological solution currently available in a variety of industries, including ther-
mal engines, turbo-machines, alternators, and compressors. They offer a number of benefits like
high efficiency and precision, minimal friction and effective heat dissipation. The journal bearing
transient analysis is frequently required in industrial applications. In engine bearings, for exam-
ple, the variation of the load pressing on the bearing, and in some circumstances of the bearing’s
angular velocity, is so large that a static analysis is useless.

The basics of hydrodynamic lubrication was firstly established by Reynolds in 1886 [1].
Reynolds’ research was influenced by prior experimental results by Petrov [2] and Tower [3],
where they showed that the viscosity is the most essential characteristic in film lubrication and
that the high pressures produced in the clearance space between the journal and the sleeve de-
termine a bearing’s load-carrying capacity. The so-called “Reynolds equation” which is derived
from the Navier–Stokes and the continuity equations for in-compressible flows, is a second-order
partial differential equation which basically predicts the pressure distribution in thin film lubri-
cation. To solve this equation, many methods have been presented. On one hand, we have an-
alytical models, which can produce some intriguing findings for very specific instances under
certain assumptions and simplifications. We cite the following study examples: for long [4], fi-
nite [5, 6] and short [7] journal bearings. On the other hand, various numerical methods for solv-
ing fluid film lubrication problems have been established. We quote the following research ex-
amples: [8,9] and [10] where the finite volume method has been used to solve the Reynolds equa-
tion under unsteady state conditions. In the works reported in [11] and [12] the finite element
methods for the dynamically loaded journal bearing analysis was employed. Furthermore, in the
studies mentioned in [13, 14] and [15] the Gauss–Siedel iterative method using the finite differ-
ence discretization was applied to treat the transient problem of journal bearing considering the
Reynolds boundary conditions.

These methods are known to be accurate, but they are also very time consuming and this is
not really useful for dealing with certain problems, such as, the transient hydrodynamic journal
bearing problem, where, the computation procedure requires the resolution of the Reynolds
equation for each time step. These issues, encourages the quest for novel procedures with
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substantially reduced computational cost. Therefore, Reduced-Order Models (ROM) have been
proposed to solve problems in fluid mechanics in recent decades. The most popular of these
methods is an a posteriori method known as the Proper Orthogonal Decomposition (POD),
employed by Allery et al. [16, 17], Atwell and King [18], Akkari et al. [19] and Krasnyk et al. [20]
to solve the computational fluid problems. This category of method requires some snapshots
of the flow, resulting from the higher fidelity techniques, which, necessitates a significant cost
computation.

To overcome this difficulty, a priori techniques have been developed to find a reduced basis
to describe the problem without “a priori” knowledge of the solution. Among these, Proper
Generalized Decomposition (PGD) suggested by Ammar et al. [21] in 2006, which has shown
to be a promising approach. The PGD is an iterative approach for decreasing the number of
unknowns in a partial differential equation (PDE) by searching for the problem’s solution u (x)
in the separating form:

u(x1, x2, . . . , xN ) =
Q∑

i=1

N∏
k=1

ui k (xk ). (1.1)

If M k is the number of nodes appropriate to discretize each variable xk , the number of un-
knowns will be equal to (Q

∑N
i=1 M k ). Proving that for the PGD, the number of degrees of freedom

evolves linearly with the number of variables. Therefore, this avoids the exponential complexity
involved in traditional methods, where the number of unknowns is equal to (

∏N
k=1 M k ). Moreover,

for the majority of the cases, the number Q necessary for the convergence of the PGD solution is
rather small (lower than ten) which considerably reduces the number of unknowns.

The PGD has been applied in various engineering problems, in biology [22] and quantum
chemistry [23]. In term of fluid mechanics, the PGD was employed by Dumon et al. [24] to solve
the Navier–Stokes equations for 2D lid-driven cavity problems. The results of this study showed
that, depending on the Reynolds number, the PGD can be eight times faster than the full grid
solver for standard discretization. In Aghighi et al. [25] papers’, by applying PGD, the transient
solution of non-linear coupled models linked to the Rayleigh–Bénard flow model of both New-
tonian and non-Newtonian fluids is considered and the results of this study indicated that the
PGD significantly reduces the computational cost. Also, another study was presented by Dumon
et al. [26], where the PGD technique was combined with spectral discretization to solve different
transfer equations. This study has shown that depending on the mesh size and the problem con-
sidered, the PGD can give results one hundred times faster for the stationary diffusion equation
and ten times faster for the Navier–Stokes equations than the full model. Leblond et al. [27] used
the PGD to build an a priori low-dimensional space–time separated representation of the fluid
fields. In Tamellini et al. work’s [28], the PGD was combined with stochastic Galerkin approxi-
mation and presented as a method for solving the steady incompressible Navier–Stokes equa-
tion. Le-Quoc et al. [29] demonstrated that the effectiveness in terms of accuracy and computa-
tional cost of the PGD which was coupled with the Immersed Boundary Method (IBM) to solve
fluid-structure interaction problems taking into account the influence of complex obstacles. For
hydrodynamic journal bearing analyses, Charabi et al. [30] used the PGD to solve the Reynolds
equation in the stationary case considering Sommerfeld’s and Gumbel’s boundary conditions.
This study showed that depending on the mesh size, the PGD is a thousand times faster than
classical methods with a better convergence and less storage capacity required.

In this paper, the application of the PGD approach to the resolution of the hydrodynamic
lubrication problems in journal bearings under dynamic load is considered. Furthermore, the
Reynolds boundary conditions are taken into account for their good agreement with the physical
reality. The dynamically loaded journal bearing analysis is realized by coupled the Reynolds and
the motion equations.
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Figure 1. Coordinate system of dynamically loaded journal bearing.

The present paper is structured as follows: Section 2 describe the governing equation and
the boundary condition. Section 3 is dedicated to the details of the separated representation
of the unsteady state of Reynolds equation using the alternating direction strategy scheme,
the computational procedure and its pseudo-code. Section 4 presents the comparison between
the results obtained by the PGD and those obtained by the full discretized model using finite
difference method. Finally, the report is ended with an overall conclusion and references.

2. Governing equations

2.1. Reynolds equation

Under simplifying assumptions [31], the Reynolds equation is employed in lubrication theory for
the computation of the pressure distribution of thin viscous fluid films. It is an elliptic, partial
and differential equation for the pressure in terms of lubricant properties, density and viscosity,
as well as the film thickness. For a journal operating in unsteady state regime (in Cartesian
coordinates), the Reynolds equation is expressed as:

∂

∂x

(
h3

12µ

∂P

∂x

)
+ ∂

∂z

(
h3

12µ

∂P

∂z

)
= Rω

2

∂h

∂x
+ ∂h

∂t
(2.1)

where P is the pressure, h is the film thickness, R is the bearing radius, ω is the shaft’s angular
velocity and µ is the lubricant’s viscosity.

By introducing the following dimensionless variables:

θ = x

R
, z = z

L
, P = P c2

µR2ω
, h = h

c
, α=ω t , η= D

2L
(2.2)

where θ is the angular position, α is the crank angle, L is the bearing length, D is the bearing
diameter and c is the radial clearance.

Then the Reynolds equation with θ and z coordinates (Figure 1) becomes:

∂

∂θ

(
h

3 ∂P

∂θ

)
+η2 ∂

∂z

(
h3 ∂P

∂z

)
= 6

∂h

∂θ
+12

∂h

∂α
. (2.3)
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The dimensionless oil film thickness is calculated from the following function:

h = 1+εx1 cos(θ)+εy1 sin(θ) (2.4)

where: εx1 = ex1/c, εy1 = ey1/c are the relatives eccentricity, ex1 and ey1 are the the eccentricity.
Considering an aligned journal bearing, the development of (2.3) gives:

∂h
3

∂θ

∂P

∂θ
+h

3 ∂2P

∂θ2 +η2 h
3 ∂2P

∂z2 = 6
∂h

∂θ
+12

∂h

∂α
(2.5)

and so
3

h

∂h

∂θ

∂P

∂θ
+ ∂2P

∂θ2 +η2 ∂
2P

∂z2 = 6

h
3

(
∂h

∂θ
+2

∂h

∂α

)
. (2.6)

2.2. Boundary conditions

The studied bearing is with a line groove of negligible thickness, situated at θ = 0° and extending
at the bearing’s ends.

The boundary conditions related to the supply pressure are:

P (θ = 0, z) = P (θ = 2π, z) = 0 (2.7)

P (θ,1) = P (θ,0) = 0. (2.8)

The boundary conditions of the cavitation region are:

P (θ = θ1, z) = 0 (2.9)

P (θ = θ2, z) = 0 (2.10)

∂P

∂θ
(θ = θ1, z) = 0 (2.11)

∂P

∂θ
(θ = θ2, z) = 0 (2.12)

where θ1 represents the location of the starting of full film zone, while θ2 represents the location
of the starting of cavitation zone.

These are the Swift-Stieber (Reynolds) boundary conditions which are applying by forcing the
negative pressure to zero and forcing the pressure gradient to vanish on the frontier between the
full film and the cavitation regions.

2.3. Force balance equation

A force balance on the journal gives:

W x1 +F x1 = M ε̈x1 (2.13)

and
W y1 +F y1 = M ε̈y1 (2.14)

where M is the dimensionless mass of the journal, the W x1 and W y1 are the components of the
dimensionless externally applied load, F x1 and F y1 are the components of the dimensionless
fluid film force.

where

F x1 =
∫

ΩθΩz

P cos(θ)dθdz (2.15)

F y1 =
∫

ΩθΩz

P sin(θ)dθdz (2.16)
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then the total dimensionless fluid film force is given as:

F =
√

F
2

x1 +F
2

y1. (2.17)

2.4. Sommerfeld number

The Sommerfeld number (S) has been useful in comparing the non-dimensional properties of
different bearing arcs. The Sommerfeld number can be expressed mathematically as follows:

S = 1

2πF
. (2.18)

2.5. Friction number

The shear stress at the journal’s surface is given as:

τx y |y=h =
1

2
(2y −h)

∂P

∂x
+ µU

h
(2.19)

where U is circumferential velocity component of any arbitrary location on the journal surface.
The friction force is calculated by integrating the journal’s shear stresses, its dimensionless

form is given by:

F t =
1∫

0

θ2∫
θ1

A dθdz +
1∫

0

θ2∫
θ1

A

(
h(θ2)

h

)
dθdz (2.20)

with

A = h

2

∂h

∂θ
+ 1

h
(ε̇x1 sin(θ)− ε̇y1 cos(θ)+1). (2.21)

Consequently, the friction number is obtained as follows:

f = F t

F
. (2.22)

2.6. Infinitely short journal bearing (ISJB)

In relation to the axial pressure gradient, the circumferential pressure gradient can be ignored
when the ratio L/D is small. Michell [32] was the first to make this assumption, which was further
established by Ocvirk and Dubois [33]. It is appropriate for bearings with an L/D ≤ 1/8. As a result,
the Reynolds equation is written as:

η2 h
3 ∂2P

∂z2 = 6
∂h

∂θ
+12

∂h

∂α
(2.23)

applying the boundary conditions given by (2.8) and integrate the equation twice with respect to
z, one arrives at the following expression:

P = 3

η2 h
3

(
∂h

∂θ
+2

∂h

∂α

)
(z2 − z). (2.24)

Detailed calculation of the positions of starting full film zone, the cavitation area and fluid film
forces are mentioned in Appendix A.

2.7. Infinitely long journal bearing (ILJB)

In the case of an infinitely long bearing, the axial flow is ignored in comparison to the circumfer-
ential flow. For L/D ratios of up to 4, this assumption is employed. The Reynolds equation (2.5)
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can thus be simplified to:
∂

∂θ

(
h

3 ∂P

∂θ

)
= 6

∂h

∂θ
+12

∂h

∂α
. (2.25)

By integrating (2.25) twice with respect to θ′ and using the boundary conditions given by (2.7),
(2.10) and (2.12) (see Appendix B for further derivation). The following formulation is obtained:

P = 3

(1−ε2)2

{
(1−2φ̇)ε (1−ε2)0.5

1−cos(ψ2)
[2(sin(ψ)− sin(ψ0)) (1+εcos(ψ2))

+ (2 cos(ψ2)+ε) (ψ0 −ψ)−ε (sin(ψ) cos(ψ)− sin(ψ0) cos(ψ0))]+ ε̇
2sin(ψ)

1−cos(ψ2)

×
[

(2−εcos(ψ)−εcos(ψ0)) (cos(ψ0)−cos(ψ)) (1−εcos(ψ2))

sin(ψ2)

− (2+ε2) (ψ−ψ0)+4ε (sin(ψ)− sin(ψ0))−ε2 (sin(ψ) cos(ψ)− sin(ψ0) cos(ψ0))

]}
. (2.26)

Calculation of the positions of starting full film zone, starting of the cavitation area and fluid
film forces are detailed in Appendix B.

3. PGD for the resolution of unsteady state Reynolds equation

3.1. Separated representation related to the Reynolds equation

The Reynolds equation (2.6) is formulated by PGD to determine different parameters, such as
pressure distribution, in order to analyze the lubricating film.

In this study since the bearing is assumed to be aligned and thickness h is not a function of z,

so to simplify the formulations, it is assumed (3/h)(∂h/∂θ) = Aθ and 6/h
3

(∂h/∂θ+2(∂h/∂α)) =
Eθ.

For each crank angleα, the solution of the Reynolds equation (2.6) is considered in a rectangu-
lar domainΩθ×Ωz = [0,2π]× [0,1]. Thus, for all suitable test functions P

∗
, the weighted residual

form of Reynolds equation is:∫
ΩθΩz

P
∗

[
Aθ ∂P

∂θ
+ ∂2P

∂θ2 +η2 ∂
2P

∂z2

]
dθdz −

∫
ΩθΩz

P
∗

[Eθ]dθdz = 0. (3.1)

Our objective is to calculate PGD approximate solution to (2.6) in the following separated
form:

P (θ, z) =
n∑

i=1
Xi (θ) Zi (z). (3.2)

We accomplish this by computing each expansion term one at a time, enriching the PGD
approximation until a satisfactory convergence criteria is met.

3.2. Progressive construction of the separated representation

The first n −1 terms are already computed of the PGD approximation, at each enrichment step
n (n > 1)

P
n−1 =

n−1∑
i=1

Xi Zi . (3.3)

To obtain the enriched PGD solution, we calculate the following term:

P
n = P

n−1 +Xn Zn =
n−1∑
i=1

Xi Zi +Xn Zn . (3.4)
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At the current enrichment step n, both function Xn(θ) and Zn(z) are unknown and they appear
in the form of product. As a result, the problem is non-linear, and an appropriate iterative scheme
is needed. The index q is used to denote a particular iteration.

P
n, q = P

n−1 +X q
n Z q

n =
n−1∑
i=1

Xi Zi +X q
n Z q

n . (3.5)

For its simplicity, the iterative scheme of the alternating directions strategy is applied, which is
calculating X q

n from Z q−1
n and then Z q

n from X q
n . To begin the iterative method, an arbitrary initial

guess Z 0
n (z) is defined. The non-linear iterations continue until a fixed point is reached within a

user-defined tolerance ξ, i.e.
‖X q

n Z q
n −X q−1

n Z q−1
n ‖L2

(Ω)

‖X q−1
n Z q−1

n ‖L2
(Ω)

< ξ. (3.6)

If the condition (3.6) is satisfied, the following assignments will be applied Xn ← X q
n and Zn ←

Z q
n . When a sufficient measure of error ern becomes small enough

(
ern < ξ̃), the enrichment

process itself comes to a halt.
with:

ern =
‖Xn Zn‖L2

(Ω)

‖X1 Z1‖L2
(Ω)

. (3.7)

We’ll go through one specific alternating direction iteration at a given enrichment step in
greater detail now.

3.2.1. Alternating direction strategy

• Computing X q
n from Z q−1

n

In this instance, the approximation reads:

P
n, q =

n−1∑
i=1

Xi Zi +X q
n Z q−1

n . (3.8)

Except for X q
n (θ), all functions are known. For the weighted residual formulation (3.1), the

simplest choice for the weight function P
∗

is:

P
∗ = X

∗
n Z q−1

n . (3.9)

By injecting (3.8) and (3.9) in (3.1), we get:∫
ΩθΩz

X
∗
n Z

q−1

n

[
Aθ ∂

2X q
n

∂θ2 Z q−1
n + ∂X q

n

∂θ
Z q−1

n +η2 ∂
2Z q−1

n

∂z2 X q
n

]
dθdz

=−
∫

ΩθΩz

X
∗
n Z

q−1

n

[
n−1∑
i=1

(
A
∂2Xi

∂θ2 Zi + ∂Xi

∂θ
Zi +η2 ∂

2Zi

∂z2 Xi

)
−Eθ

]
dθdz. (3.10)

As in the above expressions all functions of z are known, the one-dimensional integrals over
Ωz can be computed as follow:

µ̄θ =
∫
Ωz

(Z q−1
n )2 dz

β̄θ = η2
∫
Ωz

Z q−1
n

∂2Z q−1
n

∂z2 dz

ξθ =
∫
Ωz

Z q−1
n dz


γ̄θi =

∫
Ωz

Z q−1
n Zi dz

δ̄θi = η2
∫
Ωz

Z q−1
n

∂2Zi

∂z2 dz.
(3.11)
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Equation (3.10) becomes:∫
Ωθ

X
∗
n

[
(µ̄θ Aθ)

∂2X q
n

∂θ2 + (µ̄θ)
∂X q

n

∂θ
+ (β̄θ) X q

n

]
dθ

=
∫
Ωθ

X
∗
n

(
−

n−1∑
i=1

[
(γ̄θi Aθ)

∂2Xi

∂θ2 + (γ̄θi )
∂Xi

∂θ
+ (δ̄θi ) Xi

]
+ (ξθ Eθ)

)
dθ. (3.12)

Thus, we have obtained the weighted residual form of a one-dimensional problem defined
overΩθ, which can be solved (e.g., using the finite element method) to obtain the function X q

n .
Alternatively, it can also return to the corresponding strong formulation as follow:

µ̄θ Aθ ∂
2X q

n

∂θ2 + µ̄θ ∂X q
n

∂θ
+ β̄θ X q

n =−
n−1∑
i=1

[
γ̄θi Aθ ∂

2Xi

∂θ2 + γ̄θi
∂Xi

∂θ
+ δ̄θi Xi

]
+ξθ Eθ . (3.13)

The strong form (3.13) is a second order ordinary differential equation for X q
n . We can

solve it numerically using any appropriate numerical method (for example, finite differences,
pseudo-spectral techniques, etc.).

To adapt the PGD to the supply pressure boundary condition, the following changes should
be made:

X q
n (θ = 0) = X q

n (θ = 2π) = 0. (3.14)

Moreover, for the Reynolds boundary conditions, during the calculation of X q
n (θ), the

pressure must be positive. Then the following condition is defined as:

P
n−1

(θ, z)+X q
n (θ) Z q−1

n (z) ≥ 0. (3.15)

If not, then the following change will be applied X q
n ←−P

n−1
/Z q−1

n to vanish the negative
pressure.

After computing X q
n . We are now able to proceed on to the second step of iteration q .

• Computing Z q
n from X q

n

The technique is identical to what we did previously. Indeed, we simply switch the roles of
all related θ and z functions.

In this case, the approximation reads:

P
n,q =

n−1∑
i=1

Xi Zi +X q
n Z q

n . (3.16)

Where all functions are known except Z q
n (z).

The simplest choice for the weight function P
∗

is:

P
∗ = Z

∗
n X

q

n . (3.17)

By introducing (3.16) and (3.17) in (3.1), we obtain:∫
ΩθΩz

Z
∗
n X

q

n

[
Aθ ∂

2X q
n

∂θ2 Z q
n + ∂X q

n

∂θ
Z q

n +η2 ∂
2Z q

n

∂z2 X q
n

]
dθdz

−
∫

ΩθΩz

Z
∗
n X

q

n

(
n−1∑
i=1

[
Aθ ∂

2Xi

∂θ2 Zi +
∂Xi

∂θ
Zi +η2 ∂

2Zi

∂z2 Xi

]
+Eθ

)
dθdz. (3.18)
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Since all functions of θ are known, we can compute the integrals over Ωθ to obtain the
following expressions:

µ̄z = η2
∫
Ωθ

(
X q

n
)2

dθ

β̄z =
∫
Ωθ

X q
n
∂2X q

n

∂θ2 Aθdθ

ηz =
∫
Ωθ

X q
n
∂X q

n

∂θ
dθ

ξz =
∫
Ωθ

X q
n Eθ dθ



γ̄z
i = η2

∫
Ωθ

X q
n Xi dθ

δ̄z
i =

∫
Ωθ

X q
n
∂2Xi

∂θ2 Aθdθ

ϑz
i =

∫
Ωθ

X q
n
∂Xi

∂θ
dθ.

(3.19)

Equation (3.18) reduces to:∫
Ωz

Z
∗
n

(
(β̄z )Z q

n + (µ̄z )
∂2Z q

n

∂z2 + (η̄z ) Z q
n

)
dz

=
∫
Ωz

Z
∗
n

(
−

n−1∑
i=1

[
(δ̄z

i ) Zi + (ϑz
i ) Zi + (γ̄z

i )
∂2Zi

∂z2

]
+ (ξz )

)
dz. (3.20)

As previously, the weighted residual form of an elliptic problem defined over Ωz whose
solution is the function Z q

n has been obtained. The strong formulation of this one-dimensional
problem is as follows:

β̄z Z q
n + µ̄z ∂

2Z q
n

∂z2 + η̄z Z q
n =−

n−1∑
i=1

[
δ̄z

i Zi +ϑz
i Zi + γ̄z

i

∂2Zi

∂z2

]
+ξz . (3.21)

To adapt the PGD to the supply pressure boundary condition, the following changes should
be applied:

Z q
n (z = 0) = Z q

n (z = 1) = 0. (3.22)

Also, for the Reynolds boundary conditions, during the calculation of Z q
n , the pressure

should remain positive:
P

n−1 +X q
n Z q

n ≥ 0 (3.23)

if this condition (3.23) is not satisfied, then Z q
n ←−P

n−1
/X q

n .

3.3. Computational procedure

The steps for determining the characteristics of journal bearing under a dynamic cyclic load are
as follows. First, arbitrary position and the velocity components of journal center (ε0

x1, ε0
y1, ε̇0

x1,

ε̇0
y1) at the initial crank angle (α0) are proposed. Then, the oil film pressure at this crank angle

is calculated by solving the modified Reynolds (2.6). After that, the related oil film force can be
immediately obtained using (2.15) and (2.16). Next the position and velocity components (ε1

x1,
ε1

y1, ε̇1
x1, ε̇1

y1) of the journal center at the next crank angle (α1), are obtained by solving (2.13) and
(2.14) simultaneously, using the Runge–Kutta 4th order method. It should be emphasized that,
for better convergence of the solution, a tolerance for the adjacent eccentricity ratio is specified
as follows:

εk+1
x1 −εk

x1 ≤ 0.001 and εk+1
y1 −εk

y1 ≤ 0.001. (3.24)

If these conditions are not verified, the crank angle step should be taken as ∆α/2 till the (3.24)
is satisfied. Another tolerance for the periodic condition is defined by the following:

εn
x1 −ε0

x1 ≤ 0.005 and εn
y1 −ε0

y1 ≤ 0.005. (3.25)



Abdelhak Megdoud et al. 371

When the conditions above (3.25) are simultaneously satisfied, the iterative procedure method
is stooped. Otherwise, the initials positions are replaced by the finales positions (εn

x1, εn
y1), and all

of the journal center positions and velocities over a load cycle have to be re-determined again.

3.3.1. PGD program description

Algorithm 1 describes the Matlab implementation of the PGD source code. The steps are as
follows:

(1) The bearing characteristic, the load applied and the meshing parameters are defined.
(2) The initial conditions and the step along the direction of the crank angle are determined

by the procedure explained above.
(3) The Reynolds equation is solved at each crank angle by the PGD from two loops: the

main enrichment operation is carried out in the outer loop, which ends when the criteria
(3.7) is satisfied. The non-linear iterations in the inner loop continue until a fixed point is
reached within the tolerance given in (3.6), the entire process is explained in 3.2.1.

(4) The resolution of motion equation gives the parameters needed to solve the Reynolds
equation for the next crank angle.

(5) The Sommerfeld and number of friction numbers are computed at the end of the proce-
dure.

Algorithm 1: Pseudo-code of the implemented PGD approach

1:Impute data (bearing characteristics, dynamic load, meshing parameters
for Nα , Nθ and Nz, ξ̃, ξ,maximum number of enrichment(Maxterms), maximum
number of iterations in the fixed point loop (Maxfp) and arbitrary
initials conditions
2:while ((3.25) is not satisfied ) do (the loop of
research of the initial conditions)
3: for k = 1 : Nα do (Compute the pressure field for αk )
4: for i=1 : Maxterms do (main enrichment loop)
5: Initialization of the fixed point loop:

X (θ)=random(Nθ, 1), Z (z)=random(N z, 1)

6: Definition of the boundary conditions to the supply pressure
7: for j=1:Maxfp do (main enrichment loop)
8: Save the old values of X(θ) and Z(z)
9: Procedure Alternating Direction Strategy
10: Compute X(θ)by Resolution of the (3.13)
11: Compute Z(z)by Resolution of the (3.21)
12: Compute erp (3.6)
13: if erp < ξ then
14: Break (stopping from fixed point iterations)
15: Compute ern (3.7)
16: if ern < ξ̃ then
17: Break (stopping from the main enrichment loop)
18: Compute the fluid film force ((2.15) and (2.16))
19: Resolution of motion equation
20: If (the conditions (3.24)is not satisfied) then (Nα = Nα × 2, K = 1)
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Table 1. Infinitely short journal bearing characteristics

Parameters Infinitely short journal bearing Infinitely long journal bearing

Bearing length, L (m) 6×10−3 300×10−3

Bearing radius, R (m) 25×10−3 15×10−3

Relative clearance, c (m) 3.6×10−5 3.6×10−4

Rotational speed, N (rpm) 5000 5000
Lubricant viscosity, µ (Pa·s) 8.1×10−2 8.1×10−2

Mass of journal, M (kg) 306.7 3313.4
Grids, Nα Nθ Nz̄ 1000×81×509 1000×81×509

4. Numerical results and discussions

In this section, to examine the accuracy and the efficiency of PGD method for solving the
unsteady state Reynolds equation considering the Swift-Steiber boundary conditions, two cases
are considered. In the first one, a comparison of the computed fluid film pressure obtained by
the PGD, the full discretized model (FDM) and the analytical solution, for an infinitely short
journal bearing (ISJB), under dynamic load, is presented. This comparison is expanded to include
the journal center orbit, Sommerfeld and friction numbers. After that, another comparison is
also made in terms of computational cost of each numerical method mentioned above. In the
second case, the same comparisons between the results obtained from the PGD and the full
discretization model are carried out for the dynamic loaded finite journal bearing (FJB).

The PGD related parameters for the following study have been chosen as follows:

• Termination criterion used for the fixed point iterations: ξ= 10−8

• Termination criterion employed for the enrichment process: ξ̃= 10−5

• Maximum number of enrichment: Maxterms = 4
• Maximum number of iterations in the fixed point loop: Maxfp = 20.

For the Full discretized model, the finite differences method is used with the central difference
scheme of spacial discretization, the Gauss–Seidel’s iterative process is employed to solve the
resulting linear system, with successive over-relaxation (SOR), where ΩSOR = 1.8, to accelerate
the convergence process.

Note that, number of nodes in the crank angle direction (Nt = 1000) verifies the conditions
(3.24) for all node configurations.

The parameter chosen to study the convergence of the mesh, is the Sommerfeld number
which depends directly on the integral of the pressure field.

The relative error related to this parameter, for a given mesh, is:

ES (i ) = ‖Si −Si−1‖L2(α)

‖Si−1‖L2(α)
(4.1)

where Si is the vector of the Sommerfeld number computed for a given set of nodes (N i
α×N i

θ
×

N i
z

).

4.1. Infinitely short and long journal bearings

The parameters associated with this study are described in Table 1 and the dynamic load the
applied load is plotted in Figure 2.

In this section, the results obtained from the PGD, FDM and analytical solutions are compared
in terms of: pressure distributions, journal center orbits, Sommerfeld and friction numbers, mesh
convergence and computational time.
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Figure 2. The applied load as a function of crank angle.

4.1.1. Pressure distributions

The pressure distributions obtained by PGD, analytic and FDM solutions, at α = 180° and
α = 270°, are illustrated in Figures 3, 4 and Figures 5, 6, respectively. While, Figures 7, 8 and 9
present the pressure distributions along the circumferential direction, at z = 0, z = 0.5 and
z = 0.75, for different dimensionless time values (α= 54°, α= 180° and α= 270°, respectively).

We notice that the pressure curves provided by all the approaches are quite close. Moreover,
the solutions obtained from the PGD and the FDM are closer to each other than the analytical
solution. This can be explained by the fact that, for the analytical solution, the pressure variation
along the circumferential direction for the infinitely short journal bearing and along the axial
direction for the infinitely long journal bearing are neglected. Also, through these curves it can be
seen that the PGD solver yields practically the same angles of rupture of the fluid film related to
Swift-Steiber boundary conditions as those provided by the FDM.

These comparison tests are insufficient to assess the pressure computation accuracy through-
out the entire domain. For a more complete comparison, the evaluation of the journal center
orbits and the assessment of the Sommerfeld and friction numbers are done in the next sub-
sections.

4.1.2. Journal center orbits

Figure 10 shows the comparison of journal center orbits determined by the PGD, FDM and
analytic solutions. It can be observed from this figure that, the trajectories of all methods have the
same shape and are relatively near. However, the orbits estimated by numerical methods (PGD
and FDM) are the closest to each other.

4.1.3. Sommerfeld and friction numbers

Figures 11 and 12 illustrate the comparison of Sommerfeld and friction numbers as a func-
tion of crank angle calculated by the PGD, FDM and analytic solutions. It is noted that all per-
formances calculated with the proposed method (PGD) agrees with those obtained by other ap-
proaches. Furthermore, as for the previous findings, the results obtained by the PGD and the
FDM are the closest between them. For a more accurate comparison, a mesh convergence study
is described in next sub-section.
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Figure 3. Dimensionless pressure distribution versus axial and circumferential coordinates
at α= 180° obtained by: (a) analytic solution; (b) PGD and (c) FDM for ISJB.

Table 2. Error in Sommerfeld number computation for ISJB using PGD and FDM

Mesh Error ES for ISJB Error ES for IlJB
PGD FDM PGD FDM

1000×41×295 8.2903×10−5 1.5127×10−4 0.0045 0.0159
1000×51×321 4.8568×10−5 7.9887×10−5 0.0026 0.0110
1000×61×383 3.2599×10−5 7.3168×10−5 0.0018 0.0094
1000×71×447 2.4667×10−5 6.8958×10−5 0.0012 0.0028
1000×81×509 1.7058×10−5 6.3425×10−5 0.0010 0.0026
1000×91×573 1.4544×10−5 6.3425×10−5 0.0007 0.0016
1000×101×653 1.0902×10−5 6.0669×10−5 0.0006 0.0015

4.1.4. Mesh convergence study

The convergence study is established using different sets of meshes. The results obtained by
the PGD and the FDM are listed in Table 2 and plotted in Figure 13.

From the comparison, it can be observed that the convergence rate of the PGD is relatively
better than that of the FDM. However, a finer mesh yields a more accurate results. The computa-
tion time rises as the mesh becomes finer. As a result, a study of the computational time needed
for the PGD resolution method is more than necessary.
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Figure 4. Dimensionless pressure distribution versus axial and circumferential coordinates
at α= 180° obtained by: (a) analytic solution; (b) PGD and (c) FDM for ILJB.

Table 3. PGD versus FDM, computational time for different mesh numbers

Mesh Computational time for ISJB Computational time for ILJB
PGD FDM PGD FDM

1000×31×195 77.45 534.96 365 4157
1000×41×295 80.69 1757.01 703 10,860
1000×51×321 119.24 4208.71 707 21,201
1000×61×383 238.72 8884.54 726 43,148
1000×71×447 281.45 16532.74 815 71,432
1000×81×509 362.42 27376.21 1387 95,029
1000×91×573 473.52 43541.36 1551 138,131
1000×101×635 655.68 66008.14 1779 189,562

4.1.5. Computational time

The computational time required to calculate the pressure fields as a function of mesh
numbers using PGD and FDM is represented in Table 3 and Figure 14. Note that, the
computational time are performed on Intel Core i7-7820HQ CPU @ 2.90 GHz (48 GB RAM, 64
bit) using Matlab.
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Figure 5. Dimensionless pressure distribution versus axial and circumferential coordinates
at α= 270° obtained by: (a) analytic solution; (b) PGD and (c) FDM for ISJB.

The efficiency of PGD as compared to FDM in terms of computational time is evident from
this comparison (Table 3 and Figure 14). We’ve seen that, in comparison to FDM, the PGD
takes a lot less time as the mesh gets finer. For example, for a mesh size of 1000×101×635 the
PGD is more hundred times faster than the FDM. This can be justified by the fact that solving
systems of linear equations consumes the majority of the CPU time required by each numerical
approach (PGD and FDM). In case of the PGD, the resulting linear systems are solving by LU
factorization with partial pivoting. A square matrix of N order requires [(2/3) N 3] floating-point
arithmetic operations (flops) to factorize into L and U. Then, to solve the problem of journal
bearings under dynamic loading with a mesh of size Nt Nθ Nz , the maximum number of flops
needed for the linear systems resulting by the PGD is equal to [Nt (2/3)(N 3

θ
+N 3

z
)MaxtermsMaxfp].

In our case, maximum number of flops is equal to [1000((2/3) × N 3
θ
+ (2/3) N 3

z
)420]. However, to

solve the same size of the problem (Nt Nθ Nz ) by the full discretization model (FDM), using the
Gauss–Siedel method, is more expensive in terms of CPU time than using LU factorization, which
needs [Nt (2/3) N 3

θ
N 3

z
] flops to solve linear system.

4.2. Finite journal bearing

The dynamically loaded finite journal bearing (FJB) analysis can be used to conduct a more global
examination of the suggested method’s capabilities.

The parameters of a typical automotive crankshaft bearing and the applied load cycle are taken
from Wang et al. paper’s [15] and described in Table 4 and Figure 15.
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Figure 6. Dimensionless pressure distribution versus axial and circumferential coordinates
at α= 270° obtained by: (a) analytic solution; (b) PGD and (c) FDM for ILJB.

Figure 7. Pressure curves along the circumferential direction at mid-line (z = 0.5) for
α= 56°.

In this section, the results obtained from the PGD and FDM predictions are also compared in
terms of: pressure distributions, journal center orbits, Sommerfeld and friction numbers, mesh
convergence and the computational time.
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Figure 8. Pressure curves along the circumferential direction at mid-line (z = 0.5) for
α= 180°.

Figure 9. Pressure curves along the circumferential direction at mid-line (z = 0.5) for
α= 270°.

Table 4. Finite journal bearing characteristics [15]

Bearing length, L (m) 21×10−3

Bearing radius, R (m) 36×10−3

Relative clearance, c (m) 3.6×10−5

Rotational speed, N (rpm) 5000
Lubricant viscosity, µ (Pa·s) 8.1×10−2

Mass of journal, M (kg) 3206.3
Grids, Nα Nθ Nz̄ 1000×81×509

4.2.1. Pressure distributions

Figures 16 and 17 show the pressure fields generated by PGD and FDM procedures at
α = 180° and α = 270°. While, Figures 18, 19 and 20 represent the pressure distribution along
the circumferential direction at mid-line (z = 0.5), for different crank angles (α = 54°, α = 180°
and α = 270°), where the load intensities are W = 34,938 kN, W = 15,133 kN and W = 30,067 kN
respectively.
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Figure 10. Journal center orbit over a load cycle.

Figure 11. Variation of Sommerfeld number as a function of the crank angle.

Figure 12. Variation of friction number as a function of the crank angle.
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Figure 13. Error in Sommerfeld number computation for ISJB using PGD and FDM.

Figure 14. PGD versus FDM computational time for different mesh numbers.

Figure 15. Applied load as a function of crank angle [15].
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Figure 16. Dimensionless pressure fields versus axial and circumferential coordinates at
α= 180° obtained by: (a) PGD and (b) FDM.

Figure 17. Dimensionless pressure distributions versus axial and circumferential coordi-
nates at α= 270° obtained by: (a) PGD and (b) FDM.

Figure 18. Dimensionless pressure distributions along the circumferential direction at
mid-line (z = 0.5) for α= 56°.
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Figure 19. Dimensionless pressure distributions along the circumferential direction at
mid-line (z = 0.5) for α= 180°.

Figure 20. Dimensionless pressure distributions along the circumferential direction at
mid-line (z = 0.5) for α= 270°.

Through these comparisons, it can seen that the pressure curves obtained by the PGD are very
close to those of the FDM.

4.2.2. Journal center orbits

Figure 21 presents the trajectory of journal center during the load cycle obtained by the
PGD and FDM. It is noted that, the results obtained by the two approaches are in very good
correspondence.

4.2.3. Sommerfeld and friction numbers

Figure 22 shows the variation of Sommerfeld number as a function of the crank angle obtained
by the PGD and the FDM. Through this comparison, it is clear that the number of Sommerfeld
obtained by the PGD is very consistent with the results of the FDM.

The friction number is calculated during the load cycle using the PGD and the FDM and is
illustrated in Figure 23. From this figure, it can be discerned that the friction number computed
by the PGD agree with solution calculated by FDM.
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Figure 21. Journal center orbit over a load cycle for finite journal bearing.

Figure 22. Variation of Sommerfeld number as a function of the crank angle.

4.2.4. Mesh convergence study

The convergence study is conducted using different sets of meshes. The obtained results are
listed in Table 5 and plotted in Figure 24. It is noted that the convergence rate of the PGD is
relatively better than that of the FDM for practically all sets nodes used.

4.2.5. Computational time

The computational time required to calculate the pressure distribution by the PGD and FDM
techniques is represented in Figure 25 and Table 6. From this comparison, It can be seen that,
the PGD approach is definitely more efficient (i.e. takes less time) than FDM. For example, in
mesh size of (1000× 101× 635), the PGD is more than one hundred and forty times faster than
the FDM.
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Figure 23. Variation of friction number as a function of the crank angle.

Figure 24. Error in Sommerfeld number computation for FJB using PGD and FDM.

Table 5. Error in Sommerfeld number computation for FJB using PGD and FDM

Mesh Error ES for ISJB
PGD FDM

1000×41×295 5.1943×10−5 5.4109×10−4

1000×51×321 3.3303×10−5 3.0015×10−5

1000×61×383 2.3404×10−5 2.9338×10−5

1000×71×447 1.6923×10−5 2.6854×10−5

1000×81×509 1.7058×10−5 2.5626×10−5

1000×91×573 1.0310×10−5 1.9325×10−5

1000×101×653 8.8792×10−6 1.2671×10−5
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Figure 25. PGD versus FDM computational time for different number of nodes.

Table 6. PGD versus FDM, computational time for different number of nodes

Mesh Computational time for FJB
PGD FDM

1000×31×195 77.21 946.86
1000×41×295 89.67 2925.42
1000×51×321 123.74 5943.81
1000×61×383 239.41 11625.27
1000×71×447 290.49 21478.54
1000×81×509 367.71 40031.47
1000×91×573 508.57 60759.61
1000×101×635 603.43 85125.37

5. Conclusion

The study of hydrodynamic lubrication of dynamically loaded journal bearings is provided in
this work using Proper Generalized Decomposition approach. The basic principle of the PGD
method is to compute each term of the numerical approximation iteratively through the sum of
specified functions products in lower dimensions. We have shown that when compared to the
full discretized model, the PGD technique is able to solve the journal bearing transient problems
of accuracy with significant low cost and much better convergence.

In terms of computational time, the results are absolutely impressive: the time consumed by
the PGD remains relatively constant compared to the classical method, for example for a mesh
size of (Nα = 1000, Nz = 101, Nθ = 653) the PGD is one hundred times faster and one hundred and
forty times faster than the classical method for a short journal bearing and finite journal bearing,
respectively, with a better error order.

This study is the first step in addressing model order reduction in journal bearing hydrody-
namic lubrication under dynamic load. Further research will be conducted to increase the or-
der of complexity of this problem in order to solve the misaligned and textured journal bearings
transient problems and adapting the PGD to the mass conservation model for the cavitation zone
determination.
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Nomenclature

e Eccentricity (m)
c Radial clearance (m)
µ Dynamic viscosity (Pa·s)

ε Relative eccentricity, ε= e

c
h Film thickness (m)
D Bearing diameter (m)
L Bearing length (m)

h The dimensionless oil film thickness, h = h

c
R Bearing radius (m)
ω shaft’s angular velocity (rad/s)
x1, y1 Coordinate system fixed of the bushing (m)
x2, y2 Coordinate system changed with the line of centers (m)
θ Absolute coordinate related to fixed system (rad)
θ′ Circumferential coordinate starting from the line of the centers of bearing

and journal
t Time (s)
α Crank angle (rad), α= t
φ Attitude angle (rad)

ε̇ Derivative of ε, ε̇= dε

dα

φ̇ Derivative of φ, φ̇= dφ

dα
ex1, ey1 Components of eccentricity (m)
εx1, εy1 Components of relatives eccentricity

ε̇x1, ε̇y1 Derivative of εx1 and εy1, respectively, ε̇x1 = dεx1

dα
, ε̇y1 =

dεy1

dα

ε̈x1, ε̈y1 Derivative of ε̇x1 and ε̇y1, respectively, ε̈x1 = dε̇x1

dα
, ε̈y1 =

dε̇y1

dα
P Lubricant pressure (Pa)

P Dimensionless Lubricant pressure, P = Pc2

µR2

F The dimensionless fluid film force
F x1, F y1 The components of the dimensionless fluid film force
W The dynamic applied load, (N )

W The dimensionless externally applied load, W = W c2

LµR3

W x1, W y1 The components of the dimensionless externally applied load
U Shaft speed (m/s)
S Sommerfeld number
F t Dimensionless friction force
M Mass of journal, (kg)

M Dimensionless mass, M = Mc2

LµR3

f Friction number
τx y Shearing stresses (Pa)
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Appendix A.

To translate from (x1, y1) to (x2, y2), the following parameters are used;

ε=
√
ε2

x1 +ε2
y1

φ= arcsin
(εy1

ε

)
h = 1+ε cos(θ′)

ε̇= ε̇y1 sin(φ)+ ε̇x1 cos(φ)

φ̇= 1

ε
(ε̇y1 cos(φ)− ε̇x1 sin(φ)).

(A.1)

By applying the boundary conditions on (2.23), the location of the starting of full film zone (θ′1)
and the cavitation area (θ′2) are obtained by:

(2εφ̇−ε) sin(θ′)+2 ε̇ cos(θ′) = 0. (A.2)

To calculate the fluid film forces, the following equations are used:

F x2 =−
1∫

0

θ′2∫
θ′1

P cos(θ′)dθ′ dz

F y2 =−
1∫

0

θ′2∫
θ′1

P sin(θ′)dθ′ dz.

(A.3)

To solve integral on (A.3), the Sommerfeld change of variables [34] are employed as follow:

1+ε cos(θ′) = 1−ε2

1−ε cos(ψ)

cos(θ′) = −ε+cos(ψ)

1−ε cos(ψ)

sin(θ′) = (1−ε2)
1
2 sin(ψ)

1−ε cos(ψ)

dθ′ = (1−ε2)
1
2

1−ε cos(ψ)
dψ.

(A.4)

By using (A.4) and solving integrals (see Appendix C), the (A.3) becomes:
F x2 = −1

2η2 (A(ψ2)− A(ψ1))

F y2 = −1

2η2 (B(ψ2)−B(ψ1))

(A.5)
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where:

A(ψ) = 2 ε̇
1

(1−ε2)
5
2

(
ψ

(
2ε2 + 1

2

)
+ sin(2ψ)

4
−2ε sin(ψ)

)
+ (2εφ̇−ε)

1

2(1−ε2)
3
2

(ψ− sin(ψ) cos(ψ))

B(ψ) = 2 ε̇
1

2(1−ε2)
3
2

(ψ− sin(ψ) cos(ψ)) + (2εφ̇−ε)
1

(1−ε2)
5
2

(
ψ

(
2ε2 + 1

2

)
+ sin(2ψ)

4
−2ε sin(ψ)

)

ψi = 2arctg

((√
1−ε
1+ε

)
tg

(
θ′i
2

))
.

(A.6)
To return to the x1, y1 coordinates, the following changes are used:{

F x1 =−F x2 sin(φ)−F y2 cos(φ)

F y1 =−F x2 cos(φ)+F y2 sin(φ).
(A.7)

Appendix B.

Integrating (2.25) once with respect to θ′, one arrives at:

∂P

∂θ′
= 6

[
(1−2φ̇)ε

cos(θ′)
(1+ε cos(θ′))3 +2 ε̇

sin(θ′)
(1+ε cos(θ′))3 + C1

(1+ε cos(θ′))3

]
(B.1)

where C1 6=C1(θ′).
C1 is obtained by applying the (2.12) on (B.1), So:

C1 =−(1−2φ̇)ε cos(θ′2)−2 ε̇ sin(θ′2). (B.2)

Integrating (B.1) with C1 given in (B.2), the following expression is obtained:

P = 6

(1−ε2)1.5

[
(1−2 φ̇) (1−ε2)2 (ψ−ε sin(ψ))+ ε̇ (1−ε cos(ψ))2

ε

− (1−2φ̇) (1−ε2)0.5 +2 ε̇sin(ψ2)

1−ε cos(ψ2)

(
ψ+ ε2

2
ψ−2ε sin(ψ)− ε2 sin(2ψ)

4

)
+C2

]
. (B.3)

With C2 6=C2(θ′), applying the (2.9) on (B.3), get:

C2 = −(1−2 φ̇) (1−ε2)2 (ψ0 −ε sin(ψ0))− ε̇ (1−ε cos(ψ0))2

ε

+ (1−2φ̇) (1−ε2)0.5 +2 ε̇sin(ψ2)

1−ε cos(ψ2)

(
ψ0 + ε2

2
ψ0 −2ε sin(ψ0)− ε2 sin(2ψ0)

4

)
(B.4)

where ψ0 corresponds to θ′0 =−φ, which defines the oil inlet position.
Because the oil film pressure only exists in the range of θ′1 ≤ θ′ ≤ θ′2, the dynamic pressure

given by (2.26) is true for ψ1 ≤ψ≤ψ2. The oil film pressure is nil outside of this range.
Using the boundary conditions specified by (2.9) and (2.10) to predict the constants in (2.26).

The starting film zone position ψ1 and the starting location of cavitation ψ2 can be determined
by the following equations:

(1−2φ̇)ε (1−ε2)0.5 [(2+ε cos(ψ2)) (sin(ψ2)− sin(ψ0))−ε sin(ψ0) (cos(ψ2)−cos(ψ0))

+ (2 cos(ψ2)+ε) (ψ0 −ψ2)]+2 ε̇ [(2 cos(ψ0)−2 cos(ψ2)+ε sin2(ψ0)) (1−ε cos(ψ2))

−ε sin(ψ0) sin(ψ2) (4−ε cos(ψ0))− (2+ε2) sin(ψ2) (ψ2 −ψ0)+3ε sin2(ψ2)] = 0 (B.5)

(1−2φ̇)ε (1−ε2)0.5 [(2+ε cos(ψ1)) (sin(ψ1)− sin(ψ0))−ε sin(ψ0) (cos(ψ2)−cos(ψ0))

+ (2 cos(ψ1)+ε) (ψ0 −ψ1)]+ 2 ε̇ [(2 cos(ψ0)−2 cos(ψ1)+ε sin2(ψ0)) (1−ε cos(ψ1))

−ε sin(ψ0) sin(ψ1) (4−ε cos(ψ0))− (2+ε2) sin(ψ2) (ψ1 −ψ0)+3ε sin2(ψ1)] = 0. (B.6)
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By using (A.4) in Appendix A and solving the integrals (see Appendix C), the dimensionless
radial and tangential fluid force components are given by:

Fx2 = −3

[
(1−2φ̇)ε (cos(ψ2)−cos(ψ1))2

(1−ε2) (1−ε cos(ψ2))
+2 ε̇

× (ψ2 −ψ1 + sin(ψ1) cos(ψ1)) (1−ε cos(ψ2))

(1−ε2)1.5 (1−ε cos(ψ2))

× (ε cos2(ψ1)−2 cos(ψ1)+cos(ψ2)) sin(ψ2)

(1−ε2)1.5 (1−ε cos(ψ2))

]
(B.7)

Fy2 = 3

{
(1−2 φ̇)ε

(1−ε2)1.5(1−ε cos(ψ2))
[(1+2ε cos(ψ)) (ψ2 −ψ1)−2(ε+cos(ψ2)) (sin(ψ2)− sin(ψ1))

+ (sin(ψ2) cos(ψ2)− sin(ψ1) cos(ψ1))]+ 2 ε̇

(1−ε2)1.5 (1−ε cos(ψ2))
[2ε (cos(ψ2)−ε)

− (2ε cos(ψ1)+ sin2(ψ1)) (1−ε cos(ψ2))− sin2(ψ2)

+3ε sin(ψ2) (ψ2 −ψ1)+ (2ε2 +2−ε cos(ψ1)) sin(ψ1) sin(ψ2)]

}
. (B.8)

Equation (A.7) in Appendix A can be used to return to the x1, y1 coordinates.

Appendix C.

By using (A.4) to calculate the integral of the following form J nm
l = ∫

(sinm(θ′) cosn(θ′)/(1 +
ε cos(θ′))l )dθ′, the following results are obtained:

J 00
3 = 1

(1−ε2)2.5

(
ψ+ ε2

2
ψ−2ε sin(ψ)+ ε2 sin(2ψ)

4

)
(C.1)

J 10
3 = (1−ε cos(ψ))2

ε (1−ε2)2 (C.2)

J 01
3 = −3εψ+2(1+ε2) sin(ψ)−ε sin(ψ) cos(ψ)

2(1−ε2)2.5 (C.3)

J 11
3 = (1−2ε2 +ε cos(ψ)) (1−ε cos(ψ))

2ε2 (1−ε2)2 (C.4)

J 20
3 = ψ− sin(ψ) cos(ψ)

2(1−ε2)1.5 (C.5)

J 02
3 = (1+2ε2)ψ−4ε sin(ψ)+ sin(ψ) cos(ψ)

2(1−ε2)1.5 . (C.6)

References

[1] O. Reynolds, “IV. On the theory of lubrication and its application to Mr. Beauchamp tower’s experiments, including
an experimental determination of the viscosity of olive oil”, Philos. Trans. R. Soc. Lond. 177 (1886), p. 157-234.

[2] N. Petrov, “Friction in machines and the effect of the lubricant”, Inzh. Zh., St-Peterb. 1 (1883), p. 71-140.
[3] B. Tower, “First report on friction experiments”, Proc. Inst. Mech. Eng. 34 (1883), no. 1, p. 632-659.
[4] J. Wang, M. Khonsari, “Effects of oil inlet pressure and inlet position of axially grooved infinitely long journal

bearings. Part I: Analytical solutions and static performance”, Tribol. Int. 41 (2008), no. 2, p. 119-131.
[5] R.-Z. Gong, D.-Y. Li, H.-J. Wang, L. Han, D.-Q. Qin, “Analytical solution of Reynolds equation under dynamic

conditions”, Proc. Inst. Mech. Eng. J: J. Eng. Tribol. 230 (2016), no. 4, p. 416-427.
[6] H. Hirani, K. Athre, S. Biswas, “Dynamically loaded finite length journal bearings: analytical method of solution”,

J. Tribol. 121 (1999), no. 4, p. 844-852.
[7] R. Kirk, E. Gunter, “Short bearing analysis applied to rotor dynamics—Part I: Theory”, J. Lubr. Technol. 98 (1976),

p. 47-56.



390 Abdelhak Megdoud et al.

[8] T. Han, R. Paranjpe, “A finite volume analysis of the thermohydrodynamic performance of finite journal bearings”,
J. Tribol. 112 (1990), no. 3, p. 557-565.

[9] R. Paranjpe, “Analysis of non-Newtonian effects in dynamically loaded finite journal bearings including mass
conserving cavitation”, J. Tribol. 114 (1992), no. 4, p. 736-744.

[10] R. S. Paranjpe, T. Han, “A study of the thermohydrodynamic performance of steadily loaded journal bearings”, Tribol.
Trans. 37 (1994), no. 4, p. 679-690.

[11] P. K. Goenka, “Dynamically loaded journal bearings: finite element method analysis”, J. Tribol. 106 (1984), no. 4,
p. 429-437.

[12] R. S. Paranjpe, P. K. Goenka, “Analysis of crankshaft bearings using a mass conserving algorithm”, Tribol. Trans. 33
(1990), no. 3, p. 333-344.

[13] B. Vincent, P. Maspeyrot, J. Frene, “Cavitation in dynamically loaded journal bearings using mobility method”, Wear
193 (1996), no. 2, p. 155-162.

[14] X.-L. Wang, K.-Q. Zhu, S.-Z. Wen, “On the performance of dynamically loaded journal bearings lubricated with
couple stress fluids”, Tribol. Int. 35 (2002), no. 3, p. 185-191.

[15] X.-L. Wang, K.-Q. Zhu, “A study of the lubricating effectiveness of micropolar fluids in a dynamically loaded journal
bearing (T1516”, Tribol. Int. 37 (2004), no. 6, p. 481-490.

[16] C. Allery, S. Guérin, A. Hamdouni, A. Sakout, “Experimental and numerical POD study of the Coanda effect used to
reduce self-sustained tones”, Mech. Res. Commun. 31 (2004), no. 1, p. 105-120.

[17] C. Allery, C. Beghein, A. Hamdouni, “On investigation of particle dispersion by a POD approach”, Int. Appl. Mech. 44
(2008), no. 1, p. 110-119.

[18] J. A. Atwell, B. B. King, “Proper orthogonal decomposition for reduced basis feedback controllers for parabolic
equations”, Math. Comput. Model. 33 (2001), no. 1-3, p. 1-19.

[19] N. Akkari, A. Hamdouni, E. Liberge, M. Jazar, “A mathematical and numerical study of the sensitivity of a reduced
order model by POD (ROM–POD), for a 2D incompressible fluid flow”, J. Comput. Appl. Math. 270 (2014), p. 522-530.

[20] M. Krasnyk, M. Mangold, A. Kienle, “Reduction procedure for parametrized fluid dynamics problems based on
proper orthogonal decomposition and calibration”, Chem. Eng. Sci. 65 (2010), no. 23, p. 6238-6246.

[21] A. Ammar, B. Mokdad, F. Chinesta, R. Keunings, “A new family of solvers for some classes of multidimensional partial
differential equations encountered in kinetic theory modeling of complex fluids”, J. Non-Newtonian Fluid Mech. 139
(2006), no. 3, p. 153-176.

[22] F. Chinesta, A. Ammar, E. Cueto, “On the use of proper generalized decompositions for solving the multidimensional
chemical master equation”, Eur. J. Comput. Mech./Revue Européenne de Mécanique Numérique 19 (2010), no. 1-3,
p. 53-64.

[23] A. Ammar, P. Joyot, “The nanometric and micrometric scales of the structure and mechanics of materials revisited:
an introduction to the challenges of fully deterministic numerical descriptions”, Int. J. Multiscale Comput. Eng. 6
(2008), no. 3, p. 191-213.

[24] A. Dumon, C. Allery, A. Ammar, “Proper general decomposition (PGD) for the resolution of Navier–Stokes equations”,
J. Comput. Phys. 230 (2011), no. 4, p. 1387-1407.

[25] M. S. Aghighi, A. Ammar, C. Metivier, M. Normandin, F. Chinesta, “Non-incremental transient solution of the
Rayleigh–Bénard convection model by using the PGD”, J. Non-Newtonian Fluid Mech. 200 (2013), p. 65-78.

[26] A. Dumon, C. Allery, A. Ammar, “Proper generalized decomposition method for incompressible Navier–Stokes
equations with a spectral discretization”, Appl. Math. Comput. 219 (2013), no. 15, p. 8145-8162.

[27] C. Leblond, C. Allery, “A priori space–time separated representation for the reduced order modeling of low Reynolds
number flows”, Comput. Methods Appl. Mech. Eng. 274 (2014), p. 264-288.

[28] L. Tamellini, O. Le Maitre, A. Nouy, “Model reduction based on proper generalized decomposition for the stochastic
steady incompressible Navier–Stokes equations”, SIAM J. Sci. Comput. 36 (2014), no. 3, p. A1089-A1117.

[29] C. Le-Quoc, L. A. Le, V. Ho-Huu, P. Huynh, T. Nguyen-Thoi, “An immersed boundary proper generalized decomposi-
tion (IB-PGD) for fluid–structure interaction problems”, Int. J. Comput. Methods 15 (2018), no. 06, article no. 1850045.

[30] B. Cherabi, A. Hamrani, I. Belaidi, S. Khelladi, F. Bakir, “An efficient reduced-order method with PGD for solving
journal bearing hydrodynamic lubrication problems”, C. R. Méc. 344 (2016), no. 10, p. 689-714.

[31] J. Frene, D. Nicolas, B. Degueurce, D. Berthe, M. Godet, Hydrodynamic Lubrication: Bearings and Thrust Bearings,
Elsevier, Amsterdam, 1997.

[32] A. Michell, “Progress in fluid film lubrication”, Trans. ASME 51 (1929), no. 2, p. 153-163.
[33] G. B. DuBois, F. W. Ocvirk, “Analytical derivation and experimental evaluation of short-bearing approximation for

full journal bearing”, Tech. report, 1953.
[34] M. Born, “Arnold Johannes Wilhelm Sommerfeld 1868–1951”, Obituary Notices of Fellows R. Soc. 8 (1952), p. 274-296.


	1. Introduction
	2. Governing equations
	2.1. Reynolds equation
	2.2. Boundary conditions
	2.3. Force balance equation
	2.4. Sommerfeld number
	2.5. Friction number
	2.6. Infinitely short journal bearing (ISJB)
	2.7. Infinitely long journal bearing (ILJB)

	3. PGD for the resolution of unsteady state Reynolds equation
	3.1. Separated representation related to the Reynolds equation
	3.2. Progressive construction of the separated representation
	3.2.1. Alternating direction strategy

	3.3. Computational procedure
	3.3.1. PGD program description


	4. Numerical results and discussions
	4.1. Infinitely short and long journal bearings
	4.1.1. Pressure distributions
	4.1.2. Journal center orbits
	4.1.3. Sommerfeld and friction numbers
	4.1.4. Mesh convergence study
	4.1.5. Computational time

	4.2. Finite journal bearing
	4.2.1. Pressure distributions
	4.2.2. Journal center orbits
	4.2.3. Sommerfeld and friction numbers
	4.2.4. Mesh convergence study
	4.2.5. Computational time


	5. Conclusion 
	Nomenclature
	Conflicts of interest
	Appendix A. 
	Appendix B. 
	Appendix C. 
	References



